Abstract

We report the optical trapping of a single streptavidin-coated CdSe/ZnS quantum dot whose overall diameter is around 15–20 nm, in a microfluidic chamber by an all-dielectric (silicon) nanotweezer with negligible local heating. The use of fluorescence microscopy allows us to readily observe trapping events, tracking the fluorescence emission from, and the position of, each individual trapped quantum dot as a function of time. The blinking behavior of the quantum dots is observed during the trapping process, that is, in the near field region of the silicon nanoantenna. We furthermore show that the continuous wave infrared laser employed to trap the quantum dots can also excite photoluminescence from them via two-photon absorption. We present Maxwell stress tensor simulations of optical forces applied to a single quantum dot in the nanoantenna’s vicinity. This work demonstrates that all-dielectric nanotweezers are a promising means to handle quantum dots in solution, enabling them to be localized for observations over extended periods of time.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Solution processable and photopatternable blue, green and red quantum dots suitable for full color displays devices

Kyung Kook Jang, Prem Prabhakaran, Deepak Chandran, Jong-Jin Park, and Kwang-Sup Lee
Opt. Mater. Express 2(5) 519-525 (2012)

Hybrid optical materials of plasmon-coupled CdSe/ZnS coreshells for photonic applications

Jaetae Seo, Rafal Fudala, Wan-Joong Kim, Ryan Rich, Bagher Tabibi, Hyoyeong Cho, Zygmunt Gryczynski, Ignacy Gryczynski, and William Yu
Opt. Mater. Express 2(8) 1026-1039 (2012)

Microstructural and optical properties of CdSe/CdS/ZnS core-shell-shell quantum dots

Dea Uk Lee, Dae Hun Kim, Dong Hyuk Choi, Sang Wook Kim, Hong Seok Lee, Keon-Ho Yoo, and Tae Whan Kim
Opt. Express 24(2) A350-A357 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007).
  2. A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
    [Crossref]
  3. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
    [Crossref]
  4. W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
    [Crossref] [PubMed]
  5. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  6. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
    [Crossref] [PubMed]
  7. Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
    [Crossref] [PubMed]
  8. Z. Xu, W. Song, and K. B. Crozier, “Direct particle tracking observation and Brownian dynamics simulations of a single nanoparticle optically trapped by a plasmonic nanoaperture,” ACS Photonics 5(7), 2850–2859 (2018).
    [Crossref]
  9. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  10. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  11. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [Crossref] [PubMed]
  12. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
    [Crossref] [PubMed]
  13. S. E. S. Spesyvtseva and K. Dholakia, “Trapping in a material world,” ACS Photonics 3(5), 719–736 (2016).
    [Crossref]
  14. G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
    [Crossref]
  15. K. Wang and K. B. Crozier, “Plasmonic trapping with a gold nanopillar,” ChemPhysChem 13(11), 2639–2648 (2012).
    [Crossref] [PubMed]
  16. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
    [Crossref] [PubMed]
  17. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
    [Crossref] [PubMed]
  18. R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
    [Crossref] [PubMed]
  19. M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
    [Crossref] [PubMed]
  20. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
    [Crossref] [PubMed]
  21. R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
    [Crossref] [PubMed]
  22. Z. Xu, W. Song, and K. B. Crozier, “Direct observation of optical trapping of a single quantum dot with an all-silicon nanoantenna,” in Frontiers in Optics (Optical Society of America, 2017), paper FM3B. 2.
  23. Z. Xu, W. Song, and K. B. Crozier, “Optical Trapping of Nanoparticles Using All-Silicon Nanoantennas,” ACS Photonics 5(12), 4993–5001 (2018).
    [Crossref]
  24. X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos, and S. Weiss, “Properties of fluorescent semiconductor nanocrystals and their application to biological labeling,” Single Mol. 2(4), 261–276 (2001).
    [Crossref]
  25. D. Bera, L. Qian, T. K. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials (Basel) 3(4), 2260–2345 (2010).
    [Crossref]
  26. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
    [Crossref] [PubMed]
  27. P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum dots,” IEEE J. Sel. Top. Quantum Electron. 20(3), 15–26 (2014).
    [Crossref]
  28. T. Iida and H. Ishihara, “Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition,” Phys. Rev. Lett. 90(5), 057403 (2003).
    [Crossref] [PubMed]
  29. L. Pan, A. Ishikawa, and N. Tamai, “Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence,” Phys. Rev. B Condens. Matter Mater. Phys. 75(16), 161305 (2007).
    [Crossref]
  30. W. Y. Chiang, T. Okuhata, A. Usman, N. Tamai, and H. Masuhara, “Efficient optical trapping of CdTe quantum dots by femtosecond laser pulses,” J. Phys. Chem. B 118(49), 14010–14016 (2014).
    [Crossref] [PubMed]
  31. L. Jauffred, A. C. Richardson, and L. B. Oddershede, “Three-dimensional optical control of individual quantum dots,” Nano Lett. 8(10), 3376–3380 (2008).
    [Crossref] [PubMed]
  32. L. Jauffred and L. B. Oddershede, “Two-photon quantum dot excitation during optical trapping,” Nano Lett. 10(5), 1927–1930 (2010).
    [Crossref] [PubMed]
  33. L. Jauffred, A. Kyrsting, E. C. Arnspang, S. N. S. Reihani, and L. B. Oddershede, “Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot,” Nanoscale 6(12), 6997–7003 (2014).
    [Crossref] [PubMed]
  34. Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
    [Crossref] [PubMed]
  35. A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip 13(13), 2563–2568 (2013).
    [Crossref] [PubMed]
  36. R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photonics 3(3), 423–427 (2016).
    [Crossref]
  37. Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
    [Crossref]
  38. C. T. Yuan, P. Yu, H. C. Ko, J. Huang, and J. Tang, “Antibunching single-photon emission and blinking suppression of CdSe/ZnS quantum dots,” ACS Nano 3(10), 3051–3056 (2009).
    [Crossref] [PubMed]
  39. S. Dey and J. Zhao, “Plasmonic Effect on Exciton and Multiexciton Emission of Single Quantum Dots,” J. Phys. Chem. Lett. 7(15), 2921–2929 (2016).
    [Crossref] [PubMed]
  40. J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
    [Crossref] [PubMed]
  41. M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophotonics 4(1), 041570 (2010).
    [Crossref]
  42. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2012).
  43. T. F. Scientific, “Qdot Streptavidin Conjugates,” https://tools.thermofisher.com/content/sfs/manuals/mp19000.pdf .
  44. R. L. Sutherland, Handbook of nonlinear optics (CRC Press, 2003).
  45. R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9(7), 724–726 (2012).
    [Crossref] [PubMed]
  46. P. Rodríguez-Sevilla, K. Prorok, A. Bednarkiewicz, M. I. Marqués, A. García-Martín, J. García Solé, P. Haro-González, and D. Jaque, “Optical forces at the nanoscale: size and electrostatic effects,” Nano Lett. 18(1), 602–609 (2018).
    [Crossref] [PubMed]

