Abstract

In this paper, we investigate laser emission at 3.4μm in heavily-erbium-doped fluoride fibers using dual-wavelength pumping. To this extent, a monolithic 7 mol% erbium-doped fluoride fiber laser bounded by intracore fiber Bragg gratings at 3.42 μm is used to demonstrate a record efficiency of 38.6 % with respect to the 1976 nm pump. Through numerical modeling, we show that similar laser performances at 3.4 μm can be expected in fluoride fibers with erbium concentrations ranging between 1 – 7 mol%, although power scaling should rely on lightly-doped fibers to mitigate the heat load. Moreover, this work studies transverse mode-beating of the 1976 nm core pump and its role in the generation of a periodic luminescent grating and in the trapping of excitation in the metastable energy levels of the erbium system. Finally, we also report on the bistability of the 3.42 μm output power of the 7 mol% erbium-doped fluoride fiber laser.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Room-temperature fiber laser at 3.92  μm

Frédéric Maes, Vincent Fortin, Samuel Poulain, Marcel Poulain, Jean-Yves Carrée, Martin Bernier, and Réal Vallée
Optica 5(7) 761-764 (2018)

5.6  W monolithic fiber laser at 3.55  μm

Frédéric Maes, Vincent Fortin, Martin Bernier, and Réal Vallée
Opt. Lett. 42(11) 2054-2057 (2017)

Diode-pumped mid-infrared fiber laser with 50% slope efficiency

Yigit Ozan Aydın, Vincent Fortin, Frédéric Maes, Frédéric Jobin, Stuart D. Jackson, Réal Vallée, and Martin Bernier
Optica 4(2) 235-238 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photon. 6, 423–431 (2012).
    [Crossref]
  2. V. Fortin, F. Jobin, M. Larose, M. Bernier, and V. Réal, “10 W-level monolithic dysprosium-doped fiber laser at 3.24 µm,” Opt. Lett. 44, 491–494 (2018).
  3. F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm”,” Opt. Lett. 42, 2054–2057 (2017).
    [Crossref]
  4. F. Maes, V. Fortin, S. Poulain, M. Poulain, J.-Y. Carrée, M. Bernier, and R. Vallée, “Room-temperature fiber laser at 3.92 µm,” Optica 5, 761–764 (2018).
    [Crossref]
  5. C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
    [Crossref]
  6. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photon. 6, 440–449 (2012).
    [Crossref]
  7. O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping,” Opt. Lett. 39, 493–496 (2014).
    [Crossref]
  8. O. Henderson-Sapir, S. D. Jackson, and D. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41, 1676–1679 (2016).
    [Crossref] [PubMed]
  9. Z. Qin, T. Hai, G. Xie, M. Jingui, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength,” Op. Express 26, 8224–8231 (2018).
    [Crossref]
  10. F. Jobin, V. Fortin, F. Maes, M. Bernier, and R. Vallée, “Gain-switched fiber laser at 3.55 µm,” Opt. Lett. 43, 1770–1773 (2018).
    [Crossref]
  11. N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Actively Q-switched dual-wavelength pumped Er3+:ZBLAN fiber laser at 3.47 μm,” Opt. Lett. 43, 2724–2727 (2018).
    [Crossref]
  12. A. Malouf, O. Henderson-Sapir, M. Gorjan, and D. J. Ottaway, “Numerical modeling of 3.5 µm dual-wavelength pumped erbium doped mid-infrared fiber lasers,” J. Quantum Electron. 52, 1 (2016).
    [Crossref]
  13. F. Maes, V. Fortin, M. Bernier, and R. Vallée, “Quenching of 3.4 µm dual-wavelength pumped erbium doped fiber lasers,” J. Quantum Electron. 53, 1 (2017).
    [Crossref]
  14. O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “New energy-transfer upconversion process in Er3+:ZBLAN mid-infrared fiber lasers,” Opt. Express 24, 6869–6883 (2016).
    [Crossref]
  15. Le Verre Fluoré website, “Discover our range of fluoride fibers,” (Le Verre Fluoré, 2018).
  16. S. Luo, R. Moncorgé, J. Doualan, H. Xu, Z. Cai, C. Labbe, B. Xu, A. Braud, and P. Camy, “Simulation of dual-wavelength pumped 3.5 µm CW laser operation of Er:CaF2 and Er:KY3F10 in waveguide configuration,” J. Opt. Soc. Am. B (to be published) (2018).
  17. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32, 454–456 (2007).
    [Crossref] [PubMed]
  18. M. Bernier, F. Trépanier, J. Carrier, and R. Vallée, “High mechanical strength fiber Bragg gratings made with infrared femtosecond pulses and a phase mask,” Opt. Lett. 39, 3646–3649 (2014).
    [Crossref] [PubMed]
  19. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1, 754–765 (2011).
    [Crossref]
  20. V. K. Bogdanov, D. J. Booth, W. E. K. Gibbs, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Population dynamics in Er3+-doped fluoride glasses,” Phys. Rev. B 63, 1–15 (2001).
    [Crossref]
  21. Y. D. Huang, M. Mortier, and F. Auzel, “Stark level analysis for Er3+-doped ZBLAN glass,” Opt. Mater. 17, 501–511 (2001).
    [Crossref]
  22. C. Jauregui, T. Eidam, J. Limpert, and A. Tünnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express 19, 3258–3271 (2011).
    [Crossref] [PubMed]

