Abstract

In 1822 A. Fresnel described an experiment to separate a beam of light into its right- and left-circular polarization components using chiral interfaces. Fresnel’s experiment combined three crystalline quartz prisms of alternating handedness to achieve a visible macroscopic separation between the two circular components. Such quartz polyprisms were rather popular optical components in XIXth century but today remain as very little known optical devices. This work shows the analogy between Fresnel’s experiment and Stern-Gerlach experiment from quantum mechanics since both experiments produce selective deflection of particles (photons in case of Fresnel’s method) according to their spin angular momentum. We have studied a historical quartz polyprism with eight chiral interfaces producing a large spatial separation of light by spin. We have also constructed a modified Fresnel biprism to produce smaller separations and we have examined the analogy with Stern-Gerlach apparatus for both strong and weak measurements. The polarimetric analysis of a Fresnel polyprism reveals that it acts as a spin angular momentum analyzer.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Weak value amplified optical activity measurements

Marcel Pfeifer and Peer Fischer
Opt. Express 19(17) 16508-16517 (2011)

Chirality induced asymmetric spin splitting of light beams reflected from an air-chiral interface

Mengjiang Jiang, Hai Lin, Linqing Zhuo, Wenguo Zhu, Heyuan Guan, Jianhui Yu, Huihui Lu, Jieyuan Tan, and Zhe Chen
Opt. Express 26(6) 6593-6601 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. Gerlach and O. Stern, “Der experimentelle nachweis der richtungsquantelung im magnetfeld,” Zeitschrift fur Physik 9, 349–352 (1922).
    [Crossref]
  2. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics (Pearson/Addison-Wesley, 2006), 2nd ed.
  3. A. Peres, Quantum theory: concepts and methods (Kluwer Acad. Publ., 2010).
  4. G. Jaroszkiewicz, “Quantum Register Physics,” arXiv quant-ph/0409094 (2004).
  5. O. Arteaga, R. Ossikovski, E. Kuntman, M. A. Kuntman, A. Canillas, and E. Garcia-Caurel, “Mueller matrix polarimetry on a Young’s double-slit experiment analog,” Opt. Lett. 42, 3900–3903 (2017).
    [Crossref] [PubMed]
  6. A. J. Fresnel, “Mémoire sur la double réfraction que les rayons lumineux éprouvent en traversant les aiguilles de cristal de roche suivant les directions parallèles à l’axe »,” Académie des sciences le 9 décembre 1822, reprinted Ouvres 1, 731–751 (1822).
  7. A. J. Fresnel, “Mémoire sur les modifications que la réflexion imprime à la lumière polarisée,” Académie des sciences le 10 novembre 1817, reprinted Ouvres 1, 441–485 (1817).
  8. A. J. Fresnel, “Supplément au mémoire sur les modifications que la réflexion imprime à la lumière polarisée,” Académie des sciences le 19 janvier 1818, reprinted Ouvres 1, 487–508 (1818).
  9. B. Kahr, “Polarization in France,” Chirality 30, 351–368 (2018).
    [Crossref]
  10. G. R. Fowles, Introduction to modern optics. (Dover Publications, 2012).
  11. S. F. Mason, Molecular optical activity and the chiral discriminations (Cambridge University, 2009).
  12. M. P. Silverman, Quantum superposition : counterintuitive consequences of coherence, entanglement, and interference (Springer, 2008).
  13. R. Echarri, “The Fresnel prism as polarization interferometer,” Microw. Opt. Technol. Lett. 6, 403–407 (1993).
    [Crossref]
  14. A. Ghosh and P. Fischer, “Chiral Molecules Split Light: Reflection and Refraction in a Chiral Liquid,” Phys. Rev. Lett. 97, 173002 (2006).
    [Crossref] [PubMed]
  15. O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319, 787–790 (2008).
    [Crossref]
  16. A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts,” Opt. Lett. 33, 1437–1439 (2008).
    [Crossref]
  17. K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
    [Crossref]
  18. X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