2018 (3)

Z. Xu, W. Song, and K. B. Crozier, “Direct particle tracking observation and Brownian dynamics simulations of a single nanoparticle optically trapped by a plasmonic nanoaperture,” ACS Photonics 5(7), 2850–2859 (2018).
[Crossref]

Z. Xu, W. Song, and K. B. Crozier, “Optical Trapping of Nanoparticles Using All-Silicon Nanoantennas,” ACS Photonics 5(12), 4993–5001 (2018).
[Crossref]

P. Rodríguez-Sevilla, K. Prorok, A. Bednarkiewicz, M. I. Marqués, A. García-Martín, J. García Solé, P. Haro-González, and D. Jaque, “Optical forces at the nanoscale: size and electrostatic effects,” Nano Lett. 18(1), 602–609 (2018).
[Crossref] [PubMed]

2016 (5)

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photonics 3(3), 423–427 (2016).
[Crossref]

S. Dey and J. Zhao, “Plasmonic Effect on Exciton and Multiexciton Emission of Single Quantum Dots,” J. Phys. Chem. Lett. 7(15), 2921–2929 (2016).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

S. E. S. Spesyvtseva and K. Dholakia, “Trapping in a material world,” ACS Photonics 3(5), 719–736 (2016).
[Crossref]

2015 (2)

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

2014 (3)

P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum dots,” IEEE J. Sel. Top. Quantum Electron. 20(3), 15–26 (2014).
[Crossref]

W. Y. Chiang, T. Okuhata, A. Usman, N. Tamai, and H. Masuhara, “Efficient optical trapping of CdTe quantum dots by femtosecond laser pulses,” J. Phys. Chem. B 118(49), 14010–14016 (2014).
[Crossref] [PubMed]

L. Jauffred, A. Kyrsting, E. C. Arnspang, S. N. S. Reihani, and L. B. Oddershede, “Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot,” Nanoscale 6(12), 6997–7003 (2014).
[Crossref] [PubMed]

2013 (3)

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip 13(13), 2563–2568 (2013).
[Crossref] [PubMed]

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

2012 (4)

K. Wang and K. B. Crozier, “Plasmonic trapping with a gold nanopillar,” ChemPhysChem 13(11), 2639–2648 (2012).
[Crossref] [PubMed]

Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
[Crossref] [PubMed]

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9(7), 724–726 (2012).
[Crossref] [PubMed]

2011 (4)

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
[Crossref] [PubMed]

2010 (5)

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

L. Jauffred and L. B. Oddershede, “Two-photon quantum dot excitation during optical trapping,” Nano Lett. 10(5), 1927–1930 (2010).
[Crossref] [PubMed]