2018 (6)

2017 (2)

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “Quenching of 3.4 µm dual-wavelength pumped erbium doped fiber lasers,” J. Quantum Electron. 53, 1 (2017).
[Crossref]

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm”,” Opt. Lett. 42, 2054–2057 (2017).
[Crossref]

2016 (3)

2014 (2)

2012 (2)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photon. 6, 440–449 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photon. 6, 423–431 (2012).
[Crossref]

2011 (2)

2007 (1)

2001 (2)

V. K. Bogdanov, D. J. Booth, W. E. K. Gibbs, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Population dynamics in Er3+-doped fluoride glasses,” Phys. Rev. B 63, 1–15 (2001).
[Crossref]

Y. D. Huang, M. Mortier, and F. Auzel, “Stark level analysis for Er3+-doped ZBLAN glass,” Opt. Mater. 17, 501–511 (2001).
[Crossref]

Androz, G.

Auzel, F.

Y. D. Huang, M. Mortier, and F. Auzel, “Stark level analysis for Er3+-doped ZBLAN glass,” Opt. Mater. 17, 501–511 (2001).
[Crossref]

Bawden, N.

Bernier, M.

Bérubé, J.-P.

C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Bogdanov, V. K.

V. K. Bogdanov, D. J. Booth, W. E. K. Gibbs, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Population dynamics in Er3+-doped fluoride glasses,” Phys. Rev. B 63, 1–15 (2001).
[Crossref]

Booth, D. J.

V. K. Bogdanov, D. J. Booth, W. E. K. Gibbs, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Population dynamics in Er3+-doped fluoride glasses,” Phys. Rev. B 63, 1–15 (2001).
[Crossref]

Braud, A.

S. Luo, R. Moncorgé, J. Doualan, H. Xu, Z. Cai, C. Labbe, B. Xu, A. Braud, and P. Camy, “Simulation of dual-wavelength pumped 3.5 µm CW laser operation of Er:CaF2 and Er:KY3F10 in waveguide configuration,” J. Opt. Soc. Am. B (to be published) (2018).

Cai, Z.

S. Luo, R. Moncorgé, J. Doualan, H. Xu, Z. Cai, C. Labbe, B. Xu, A. Braud, and P. Camy, “Simulation of dual-wavelength pumped 3.5 µm CW laser operation of Er:CaF2 and Er:KY3F10 in waveguide configuration,” J. Opt. Soc. Am. B (to be published) (2018).

Camy, P.