    [Crossref]
  19. Y. Zhang, L. Shi, and C. Xie, “Coriolis effect and spin Hall effect of light in an inhomogeneous chiral medium,” Opt. Lett. 41, 3070–3073 (2016).
    [Crossref]
  20. X. Ling, X. Zhou, K. Huang, Y. Liu, C.-W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Reports on Prog. Phys. 80, 066401 (2017).
    [Crossref]
  21. A. Aiello, N. Lindlein, C. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin hall effect of light,” Phys. Rev. Lett. 103, 100401 (2009).
    [Crossref]
  22. S. Abdulkareem and N. Kundikova, “Joint effect of polarization and the propagation path of a light beam on its intrinsic structure,” Opt. Express 24, 19157 (2016).
    [Crossref]
  23. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334, 333–337 (2011).
    [Crossref]
  24. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
    [Crossref]
  25. X. Chen, Z. Tao, C. Chen, C. Wang, L. Wang, H. Jiang, D. Fan, Y. Ekinci, and S. Liu, “All-dielectric metasurface-based roll-angle sensor,” Sensors Actuators A: Phys. 279, 509–517 (2018).
    [Crossref]
  26. R. Ossikovski and O. Arteaga, “Extended Yeh’s method for optically active anisotropic layered media,” Opt. Lett. 42, 3690–3693 (2017).
    [Crossref]
  27. O. Arteaga, J. Freudenthal, and B. Kahr, “Reckoning electromagnetic principles with polarimetric measurements of anisotropic optically active crystals,” J. Appl. Crystallogr. 45, 279–291 (2012).
    [Crossref]
  28. O. Arteaga, A. Canillas, and J. Jellison, “Determination of the components of the gyration tensor of quartz by oblique incidence transmission two-modulator generalized ellipsometry,” Appl. Opt. 48, 5307–5317 (2009).
    [Crossref]
  29. Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
    [Crossref]
  30. I. M. Duck, P. M. Stevenson, and E. C. G. Sudarshan, “The sense in which a “weak measurement” of a spin-1/2 particle’s spin component yields a value 100,” Phys. Rev. D 40, 2112–2117 (1989).
    [Crossref]
  31. N. W. M. Ritchie, J. G. Story, and R. G. Hulet, “Realization of a measurement of a ”weak value”,” Phys. Rev. Lett. 66, 1107–1110 (1991).
    [Crossref]
  32. M. Pfeifer and P. Fischer, “Weak value amplified optical activity measurements,” Opt. Express 19, 16508–16517 (2011).
    [Crossref]
  33. X. Qiu, L. Xie, X. Liu, L. Luo, Z. Zhang, and J. Du, “Estimation of optical rotation of chiral molecules with weak measurements,” Opt. Lett. 41, 4032–4036 (2016).
    [Crossref]
  34. K. J. Resch, “PHYSICS: Amplifying a Tiny Optical Effect,” Science 319, 733–734 (2008).
    [Crossref]
  35. Y. Zhang, D. Li, Y. He, Z. Shen, and Q. He, “Optical weak measurement system with common path implementation for label-free biomolecule sensing,” Opt. Lett. 41, 5409–5412 (2016).
    [Crossref]
  36. L. Li, Y. Li, Y.-L. Zhang, S. Yu, C.-Y. Lu, N.-L. Liu, J. Zhang, and J.-W. Pan, “Phase amplification in optical interferometry with weak measurement,” Phys. Rev. A 97, 033851 (2018).
    [Crossref]
  37. O. Arteaga, J. Freudenthal, B. Wang, and B. Kahr, “Mueller matrix polarimetry with four photoelastic modulators: theory and calibration,” Appl. Opt. 51, 6805–6817 (2012).
    [Crossref]
  38. A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9, 789–795 (2015).
    [Crossref]

2018 (3)

B. Kahr, “Polarization in France,” Chirality 30, 351–368 (2018).
[Crossref]

X. Chen, Z. Tao, C. Chen, C. Wang, L. Wang, H. Jiang, D. Fan, Y. Ekinci, and S. Liu, “All-dielectric metasurface-based roll-angle sensor,” Sensors Actuators A: Phys. 279, 509–517 (2018).
[Crossref]

L. Li, Y. Li, Y.-L. Zhang, S. Yu, C.-Y. Lu, N.-L. Liu, J. Zhang, and J.-W. Pan, “Phase amplification in optical interferometry with weak measurement,” Phys. Rev. A 97, 033851 (2018).
[Crossref]

2017 (3)

2016 (4)

2015 (3)

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9, 789–795 (2015).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

2013 (1)

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]

2012 (2)