D. Bera, L. Qian, T. K. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials (Basel) 3(4), 2260–2345 (2010).
[Crossref]

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophotonics 4(1), 041570 (2010).
[Crossref]

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

2009 (2)

C. T. Yuan, P. Yu, H. C. Ko, J. Huang, and J. Tang, “Antibunching single-photon emission and blinking suppression of CdSe/ZnS quantum dots,” ACS Nano 3(10), 3051–3056 (2009).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

2008 (3)

A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

L. Jauffred, A. C. Richardson, and L. B. Oddershede, “Three-dimensional optical control of individual quantum dots,” Nano Lett. 8(10), 3376–3380 (2008).
[Crossref] [PubMed]

2007 (1)

L. Pan, A. Ishikawa, and N. Tamai, “Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence,” Phys. Rev. B Condens. Matter Mater. Phys. 75(16), 161305 (2007).
[Crossref]

2004 (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

2003 (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

T. Iida and H. Ishihara, “Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition,” Phys. Rev. Lett. 90(5), 057403 (2003).
[Crossref] [PubMed]

2001 (1)

X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos, and S. Weiss, “Properties of fluorescent semiconductor nanocrystals and their application to biological labeling,” Single Mol. 2(4), 261–276 (2001).
[Crossref]

1994 (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

1986 (1)

Al-Balushi, A. A.

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip 13(13), 2563–2568 (2013).
[Crossref] [PubMed]

Albella, P.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

Alivisatos, A. P.

X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos, and S. Weiss, “Properties of fluorescent semiconductor nanocrystals and their application to biological labeling,” Single Mol. 2(4), 261–276 (2001).
[Crossref]

Arnspang, E. C.

L. Jauffred, A. Kyrsting, E. C. Arnspang, S. N. S. Reihani, and L. B. Oddershede, “Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot,” Nanoscale 6(12), 6997–7003 (2014).
[Crossref] [PubMed]

Ashkin, A.

Baffou, G.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

Bakker, R. M.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Bawendi, M. G.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photonics 3(3), 423–427 (2016).
[Crossref]

Bednarkiewicz, A.

P. Rodríguez-Sevilla, K. Prorok, A. Bednarkiewicz, M. I. Marqués, A. García-Martín, J. García Solé, P. Haro-González, and D. Jaque, “Optical forces at the nanoscale: size and electrostatic effects,” Nano Lett. 18(1), 602–609 (2018).
[Crossref] [PubMed]

Bedu, F.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Begou, T.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Belov, P. A.

Bendix, P. M.

P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum dots,” IEEE J. Sel. Top. Quantum Electron. 20(3), 15–26 (2014).
[Crossref]

Bera, D.

D. Bera, L. Qian, T. K. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials (Basel) 3(4), 2260–2345 (2010).
[Crossref]

Berthelot, J.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Bidault, S.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Bischof, T. S.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photonics 3(3), 423–427 (2016).
[Crossref]

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Bonod, N.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Bragas, A. V.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

Bruchez, M. P.

X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos, and S. Weiss, “Properties of fluorescent semiconductor nanocrystals and their application to biological labeling,” Single Mol. 2(4), 261–276 (2001).
[Crossref]

Caldarola, M.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

Cavaliere-Jaricot, S.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Chen, O.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photonics 3(3), 423–427 (2016).
[Crossref]

Chen, P.

Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
[Crossref] [PubMed]

Chen, Y. F.

Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
[Crossref] [PubMed]

Chiang, W. Y.

W. Y. Chiang, T. Okuhata, A. Usman, N. Tamai, and H. Masuhara, “Efficient optical trapping of CdTe quantum dots by femtosecond laser pulses,” J. Phys. Chem. B 118(49), 14010–14016 (2014).
[Crossref] [PubMed]

Choy, J. T.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photonics 3(3), 423–427 (2016).
[Crossref]

Chu, S.

Cortés, E.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

Crozier, K. B.

Z. Xu, W. Song, and K. B. Crozier, “Optical Trapping of Nanoparticles Using All-Silicon Nanoantennas,” ACS Photonics 5(12), 4993–5001 (2018).
[Crossref]

Z. Xu, W. Song, and K. B. Crozier, “Direct particle tracking observation and Brownian dynamics simulations of a single nanoparticle optically trapped by a plasmonic nanoaperture,” ACS Photonics 5(7), 2850–2859 (2018).
[Crossref]

K. Wang and K. B. Crozier, “Plasmonic trapping with a gold nanopillar,” ChemPhysChem 13(11), 2639–2648 (2012).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

Cyr, B. R.

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip 13(13), 2563–2568 (2013).
[Crossref] [PubMed]

Dahan, M.

X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos, and S. Weiss, “Properties of fluorescent semiconductor nanocrystals and their application to biological labeling,” Single Mol. 2(4), 261–276 (2001).
[Crossref]

Dey, S.