S. Luo, R. Moncorgé, J. Doualan, H. Xu, Z. Cai, C. Labbe, B. Xu, A. Braud, and P. Camy, “Simulation of dual-wavelength pumped 3.5 µm CW laser operation of Er:CaF2 and Er:KY3F10 in waveguide configuration,” J. Opt. Soc. Am. B (to be published) (2018).

Carrée, J.-Y.

Carrier, J.

Chin, S. L.

Ding, H.

Doualan, J.

S. Luo, R. Moncorgé, J. Doualan, H. Xu, Z. Cai, C. Labbe, B. Xu, A. Braud, and P. Camy, “Simulation of dual-wavelength pumped 3.5 µm CW laser operation of Er:CaF2 and Er:KY3F10 in waveguide configuration,” J. Opt. Soc. Am. B (to be published) (2018).

Eidam, T.

Faucher, D.

Fortin, V.

Fraser, A.

C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Frayssinous, C.

C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Gibbs, W. E. K.

V. K. Bogdanov, D. J. Booth, W. E. K. Gibbs, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Population dynamics in Er3+-doped fluoride glasses,” Phys. Rev. B 63, 1–15 (2001).
[Crossref]

Gorjan, M.

A. Malouf, O. Henderson-Sapir, M. Gorjan, and D. J. Ottaway, “Numerical modeling of 3.5 µm dual-wavelength pumped erbium doped mid-infrared fiber lasers,” J. Quantum Electron. 52, 1 (2016).
[Crossref]

Grobnic, D.

Hai, T.

Z. Qin, T. Hai, G. Xie, M. Jingui, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength,” Op. Express 26, 8224–8231 (2018).
[Crossref]

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photon. 6, 440–449 (2012).
[Crossref]

Henderson-Sapir, O.

Huang, Y. D.

Y. D. Huang, M. Mortier, and F. Auzel, “Stark level analysis for Er3+-doped ZBLAN glass,” Opt. Mater. 17, 501–511 (2001).
[Crossref]

Jackson, S. D.

Jauregui, C.

Javorniczky, J. S.

V. K. Bogdanov, D. J. Booth, W. E. K. Gibbs, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Population dynamics in Er3+-doped fluoride glasses,” Phys. Rev. B 63, 1–15 (2001).
[Crossref]

Jingui, M.

Z. Qin, T. Hai, G. Xie, M. Jingui, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength,” Op. Express 26, 8224–8231 (2018).
[Crossref]

Jobin, F.

Klantsataya, E.

Labbe, C.

S. Luo, R. Moncorgé, J. Doualan, H. Xu, Z. Cai, C. Labbe, B. Xu, A. Braud, and P. Camy, “Simulation of dual-wavelength pumped 3.5 µm CW laser operation of Er:CaF2 and Er:KY3F10 in waveguide configuration,” J. Opt. Soc. Am. B (to be published) (2018).

Larose, M.

Li, L.

Z. Qin, T. Hai, G. Xie, M. Jingui, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength,” Op. Express 26, 8224–8231 (2018).
[Crossref]

Limpert, J.

Lu, P.

Luo, S.

S. Luo, R. Moncorgé, J. Doualan, H. Xu, Z. Cai, C. Labbe, B. Xu, A. Braud, and P. Camy, “Simulation of dual-wavelength pumped 3.5 µm CW laser operation of Er:CaF2 and Er:KY3F10 in waveguide configuration,” J. Opt. Soc. Am. B (to be published) (2018).

MacFarlane, D. R.

V. K. Bogdanov, D. J. Booth, W. E. K. Gibbs, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Population dynamics in Er3+-doped fluoride glasses,” Phys. Rev. B 63, 1–15 (2001).
[Crossref]

Maes, F.

Malouf, A.

A. Malouf, O. Henderson-Sapir, M. Gorjan, and D. J. Ottaway, “Numerical modeling of 3.5 µm dual-wavelength pumped erbium doped mid-infrared fiber lasers,” J. Quantum Electron. 52, 1 (2016).
[Crossref]

Matsukuma, H.

Mihailov, S. J.

Moncorgé, R.