O. Arteaga, J. Freudenthal, and B. Kahr, “Reckoning electromagnetic principles with polarimetric measurements of anisotropic optically active crystals,” J. Appl. Crystallogr. 45, 279–291 (2012).
[Crossref]

O. Arteaga, J. Freudenthal, B. Wang, and B. Kahr, “Mueller matrix polarimetry with four photoelastic modulators: theory and calibration,” Appl. Opt. 51, 6805–6817 (2012).
[Crossref]

2011 (2)

M. Pfeifer and P. Fischer, “Weak value amplified optical activity measurements,” Opt. Express 19, 16508–16517 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334, 333–337 (2011).
[Crossref]

2009 (2)

A. Aiello, N. Lindlein, C. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin hall effect of light,” Phys. Rev. Lett. 103, 100401 (2009).
[Crossref]

O. Arteaga, A. Canillas, and J. Jellison, “Determination of the components of the gyration tensor of quartz by oblique incidence transmission two-modulator generalized ellipsometry,” Appl. Opt. 48, 5307–5317 (2009).
[Crossref]

2008 (3)

K. J. Resch, “PHYSICS: Amplifying a Tiny Optical Effect,” Science 319, 733–734 (2008).
[Crossref]

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]

A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts,” Opt. Lett. 33, 1437–1439 (2008).
[Crossref]

2006 (1)

A. Ghosh and P. Fischer, “Chiral Molecules Split Light: Reflection and Refraction in a Chiral Liquid,” Phys. Rev. Lett. 97, 173002 (2006).
[Crossref] [PubMed]

1993 (1)

R. Echarri, “The Fresnel prism as polarization interferometer,” Microw. Opt. Technol. Lett. 6, 403–407 (1993).
[Crossref]

1991 (1)

N. W. M. Ritchie, J. G. Story, and R. G. Hulet, “Realization of a measurement of a ”weak value”,” Phys. Rev. Lett. 66, 1107–1110 (1991).
[Crossref]

1989 (1)

I. M. Duck, P. M. Stevenson, and E. C. G. Sudarshan, “The sense in which a “weak measurement” of a spin-1/2 particle’s spin component yields a value 100,” Phys. Rev. D 40, 2112–2117 (1989).
[Crossref]

1988 (1)

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref]

1922 (1)

W. Gerlach and O. Stern, “Der experimentelle nachweis der richtungsquantelung im magnetfeld,” Zeitschrift fur Physik 9, 349–352 (1922).
[Crossref]

1822 (1)

A. J. Fresnel, “Mémoire sur la double réfraction que les rayons lumineux éprouvent en traversant les aiguilles de cristal de roche suivant les directions parallèles à l’axe »,” Académie des sciences le 9 décembre 1822, reprinted Ouvres 1, 731–751 (1822).

1818 (1)

A. J. Fresnel, “Supplément au mémoire sur les modifications que la réflexion imprime à la lumière polarisée,” Académie des sciences le 19 janvier 1818, reprinted Ouvres 1, 487–508 (1818).

1817 (1)

A. J. Fresnel, “Mémoire sur les modifications que la réflexion imprime à la lumière polarisée,” Académie des sciences le 10 novembre 1817, reprinted Ouvres 1, 441–485 (1817).

Abdulkareem, S.

Aharonov, Y.

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref]

Aiello, A.

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9, 789–795 (2015).
[Crossref]

A. Aiello, N. Lindlein, C. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin hall effect of light,” Phys. Rev. Lett. 103, 100401 (2009).
[Crossref]

A. Aiello and J. P. Woerdman, “Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts,” Opt. Lett. 33, 1437–1439 (2008).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334, 333–337 (2011).
[Crossref]

Albert, D. Z.

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref]

Arbabi, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Arteaga, O.

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Banzer, P.

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9, 789–795 (2015).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Canillas, A.

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334, 333–337 (2011).
[Crossref]

Chen, C.

X. Chen, Z. Tao, C. Chen, C. Wang, L. Wang, H. Jiang, D. Fan, Y. Ekinci, and S. Liu, “All-dielectric metasurface-based roll-angle sensor,” Sensors Actuators A: Phys. 279, 509–517 (2018).
[Crossref]

Chen, X.