S. Dey and J. Zhao, “Plasmonic Effect on Exciton and Multiexciton Emission of Single Quantum Dots,” J. Phys. Chem. Lett. 7(15), 2921–2929 (2016).
[Crossref] [PubMed]

Dholakia, K.

S. E. S. Spesyvtseva and K. Dholakia, “Trapping in a material world,” ACS Photonics 3(5), 719–736 (2016).
[Crossref]

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophotonics 4(1), 041570 (2010).
[Crossref]

Dickinson, M.

A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Donner, J. S.

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

Dziedzic, J. M.

Eftekhari, F.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Erickson, D.

Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
[Crossref] [PubMed]

Ferrari, A. C.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

García Solé, J.

P. Rodríguez-Sevilla, K. Prorok, A. Bednarkiewicz, M. I. Marqués, A. García-Martín, J. García Solé, P. Haro-González, and D. Jaque, “Optical forces at the nanoscale: size and electrostatic effects,” Nano Lett. 18(1), 602–609 (2018).
[Crossref] [PubMed]

García-Martín, A.

P. Rodríguez-Sevilla, K. Prorok, A. Bednarkiewicz, M. I. Marqués, A. García-Martín, J. García Solé, P. Haro-González, and D. Jaque, “Optical forces at the nanoscale: size and electrostatic effects,” Nano Lett. 18(1), 602–609 (2018).
[Crossref] [PubMed]

García-Parajó, M. F.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Gonzaga, L.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Gordon, R.

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip 13(13), 2563–2568 (2013).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Grabolle, M.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Grigorenko, A.

A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Grinblat, G.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

Gucciardi, P. G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Haro-González, P.

P. Rodríguez-Sevilla, K. Prorok, A. Bednarkiewicz, M. I. Marqués, A. García-Martín, J. García Solé, P. Haro-González, and D. Jaque, “Optical forces at the nanoscale: size and electrostatic effects,” Nano Lett. 18(1), 602–609 (2018).
[Crossref] [PubMed]

Holloway, P. H.

D. Bera, L. Qian, T. K. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials (Basel) 3(4), 2260–2345 (2010).
[Crossref]

Huang, I. C.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photonics 3(3), 423–427 (2016).
[Crossref]

Huang, J.

C. T. Yuan, P. Yu, H. C. Ko, J. Huang, and J. Tang, “Antibunching single-photon emission and blinking suppression of CdSe/ZnS quantum dots,” ACS Nano 3(10), 3051–3056 (2009).
[Crossref] [PubMed]

Huang, L.

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Iida, T.

T. Iida and H. Ishihara, “Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition,” Phys. Rev. Lett. 90(5), 057403 (2003).
[Crossref] [PubMed]

Ishihara, H.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

T. Iida and H. Ishihara, “Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition,” Phys. Rev. Lett. 90(5), 057403 (2003).
[Crossref] [PubMed]

Ishikawa, A.

L. Pan, A. Ishikawa, and N. Tamai, “Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence,” Phys. Rev. B Condens. Matter Mater. Phys. 75(16), 161305 (2007).
[Crossref]

Jaque, D.

P. Rodríguez-Sevilla, K. Prorok, A. Bednarkiewicz, M. I. Marqués, A. García-Martín, J. García Solé, P. Haro-González, and D. Jaque, “Optical forces at the nanoscale: size and electrostatic effects,” Nano Lett. 18(1), 602–609 (2018).
[Crossref] [PubMed]

Jauffred, L.

L. Jauffred, A. Kyrsting, E. C. Arnspang, S. N. S. Reihani, and L. B. Oddershede, “Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot,” Nanoscale 6(12), 6997–7003 (2014).
[Crossref] [PubMed]

P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum dots,” IEEE J. Sel. Top. Quantum Electron. 20(3), 15–26 (2014).
[Crossref]

L. Jauffred and L. B. Oddershede, “Two-photon quantum dot excitation during optical trapping,” Nano Lett. 10(5), 1927–1930 (2010).
[Crossref] [PubMed]

L. Jauffred, A. C. Richardson, and L. B. Oddershede, “Three-dimensional optical control of individual quantum dots,” Nano Lett. 8(10), 3376–3380 (2008).
[Crossref] [PubMed]

Jensen, R. A.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photonics 3(3), 423–427 (2016).
[Crossref]

Jiang, H.

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip 13(13), 2563–2568 (2013).
[Crossref] [PubMed]

Jones, P. H.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Kitamura, N.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

Kivshar, Y.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Kivshar, Y. S.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
[Crossref] [PubMed]

Ko, H. C.

C. T. Yuan, P. Yu, H. C. Ko, J. Huang, and J. Tang, “Antibunching single-photon emission and blinking suppression of CdSe/ZnS quantum dots,” ACS Nano 3(10), 3051–3056 (2009).
[Crossref] [PubMed]

Krasnok, A. E.