S. Luo, R. Moncorgé, J. Doualan, H. Xu, Z. Cai, C. Labbe, B. Xu, A. Braud, and P. Camy, “Simulation of dual-wavelength pumped 3.5 µm CW laser operation of Er:CaF2 and Er:KY3F10 in waveguide configuration,” J. Opt. Soc. Am. B (to be published) (2018).

Mortier, M.

Y. D. Huang, M. Mortier, and F. Auzel, “Stark level analysis for Er3+-doped ZBLAN glass,” Opt. Mater. 17, 501–511 (2001).
[Crossref]

Munch, J.

Newman, P. J.

V. K. Bogdanov, D. J. Booth, W. E. K. Gibbs, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Population dynamics in Er3+-doped fluoride glasses,” Phys. Rev. B 63, 1–15 (2001).
[Crossref]

Ottaway, D.

Ottaway, D. J.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photon. 6, 440–449 (2012).
[Crossref]

Poulain, M.

Poulain, S.

Qian, L.

Z. Qin, T. Hai, G. Xie, M. Jingui, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength,” Op. Express 26, 8224–8231 (2018).
[Crossref]

Qin, Z.

Z. Qin, T. Hai, G. Xie, M. Jingui, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength,” Op. Express 26, 8224–8231 (2018).
[Crossref]

Réal, V.

Saliminia, A.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photon. 6, 440–449 (2012).
[Crossref]

Shen, D.

Z. Qin, T. Hai, G. Xie, M. Jingui, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength,” Op. Express 26, 8224–8231 (2018).
[Crossref]

Sheng, Y.

Smelser, C. W.

Tokita, S.

Trépanier, F.

Tünnermann, A.

Vallée, R.

Walker, R. B.

Xie, G.

Z. Qin, T. Hai, G. Xie, M. Jingui, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength,” Op. Express 26, 8224–8231 (2018).
[Crossref]

Xu, B.

S. Luo, R. Moncorgé, J. Doualan, H. Xu, Z. Cai, C. Labbe, B. Xu, A. Braud, and P. Camy, “Simulation of dual-wavelength pumped 3.5 µm CW laser operation of Er:CaF2 and Er:KY3F10 in waveguide configuration,” J. Opt. Soc. Am. B (to be published) (2018).

Xu, H.

S. Luo, R. Moncorgé, J. Doualan, H. Xu, Z. Cai, C. Labbe, B. Xu, A. Braud, and P. Camy, “Simulation of dual-wavelength pumped 3.5 µm CW laser operation of Er:CaF2 and Er:KY3F10 in waveguide configuration,” J. Opt. Soc. Am. B (to be published) (2018).

Yuan, P.

Z. Qin, T. Hai, G. Xie, M. Jingui, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength,” Op. Express 26, 8224–8231 (2018).
[Crossref]

Zhao, L.

Z. Qin, T. Hai, G. Xie, M. Jingui, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength,” Op. Express 26, 8224–8231 (2018).
[Crossref]

J. Mater. Process. Technol. (1)

C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

J. Quantum Electron. (2)

A. Malouf, O. Henderson-Sapir, M. Gorjan, and D. J. Ottaway, “Numerical modeling of 3.5 µm dual-wavelength pumped erbium doped mid-infrared fiber lasers,” J. Quantum Electron. 52, 1 (2016).
[Crossref]

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “Quenching of 3.4 µm dual-wavelength pumped erbium doped fiber lasers,” J. Quantum Electron. 53, 1 (2017).
[Crossref]

Nat. Photon. (2)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photon. 6, 440–449 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photon. 6, 423–431 (2012).
[Crossref]

Op. Express (1)

Z. Qin, T. Hai, G. Xie, M. Jingui, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength,” Op. Express 26, 8224–8231 (2018).
[Crossref]

Opt. Express (2)

Opt. Lett. (8)

Opt. Mater. (1)

Y. D. Huang, M. Mortier, and F. Auzel, “Stark level analysis for Er3+-doped ZBLAN glass,” Opt. Mater. 17, 501–511 (2001).
[Crossref]

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. B (1)

V. K. Bogdanov, D. J. Booth, W. E. K. Gibbs, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Population dynamics in Er3+-doped fluoride glasses,” Phys. Rev. B 63, 1–15 (2001).
[Crossref]

Other (2)

Le Verre Fluoré website, “Discover our range of fluoride fibers,” (Le Verre Fluoré, 2018).