X. Chen, Z. Tao, C. Chen, C. Wang, L. Wang, H. Jiang, D. Fan, Y. Ekinci, and S. Liu, “All-dielectric metasurface-based roll-angle sensor,” Sensors Actuators A: Phys. 279, 509–517 (2018).
[Crossref]

Du, J.

Duck, I. M.

I. M. Duck, P. M. Stevenson, and E. C. G. Sudarshan, “The sense in which a “weak measurement” of a spin-1/2 particle’s spin component yields a value 100,” Phys. Rev. D 40, 2112–2117 (1989).
[Crossref]

Echarri, R.

R. Echarri, “The Fresnel prism as polarization interferometer,” Microw. Opt. Technol. Lett. 6, 403–407 (1993).
[Crossref]

Ekinci, Y.

X. Chen, Z. Tao, C. Chen, C. Wang, L. Wang, H. Jiang, D. Fan, Y. Ekinci, and S. Liu, “All-dielectric metasurface-based roll-angle sensor,” Sensors Actuators A: Phys. 279, 509–517 (2018).
[Crossref]

Fan, D.

X. Chen, Z. Tao, C. Chen, C. Wang, L. Wang, H. Jiang, D. Fan, Y. Ekinci, and S. Liu, “All-dielectric metasurface-based roll-angle sensor,” Sensors Actuators A: Phys. 279, 509–517 (2018).
[Crossref]

Faraon, A.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Feynman, R. P.

R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics (Pearson/Addison-Wesley, 2006), 2nd ed.

Fischer, P.

M. Pfeifer and P. Fischer, “Weak value amplified optical activity measurements,” Opt. Express 19, 16508–16517 (2011).
[Crossref]

A. Ghosh and P. Fischer, “Chiral Molecules Split Light: Reflection and Refraction in a Chiral Liquid,” Phys. Rev. Lett. 97, 173002 (2006).
[Crossref] [PubMed]

Fowles, G. R.

G. R. Fowles, Introduction to modern optics. (Dover Publications, 2012).

Fresnel, A. J.

A. J. Fresnel, “Mémoire sur la double réfraction que les rayons lumineux éprouvent en traversant les aiguilles de cristal de roche suivant les directions parallèles à l’axe »,” Académie des sciences le 9 décembre 1822, reprinted Ouvres 1, 731–751 (1822).

A. J. Fresnel, “Supplément au mémoire sur les modifications que la réflexion imprime à la lumière polarisée,” Académie des sciences le 19 janvier 1818, reprinted Ouvres 1, 487–508 (1818).

A. J. Fresnel, “Mémoire sur les modifications que la réflexion imprime à la lumière polarisée,” Académie des sciences le 10 novembre 1817, reprinted Ouvres 1, 441–485 (1817).

Freudenthal, J.

O. Arteaga, J. Freudenthal, and B. Kahr, “Reckoning electromagnetic principles with polarimetric measurements of anisotropic optically active crystals,” J. Appl. Crystallogr. 45, 279–291 (2012).
[Crossref]

O. Arteaga, J. Freudenthal, B. Wang, and B. Kahr, “Mueller matrix polarimetry with four photoelastic modulators: theory and calibration,” Appl. Opt. 51, 6805–6817 (2012).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334, 333–337 (2011).
[Crossref]

Garcia-Caurel, E.

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334, 333–337 (2011).
[Crossref]

Gerlach, W.

W. Gerlach and O. Stern, “Der experimentelle nachweis der richtungsquantelung im magnetfeld,” Zeitschrift fur Physik 9, 349–352 (1922).
[Crossref]

Ghosh, A.

A. Ghosh and P. Fischer, “Chiral Molecules Split Light: Reflection and Refraction in a Chiral Liquid,” Phys. Rev. Lett. 97, 173002 (2006).
[Crossref] [PubMed]

He, Q.

He, Y.

Horie, Y.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Hosten, O.

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]

Huang, K.

X. Ling, X. Zhou, K. Huang, Y. Liu, C.-W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Reports on Prog. Phys. 80, 066401 (2017).
[Crossref]

Hulet, R. G.

N. W. M. Ritchie, J. G. Story, and R. G. Hulet, “Realization of a measurement of a ”weak value”,” Phys. Rev. Lett. 66, 1107–1110 (1991).
[Crossref]

Jaroszkiewicz, G.

G. Jaroszkiewicz, “Quantum Register Physics,” arXiv quant-ph/0409094 (2004).

Jellison, J.