Krauss, T. F.

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophotonics 4(1), 041570 (2010).
[Crossref]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Kyrsting, A.

L. Jauffred, A. Kyrsting, E. C. Arnspang, S. N. S. Reihani, and L. B. Oddershede, “Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot,” Nanoscale 6(12), 6997–7003 (2014).
[Crossref] [PubMed]

Lacoste, T. D.

X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos, and S. Weiss, “Properties of fluorescent semiconductor nanocrystals and their application to biological labeling,” Single Mol. 2(4), 261–276 (2001).
[Crossref]

Loncar, M.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photonics 3(3), 423–427 (2016).
[Crossref]

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Lumeau, J.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Maier, S. A.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

Maragò, O. M.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Markovich, D.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Marqués, M. I.

P. Rodríguez-Sevilla, K. Prorok, A. Bednarkiewicz, M. I. Marqués, A. García-Martín, J. García Solé, P. Haro-González, and D. Jaque, “Optical forces at the nanoscale: size and electrostatic effects,” Nano Lett. 18(1), 602–609 (2018).
[Crossref] [PubMed]

Martin, O. J.

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Masuhara, H.

W. Y. Chiang, T. Okuhata, A. Usman, N. Tamai, and H. Masuhara, “Efficient optical trapping of CdTe quantum dots by femtosecond laser pulses,” J. Phys. Chem. B 118(49), 14010–14016 (2014).
[Crossref] [PubMed]

Mazilu, M.

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophotonics 4(1), 041570 (2010).
[Crossref]

McCloskey, D.

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

Michalet, X.

X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos, and S. Weiss, “Properties of fluorescent semiconductor nanocrystals and their application to biological labeling,” Single Mol. 2(4), 261–276 (2001).
[Crossref]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
[Crossref] [PubMed]

Mivelle, M.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Mizumoto, Y.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

Murakoshi, K.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

Nann, T.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Nitschke, R.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Norregaard, K.

P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum dots,” IEEE J. Sel. Top. Quantum Electron. 20(3), 15–26 (2014).
[Crossref]

Oddershede, L. B.

P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum dots,” IEEE J. Sel. Top. Quantum Electron. 20(3), 15–26 (2014).
[Crossref]

L. Jauffred, A. Kyrsting, E. C. Arnspang, S. N. S. Reihani, and L. B. Oddershede, “Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot,” Nanoscale 6(12), 6997–7003 (2014).
[Crossref] [PubMed]

L. Jauffred and L. B. Oddershede, “Two-photon quantum dot excitation during optical trapping,” Nano Lett. 10(5), 1927–1930 (2010).
[Crossref] [PubMed]

L. Jauffred, A. C. Richardson, and L. B. Oddershede, “Three-dimensional optical control of individual quantum dots,” Nano Lett. 8(10), 3376–3380 (2008).
[Crossref] [PubMed]

Okuhata, T.

W. Y. Chiang, T. Okuhata, A. Usman, N. Tamai, and H. Masuhara, “Efficient optical trapping of CdTe quantum dots by femtosecond laser pulses,” J. Phys. Chem. B 118(49), 14010–14016 (2014).
[Crossref] [PubMed]

Oulton, R. F.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

Ozerov, I.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Pan, L.

L. Pan, A. Ishikawa, and N. Tamai, “Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence,” Phys. Rev. B Condens. Matter Mater. Phys. 75(16), 161305 (2007).
[Crossref]

Pang, Y.

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Paniagua-Domínguez, R.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Parthasarathy, R.

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9(7), 724–726 (2012).
[Crossref] [PubMed]

Permyakov, D.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Pinaud, F.

X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos, and S. Weiss, “Properties of fluorescent semiconductor nanocrystals and their application to biological labeling,” Single Mol. 2(4), 261–276 (2001).
[Crossref]

Ploschner, M.

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophotonics 4(1), 041570 (2010).
[Crossref]

Prorok, K.

P. Rodríguez-Sevilla, K. Prorok, A. Bednarkiewicz, M. I. Marqués, A. García-Martín, J. García Solé, P. Haro-González, and D. Jaque, “Optical forces at the nanoscale: size and electrostatic effects,” Nano Lett. 18(1), 602–609 (2018).
[Crossref] [PubMed]

Proust, J.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Qian, L.

D. Bera, L. Qian, T. K. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials (Basel) 3(4), 2260–2345 (2010).
[Crossref]

Quidant, R.

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Rahmani, M.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

Regmi, R.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Reihani, S. N. S.

L. Jauffred, A. Kyrsting, E. C. Arnspang, S. N. S. Reihani, and L. B. Oddershede, “Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot,” Nanoscale 6(12), 6997–7003 (2014).
[Crossref] [PubMed]

Rennehan, D. W.