Jiang, H.

X. Chen, Z. Tao, C. Chen, C. Wang, L. Wang, H. Jiang, D. Fan, Y. Ekinci, and S. Liu, “All-dielectric metasurface-based roll-angle sensor,” Sensors Actuators A: Phys. 279, 509–517 (2018).
[Crossref]

Kahr, B.

B. Kahr, “Polarization in France,” Chirality 30, 351–368 (2018).
[Crossref]

O. Arteaga, J. Freudenthal, and B. Kahr, “Reckoning electromagnetic principles with polarimetric measurements of anisotropic optically active crystals,” J. Appl. Crystallogr. 45, 279–291 (2012).
[Crossref]

O. Arteaga, J. Freudenthal, B. Wang, and B. Kahr, “Mueller matrix polarimetry with four photoelastic modulators: theory and calibration,” Appl. Opt. 51, 6805–6817 (2012).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334, 333–337 (2011).
[Crossref]

Kundikova, N.

Kuntman, E.

Kuntman, M. A.

Kwiat, P.

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]

Leighton, R. B.

R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics (Pearson/Addison-Wesley, 2006), 2nd ed.

Leuchs, G.

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9, 789–795 (2015).
[Crossref]

A. Aiello, N. Lindlein, C. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin hall effect of light,” Phys. Rev. Lett. 103, 100401 (2009).
[Crossref]

Li, D.

Li, L.

L. Li, Y. Li, Y.-L. Zhang, S. Yu, C.-Y. Lu, N.-L. Liu, J. Zhang, and J.-W. Pan, “Phase amplification in optical interferometry with weak measurement,” Phys. Rev. A 97, 033851 (2018).
[Crossref]

Li, Y.

L. Li, Y. Li, Y.-L. Zhang, S. Yu, C.-Y. Lu, N.-L. Liu, J. Zhang, and J.-W. Pan, “Phase amplification in optical interferometry with weak measurement,” Phys. Rev. A 97, 033851 (2018).
[Crossref]

Lindlein, N.

A. Aiello, N. Lindlein, C. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin hall effect of light,” Phys. Rev. Lett. 103, 100401 (2009).
[Crossref]

Ling, X.

X. Ling, X. Zhou, K. Huang, Y. Liu, C.-W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Reports on Prog. Phys. 80, 066401 (2017).
[Crossref]

Liu, N.-L.

L. Li, Y. Li, Y.-L. Zhang, S. Yu, C.-Y. Lu, N.-L. Liu, J. Zhang, and J.-W. Pan, “Phase amplification in optical interferometry with weak measurement,” Phys. Rev. A 97, 033851 (2018).
[Crossref]

Liu, S.

X. Chen, Z. Tao, C. Chen, C. Wang, L. Wang, H. Jiang, D. Fan, Y. Ekinci, and S. Liu, “All-dielectric metasurface-based roll-angle sensor,” Sensors Actuators A: Phys. 279, 509–517 (2018).
[Crossref]

Liu, X.

Liu, Y.

X. Ling, X. Zhou, K. Huang, Y. Liu, C.-W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Reports on Prog. Phys. 80, 066401 (2017).
[Crossref]

Lu, C.-Y.

L. Li, Y. Li, Y.-L. Zhang, S. Yu, C.-Y. Lu, N.-L. Liu, J. Zhang, and J.-W. Pan, “Phase amplification in optical interferometry with weak measurement,” Phys. Rev. A 97, 033851 (2018).
[Crossref]

Luo, H.

X. Ling, X. Zhou, K. Huang, Y. Liu, C.-W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Reports on Prog. Phys. 80, 066401 (2017).
[Crossref]

Luo, L.

Marquardt, C.

A. Aiello, N. Lindlein, C. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin hall effect of light,” Phys. Rev. Lett. 103, 100401 (2009).
[Crossref]

Mason, S. F.

S. F. Mason, Molecular optical activity and the chiral discriminations (Cambridge University, 2009).

Neugebauer, M.

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9, 789–795 (2015).
[Crossref]

Nori, F.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Ossikovski, R.

Pan, J.-W.

L. Li, Y. Li, Y.-L. Zhang, S. Yu, C.-Y. Lu, N.-L. Liu, J. Zhang, and J.-W. Pan, “Phase amplification in optical interferometry with weak measurement,” Phys. Rev. A 97, 033851 (2018).
[Crossref]

Peres, A.

A. Peres, Quantum theory: concepts and methods (Kluwer Acad. Publ., 2010).

Pfeifer, M.

Qiu, C.-W.

X. Ling, X. Zhou, K. Huang, Y. Liu, C.-W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Reports on Prog. Phys. 80, 066401 (2017).
[Crossref]

Qiu, X.

Resch, K. J.

K. J. Resch, “PHYSICS: Amplifying a Tiny Optical Effect,” Science 319, 733–734 (2008).
[Crossref]

Rho, J.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]

Ritchie, N. W. M.

N. W. M. Ritchie, J. G. Story, and R. G. Hulet, “Realization of a measurement of a ”weak value”,” Phys. Rev. Lett. 66, 1107–1110 (1991).
[Crossref]

Rodríguez-Fortuño, F. J.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Sands, M.

R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics (Pearson/Addison-Wesley, 2006), 2nd ed.

Shen, Z.

Shi, L.

Silverman, M. P.

M. P. Silverman, Quantum superposition : counterintuitive consequences of coherence, entanglement, and interference (Springer, 2008).

Stern, O.

W. Gerlach and O. Stern, “Der experimentelle nachweis der richtungsquantelung im magnetfeld,” Zeitschrift fur Physik 9, 349–352 (1922).
[Crossref]

Stevenson, P. M.

I. M. Duck, P. M. Stevenson, and E. C. G. Sudarshan, “The sense in which a “weak measurement” of a spin-1/2 particle’s spin component yields a value 100,” Phys. Rev. D 40, 2112–2117 (1989).
[Crossref]

Story, J. G.

N. W. M. Ritchie, J. G. Story, and R. G. Hulet, “Realization of a measurement of a ”weak value”,” Phys. Rev. Lett. 66, 1107–1110 (1991).
[Crossref]

Sudarshan, E. C. G.

I. M. Duck, P. M. Stevenson, and E. C. G. Sudarshan, “The sense in which a “weak measurement” of a spin-1/2 particle’s spin component yields a value 100,” Phys. Rev. D 40, 2112–2117 (1989).
[Crossref]

Tao, Z.

X. Chen, Z. Tao, C. Chen, C. Wang, L. Wang, H. Jiang, D. Fan, Y. Ekinci, and S. Liu, “All-dielectric metasurface-based roll-angle sensor,” Sensors Actuators A: Phys. 279, 509–517 (2018).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334, 333–337 (2011).
[Crossref]

Vaidman, L.

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref]

Wang, B.

Wang, C.

X. Chen, Z. Tao, C. Chen, C. Wang, L. Wang, H. Jiang, D. Fan, Y. Ekinci, and S. Liu, “All-dielectric metasurface-based roll-angle sensor,” Sensors Actuators A: Phys. 279, 509–517 (2018).
[Crossref]

Wang, L.

X. Chen, Z. Tao, C. Chen, C. Wang, L. Wang, H. Jiang, D. Fan, Y. Ekinci, and S. Liu, “All-dielectric metasurface-based roll-angle sensor,” Sensors Actuators A: Phys. 279, 509–517 (2018).
[Crossref]

Wang, Y.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]

Wen, S.

X. Ling, X. Zhou, K. Huang, Y. Liu, C.-W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Reports on Prog. Phys. 80, 066401 (2017).
[Crossref]

Woerdman, J. P.

Xie, C.

Xie, L.

Ye, Z.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]

Yin, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334, 333–337 (2011).
[Crossref]

Yu, S.

L. Li, Y. Li, Y.-L. Zhang, S. Yu, C.-Y. Lu, N.-L. Liu, J. Zhang, and J.-W. Pan, “Phase amplification in optical interferometry with weak measurement,” Phys. Rev. A 97, 033851 (2018).
[Crossref]

Zayats, A. V.

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

Zhang, J.

L. Li, Y. Li, Y.-L. Zhang, S. Yu, C.-Y. Lu, N.-L. Liu, J. Zhang, and J.-W. Pan, “Phase amplification in optical interferometry with weak measurement,” Phys. Rev. A 97, 033851 (2018).
[Crossref]

Zhang, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]

Zhang, Y.

Zhang, Y.-L.