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip 13(13), 2563–2568 (2013).
[Crossref] [PubMed]

Resch-Genger, U.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

Richardson, A. C.

L. Jauffred, A. C. Richardson, and L. B. Oddershede, “Three-dimensional optical control of individual quantum dots,” Nano Lett. 8(10), 3376–3380 (2008).
[Crossref] [PubMed]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Rigneault, H.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Roberts, N.

A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Rodríguez-Sevilla, P.

P. Rodríguez-Sevilla, K. Prorok, A. Bednarkiewicz, M. I. Marqués, A. García-Martín, J. García Solé, P. Haro-González, and D. Jaque, “Optical forces at the nanoscale: size and electrostatic effects,” Nano Lett. 18(1), 602–609 (2018).
[Crossref] [PubMed]

Roschuk, T.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

Samusev, A.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Santschi, C.

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Sarkar, R.

Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
[Crossref] [PubMed]

Schonbrun, E.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

Serey, X.

Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
[Crossref] [PubMed]

Shoji, T.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

Song, W.

Z. Xu, W. Song, and K. B. Crozier, “Optical Trapping of Nanoparticles Using All-Silicon Nanoantennas,” ACS Photonics 5(12), 4993–5001 (2018).
[Crossref]

Z. Xu, W. Song, and K. B. Crozier, “Direct particle tracking observation and Brownian dynamics simulations of a single nanoparticle optically trapped by a plasmonic nanoaperture,” ACS Photonics 5(7), 2850–2859 (2018).
[Crossref]

Spesyvtseva, S. E. S.

S. E. S. Spesyvtseva and K. Dholakia, “Trapping in a material world,” ACS Photonics 3(5), 719–736 (2016).
[Crossref]

Steinvurzel, P.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Takase, M.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

Tamai, N.

W. Y. Chiang, T. Okuhata, A. Usman, N. Tamai, and H. Masuhara, “Efficient optical trapping of CdTe quantum dots by femtosecond laser pulses,” J. Phys. Chem. B 118(49), 14010–14016 (2014).
[Crossref] [PubMed]

L. Pan, A. Ishikawa, and N. Tamai, “Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence,” Phys. Rev. B Condens. Matter Mater. Phys. 75(16), 161305 (2007).
[Crossref]

Tang, J.

C. T. Yuan, P. Yu, H. C. Ko, J. Huang, and J. Tang, “Antibunching single-photon emission and blinking suppression of CdSe/ZnS quantum dots,” ACS Nano 3(10), 3051–3056 (2009).
[Crossref] [PubMed]

Tseng, T. K.

D. Bera, L. Qian, T. K. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials (Basel) 3(4), 2260–2345 (2010).
[Crossref]

Tsuboi, Y.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

Usman, A.

W. Y. Chiang, T. Okuhata, A. Usman, N. Tamai, and H. Masuhara, “Efficient optical trapping of CdTe quantum dots by femtosecond laser pulses,” J. Phys. Chem. B 118(49), 14010–14016 (2014).
[Crossref] [PubMed]

Volpe, G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Wang, K.

K. Wang and K. B. Crozier, “Plasmonic trapping with a gold nanopillar,” ChemPhysChem 13(11), 2639–2648 (2012).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

Weiss, S.

X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos, and S. Weiss, “Properties of fluorescent semiconductor nanocrystals and their application to biological labeling,” Single Mol. 2(4), 261–276 (2001).
[Crossref]

Wenger, J.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Winkler, P. M.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Xu, Z.

Z. Xu, W. Song, and K. B. Crozier, “Optical Trapping of Nanoparticles Using All-Silicon Nanoantennas,” ACS Photonics 5(12), 4993–5001 (2018).
[Crossref]

Z. Xu, W. Song, and K. B. Crozier, “Direct particle tracking observation and Brownian dynamics simulations of a single nanoparticle optically trapped by a plasmonic nanoaperture,” ACS Photonics 5(7), 2850–2859 (2018).
[Crossref]

Yu, P.

C. T. Yuan, P. Yu, H. C. Ko, J. Huang, and J. Tang, “Antibunching single-photon emission and blinking suppression of CdSe/ZnS quantum dots,” ACS Nano 3(10), 3051–3056 (2009).
[Crossref] [PubMed]

Yu, Y. F.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Yuan, C. T.

C. T. Yuan, P. Yu, H. C. Ko, J. Huang, and J. Tang, “Antibunching single-photon emission and blinking suppression of CdSe/ZnS quantum dots,” ACS Nano 3(10), 3051–3056 (2009).
[Crossref] [PubMed]

Zehtabi-Oskuie, A.

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip 13(13), 2563–2568 (2013).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Zhang, Y.

A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Zhao, J.

S. Dey and J. Zhao, “Plasmonic Effect on Exciton and Multiexciton Emission of Single Quantum Dots,” J. Phys. Chem. Lett. 7(15), 2921–2929 (2016).
[Crossref] [PubMed]

ACS Nano (2)

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

C. T. Yuan, P. Yu, H. C. Ko, J. Huang, and J. Tang, “Antibunching single-photon emission and blinking suppression of CdSe/ZnS quantum dots,” ACS Nano 3(10), 3051–3056 (2009).
[Crossref] [PubMed]

ACS Photonics (4)

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Lončar, and M. G. Bawendi, “Optical trapping and two-photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photonics 3(3), 423–427 (2016).
[Crossref]

Z. Xu, W. Song, and K. B. Crozier, “Direct particle tracking observation and Brownian dynamics simulations of a single nanoparticle optically trapped by a plasmonic nanoaperture,” ACS Photonics 5(7), 2850–2859 (2018).
[Crossref]

S. E. S. Spesyvtseva and K. Dholakia, “Trapping in a material world,” ACS Photonics 3(5), 719–736 (2016).
[Crossref]

Z. Xu, W. Song, and K. B. Crozier, “Optical Trapping of Nanoparticles Using All-Silicon Nanoantennas,” ACS Photonics 5(12), 4993–5001 (2018).
[Crossref]

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

ChemPhysChem (1)

K. Wang and K. B. Crozier, “Plasmonic trapping with a gold nanopillar,” ChemPhysChem 13(11), 2639–2648 (2012).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

P. M. Bendix, L. Jauffred, K. Norregaard, and L. B. Oddershede, “Optical trapping of nanoparticles and quantum dots,” IEEE J. Sel. Top. Quantum Electron. 20(3), 15–26 (2014).
[Crossref]

J. Nanophotonics (1)

M. Ploschner, M. Mazilu, T. F. Krauss, and K. Dholakia, “Optical forces near a nanoantenna,” J. Nanophotonics 4(1), 041570 (2010).
[Crossref]

J. Phys. Chem. B (1)

W. Y. Chiang, T. Okuhata, A. Usman, N. Tamai, and H. Masuhara, “Efficient optical trapping of CdTe quantum dots by femtosecond laser pulses,” J. Phys. Chem. B 118(49), 14010–14016 (2014).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (2)

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

S. Dey and J. Zhao, “Plasmonic Effect on Exciton and Multiexciton Emission of Single Quantum Dots,” J. Phys. Chem. Lett. 7(15), 2921–2929 (2016).
[Crossref] [PubMed]

Lab Chip (1)

A. Zehtabi-Oskuie, H. Jiang, B. R. Cyr, D. W. Rennehan, A. A. Al-Balushi, and R. Gordon, “Double nanohole optical trapping: dynamics and protein-antibody co-trapping,” Lab Chip 13(13), 2563–2568 (2013).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

G. Baffou and R. Quidant, “Thermo-plasmonics: using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Materials (Basel) (1)

D. Bera, L. Qian, T. K. Tseng, and P. H. Holloway, “Quantum dots and their multimodal applications: a review,” Materials (Basel) 3(4), 2260–2345 (2010).
[Crossref]

Nano Lett. (8)

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

L. Jauffred, A. C. Richardson, and L. B. Oddershede, “Three-dimensional optical control of individual quantum dots,” Nano Lett. 8(10), 3376–3380 (2008).
[Crossref] [PubMed]

L. Jauffred and L. B. Oddershede, “Two-photon quantum dot excitation during optical trapping,” Nano Lett. 10(5), 1927–1930 (2010).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
[Crossref] [PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
[Crossref] [PubMed]

P. Rodríguez-Sevilla, K. Prorok, A. Bednarkiewicz, M. I. Marqués, A. García-Martín, J. García Solé, P. Haro-González, and D. Jaque, “Optical forces at the nanoscale: size and electrostatic effects,” Nano Lett. 18(1), 602–609 (2018).
[Crossref] [PubMed]

Nanoscale (1)

L. Jauffred, A. Kyrsting, E. C. Arnspang, S. N. S. Reihani, and L. B. Oddershede, “Sub-diffraction positioning of a two-photon excited and optically trapped quantum dot,” Nanoscale 6(12), 6997–7003 (2014).
[Crossref] [PubMed]

Nat. Commun. (2)

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

Nat. Methods (2)

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref] [PubMed]

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9(7), 724–726 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Nat. Photonics (2)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Nat. Phys. (1)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

L. Pan, A. Ishikawa, and N. Tamai, “Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence,” Phys. Rev. B Condens. Matter Mater. Phys. 75(16), 161305 (2007).
[Crossref]

Phys. Rev. Lett. (1)

T. Iida and H. Ishihara, “Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition,” Phys. Rev. Lett. 90(5), 057403 (2003).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Science (1)

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

Single Mol. (1)

X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos, and S. Weiss, “Properties of fluorescent semiconductor nanocrystals and their application to biological labeling,” Single Mol. 2(4), 261–276 (2001).
[Crossref]

Other (5)

Z. Xu, W. Song, and K. B. Crozier, “Direct observation of optical trapping of a single quantum dot with an all-silicon nanoantenna,” in Frontiers in Optics (Optical Society of America, 2017), paper FM3B. 2.