L. Li, Y. Li, Y.-L. Zhang, S. Yu, C.-Y. Lu, N.-L. Liu, J. Zhang, and J.-W. Pan, “Phase amplification in optical interferometry with weak measurement,” Phys. Rev. A 97, 033851 (2018).
[Crossref]

Zhang, Z.

Zhou, X.

X. Ling, X. Zhou, K. Huang, Y. Liu, C.-W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Reports on Prog. Phys. 80, 066401 (2017).
[Crossref]

Académie des sciences le 10 novembre 1817, reprinted Ouvres (1)

A. J. Fresnel, “Mémoire sur les modifications que la réflexion imprime à la lumière polarisée,” Académie des sciences le 10 novembre 1817, reprinted Ouvres 1, 441–485 (1817).

Académie des sciences le 19 janvier 1818, reprinted Ouvres (1)

A. J. Fresnel, “Supplément au mémoire sur les modifications que la réflexion imprime à la lumière polarisée,” Académie des sciences le 19 janvier 1818, reprinted Ouvres 1, 487–508 (1818).

Académie des sciences le 9 décembre 1822, reprinted Ouvres (1)

A. J. Fresnel, “Mémoire sur la double réfraction que les rayons lumineux éprouvent en traversant les aiguilles de cristal de roche suivant les directions parallèles à l’axe »,” Académie des sciences le 9 décembre 1822, reprinted Ouvres 1, 731–751 (1822).

Appl. Opt. (2)

Chirality (1)

B. Kahr, “Polarization in France,” Chirality 30, 351–368 (2018).
[Crossref]

J. Appl. Crystallogr. (1)

O. Arteaga, J. Freudenthal, and B. Kahr, “Reckoning electromagnetic principles with polarimetric measurements of anisotropic optically active crystals,” J. Appl. Crystallogr. 45, 279–291 (2012).
[Crossref]

Microw. Opt. Technol. Lett. (1)

R. Echarri, “The Fresnel prism as polarization interferometer,” Microw. Opt. Technol. Lett. 6, 403–407 (1993).
[Crossref]

Nat. Nanotechnol. (1)

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10, 937–943 (2015).
[Crossref]

Nat. Photonics (2)

K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, “Spin-orbit interactions of light,” Nat. Photonics 9, 796–808 (2015).
[Crossref]

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, “From transverse angular momentum to photonic wheels,” Nat. Photonics 9, 789–795 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Phys. Rev. A (1)

L. Li, Y. Li, Y.-L. Zhang, S. Yu, C.-Y. Lu, N.-L. Liu, J. Zhang, and J.-W. Pan, “Phase amplification in optical interferometry with weak measurement,” Phys. Rev. A 97, 033851 (2018).
[Crossref]

Phys. Rev. D (1)

I. M. Duck, P. M. Stevenson, and E. C. G. Sudarshan, “The sense in which a “weak measurement” of a spin-1/2 particle’s spin component yields a value 100,” Phys. Rev. D 40, 2112–2117 (1989).
[Crossref]

Phys. Rev. Lett. (4)

N. W. M. Ritchie, J. G. Story, and R. G. Hulet, “Realization of a measurement of a ”weak value”,” Phys. Rev. Lett. 66, 1107–1110 (1991).
[Crossref]

Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
[Crossref]

A. Aiello, N. Lindlein, C. Marquardt, and G. Leuchs, “Transverse angular momentum and geometric spin hall effect of light,” Phys. Rev. Lett. 103, 100401 (2009).
[Crossref]

A. Ghosh and P. Fischer, “Chiral Molecules Split Light: Reflection and Refraction in a Chiral Liquid,” Phys. Rev. Lett. 97, 173002 (2006).
[Crossref] [PubMed]

Reports on Prog. Phys. (1)

X. Ling, X. Zhou, K. Huang, Y. Liu, C.-W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Reports on Prog. Phys. 80, 066401 (2017).
[Crossref]

Science (4)

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin hall effect at metasurfaces,” Science 339, 1405–1407 (2013).
[Crossref]

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319, 787–790 (2008).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction,” Science 334, 333–337 (2011).
[Crossref]

K. J. Resch, “PHYSICS: Amplifying a Tiny Optical Effect,” Science 319, 733–734 (2008).
[Crossref]

Sensors Actuators A: Phys. (1)

X. Chen, Z. Tao, C. Chen, C. Wang, L. Wang, H. Jiang, D. Fan, Y. Ekinci, and S. Liu, “All-dielectric metasurface-based roll-angle sensor,” Sensors Actuators A: Phys. 279, 509–517 (2018).
[Crossref]

Zeitschrift fur Physik (1)

W. Gerlach and O. Stern, “Der experimentelle nachweis der richtungsquantelung im magnetfeld,” Zeitschrift fur Physik 9, 349–352 (1922).
[Crossref]

Other (6)

R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics (Pearson/Addison-Wesley, 2006), 2nd ed.