S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2012).

T. F. Scientific, “Qdot Streptavidin Conjugates,” https://tools.thermofisher.com/content/sfs/manuals/mp19000.pdf .

R. L. Sutherland, Handbook of nonlinear optics (CRC Press, 2003).

Supplementary Material (1)

NameDescription
» Visualization 1       Movie showing optical trapping of a single quantum dot with an all-dielectric (Si) nanoantenna

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Scanning electron micrograph (SEM) picture (45° tilt) of a Si nanoantenna situated on a Si substrate. (b) Temperature rise profile (for steady state) around a Si nanoantenna, I0 = 15 mW/µm2. Scale bar: 200 nm. (c) Electric fields profile in the yz- and xz-cross section, for 1064 nm plane wave (x-polarization) at normal incidence. White dots represent the origin of coordinate system. Scale bar: 200 nm.
Fig. 2
Fig. 2 (a) Schematic illustration of a streptavidin-coated QD structure. (b) Model of QDs used in near fields and optical forces simulations. (c) Electric fields distribution (y = 0 cross section) in the Si nanoantenna gap with a QD included (xcenter, ycenter, zcenter) = (0, 0, −140 nm). Scale bar: 20 nm.
Fig. 3
Fig. 3 Electric fields distribution (y = 0 cross section) in the Si nanoantenna gap with a 20 nm polystyrene NS included (xcenter, ycenter, zcenter) = (0, 0, −140 nm). Scale bar: 20 nm.
Fig. 4
Fig. 4 MST optical forces exerted on a single QD (r1 = 5 nm, r2 = 7 nm, r3 = 10 nm) for I0 = 9.5 mW/µm2. (a) Fz vs. vertical position (xcenter = ycenter = 0). NS: d = 20 nm, nNS = 1.6; Small QD: r1 = 3 nm, r2 = 4 nm, r3 = 5 nm. (b) Fx and Fz vs. QD position along x-axis at different vertical (z-axis) positions, all with ycenter = 0. (c) Fy and Fz vs. QD position along y-axis at different vertical (z-axis) positions, all with xcenter = 0.
Fig. 5
Fig. 5 (a) Fluorescent emission versus time for the trapping of a single QD (see also Visualization 1). (b) Corresponding emission counts histogram of optically trapped QD (from 4–45 s), collected from data of panel (a). (c) Zoom-in of (a) from 35–40 s showing the QD blinking. (d) Four selected EM-CCD images illustrating fluorescence blinking from single trapped QD. Scale bar: 800 nm. (Trapping laser intensity I0 = 17.3 mW/μm2)
Fig. 6
Fig. 6 (a) EM-CCD images of fluorescence showing optical trapping, TPA and linear absorption of QDs. Yellow circles indicate QD stuck to Si surface. Red circles indicate QD being optically trapped by Si nanoantenna. Scale bar: 8 µm. (b) Experimental fluorescence intensity versus time showing the trapping and two-photon excitation of QD. (c) Measured fluorescence emission spectra from QD (spectrometer integration time = 3 s). (d) Scatter plots of center positions of optically trapped QD. Red dots: only infrared laser is on. Blue dots: both green and infrared lasers are on. (e) Position histograms and corresponding Gaussian fits along the x- and y-directions, extracted from red dots data in panel (d). (Trapping laser intensity I0 = 16.1 mW/μm2)
Fig. 7
Fig. 7 Fluorescent intensity counts vs. time for trapping of a single QD. (a) I0 = 16.1 mW/µm2, 30×30 pixel cross section. (b) I0 = 17.3 mW/µm2, 35×35 pixel cross section. (c) I0 = 17 mW/µm2, 35×35 pixel cross section. (d) I0 = 12.7 mW/µm2, 30×30 pixel cross section. For (b)–(d), switching off the trapping laser results in the quick release of the QDs.
Fig. 8
Fig. 8 EM-CCD frames showing optical trapping and sticking of a QD. (a) In this frame, QD is diffusing freely. (b)–(f) QD becomes stuck to Si surface. Purple circles in panels (d) and (e) indicate another suspended QD that moves freely by Brownian diffusion. The intensity of the infrared laser (1064 nm) is decreased in panel (d) [for (a)–(c): I0 = 17.3 mW/µm2; for (d): I0 = 12.7 mW/µm2]. Images are captured with auto-scaling of contrast, as provided by the EM-CCD camera and software. Scale bar: 8 µm.
Fig. 9
Fig. 9 Tracking of fluorescent emission with green laser only from a single non-trapped free moving QD in solution as a function of time (35×35 pixel cross section).