A. Peres, Quantum theory: concepts and methods (Kluwer Acad. Publ., 2010).

G. Jaroszkiewicz, “Quantum Register Physics,” arXiv quant-ph/0409094 (2004).

G. R. Fowles, Introduction to modern optics. (Dover Publications, 2012).

S. F. Mason, Molecular optical activity and the chiral discriminations (Cambridge University, 2009).

M. P. Silverman, Quantum superposition : counterintuitive consequences of coherence, entanglement, and interference (Springer, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Double refraction in a Fresnel triprism. The incident beam is split into right (R) and Left (L) circular waves. The double headed arrows inside the crystal indicate the direction of the optic axis, while R and L respectively denote a right- and a left-handed crystal. In Fresnel’s original experiment A = 76°.
Fig. 2
Fig. 2 The historical polyprism. a, Basic experiment showing the polyprism manufactured by H. Soleil in its brass mount, a laser pointer and a polarizer. b, Detail of the schematics engraved on the prism mount showing the internal design with 9 individual prisms. D stands for the French “droit” (right) and G for the French “gauche” (left). c, The spots projected on the screen for a 532 nm laser (left image) and a 405 nm laser (right image). In this experiment D = 208 cm. The camera was facing the polyprism. d, screen projection when the laser light was pre-filtered to be left- and right-CPL respectively.
Fig. 3
Fig. 3 Photometric analysis of the circular double refraction in a biprism. a, Basic schematics of the biprism and intensity profiles of the transmitted beam in measurements without and with post-selection respectively (D = 95 cm). The post-selection was made by an analyzer orthogonal to the polarizer used for the pre-selection. b, Intensity profiles of the transmitted beam for pre-selection with right- and left-CPL (no post-selection).

Tables (1)

Tables Icon

Table 1 Measurements of the deflection angle θ for the historical polyprism of Fig. 2 and comparison with the theoretical calculated values given by Eq. (17) for the Δ values in [27].

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

D = ε E + i α H ,
B = μ H i α T E .
ε = diag ( ε 11 ε 11 ε 33 ) ,
α = diag ( α 11 α 11 α 33 ) .
n ± = ε 11 α 11 ,
E ± = 1 2 [ 1 ± i ] T .
n ± LH = n RH ,
n sin A = n + sin A .
sin A sin A = 1 + Δ n + ,
sin ( A + ξ ) sin A 1 + cos A sin A ξ = 1 + Δ n + ,
| ξ | Δ tan A / n ,
n + sin ( A | ξ | ) = n sin A ,
n + sin ( A | ξ | ) n + sin A ( 1 Δ / n ) ( n 2 Δ ) sin A ,
| ξ | 2 Δ tan A / n .
n sin ξ = sin θ .
θ 2 Δ tan A .
θ N Δ tan A ,
δ L Δ tan A / n ,
E ( x , y , D ) = 1 2 [ A e i k r | + A + e i k + r | + ] ,
k ± = 2 π n 0 λ [ ± sin θ y ^ + cos θ z ^ ] ,
| + = 1 2 [ 1 i ] T ,
| = 1 2 [ 1 i ] T .
θ Δ 2 tan A .
M 1 = [ 1 0.023 0.014 0.968 0.011 0.005 0.036 0.012 0.012 0.021 0.012 0.006 0.984 0.006 0.012 0.992 ] ,
M 2 = [ 1 0.015 0.001 0.986 0.015 0.009 0.028 0.017 0.016 0.031 0.022 0.012 0.971 0.006 0.021 0.994 ] .
T + = 1 2 [ 1 i i 1 ] , T = 1 2 [ 1 i i 1 ] .
T + = | + + | = 1 2 ( I + S z ) ,
T = | | = 1 2 ( I S z ) ,
S z = [ 0 i i 0 ] .

Metrics