S. Luo, R. Moncorgé, J. Doualan, H. Xu, Z. Cai, C. Labbe, B. Xu, A. Braud, and P. Camy, “Simulation of dual-wavelength pumped 3.5 µm CW laser operation of Er:CaF2 and Er:KY3F10 in waveguide configuration,” J. Opt. Soc. Am. B (to be published) (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Energy level diagram of the Er3+:ZrF4 system with relevant processes for 3.42 μm laser emission through DWP. The lifetimes of the different energy levels are given on the right. GSA, ground-state absorption at 976 nm; ESA, excited-state absorption at 976 nm; VGSA, virtual ground-state absorption at 1976 nm; VESA, virtual excited-state absorption at 1976 nm; Wij, ion-pair ET process; MPR, multiphonon relaxation. Circled numbers indicate the progression of the ions during the excitation trapping mechanism detailed in section 4.3.
Fig. 2
Fig. 2 Schematic of the DWP monolithic 7 mol% Er3+:ZrF4 fiber laser cavity at 3.42 μm. L1 - L2, 12.7 mm plano-convex aspheric ZnSe lenses; M1, gold mirror; DM1 – DM2, dichroic mirrors transmitting at 976 nm and 3.4 μm and reflecting at 1976 nm; RCPS, residual cladding pump stripper; BD, beam dump; L3, f=25.4 mm convex lens; LD, multimode 976 nm laser diode.
Fig. 3
Fig. 3 (a) Transmission spectra around 3425 nm of the HR and LR-FBGs measured with a 0.2 nm resolution and (b) broadband transmission spectrum of the HR-FBG from 1800 to 3400 nm.
Fig. 4
Fig. 4 (a) Laser output power at 3.42 μm as a function of the launched 1976 nm core pump for different launched 976 nm cladding pump. (b) Laser output power at 3.42 μm as a function of the launched 976 nm cladding pump for different launched 1976 nm core pump. Scattered points represent experimental data while numerical modeling results are given by solid lines.
Fig. 5
Fig. 5 Spectrum of the DWP Er3+:ZrF4 fiber laser at different output powers.
Fig. 6
Fig. 6 (a) Simulated output power, (b) slope efficiency, (c) threshold and (d) heat load at the HR-FBG as a function of the reflectivity of the LR-FBG of 3.42 μm DWP Er3+:ZrF4 fiber cavities using 1, 4 or 7 mol% Er3+ concentrations. The reflectivity of the HR-FBG was fixed at 99 % while the co-directional launched 1976 nm core pump was fixed at 50 W. The 976 nm cladding pump and the cavity’s length were adjusted beforehand for each concentration.
Fig. 7
Fig. 7 (a) Photograph of the luminescent grating in the core of the Er3+:ZrF4 fiber when only the 1976 nm pump was activated and increased slightly above the excitation trapping threshold ( 5 W); no image processing was used to enhance the quality of the picture. (b) Simulated intensity distribution of the 1976 nm pump within the core of the Er3+:ZrF4 fiber.
Fig. 8
Fig. 8 (a) Normalized population in the excited energy levels of the 7 mol% Er3+:ZrF4 system as a function of the 1976 nm pump intensity. (b) Normalized population inversion on the 4F   9 / 2 4I   9 / 2 transition at 3.4μm as a function of the 1976 nm pump intensity for different Er3+ concentrations. The colored curves are representative of the color of the fluorescence emitted by their associated levels.
Fig. 9
Fig. 9 Experimentally observed bistability of the 3.42 μm output power from the DWP 7 mol% Er3+:ZrF4 fiber laser depending on which pump is activated first.

Tables (1)

Tables Icon

Table 1 ET parameters (Wij) used in the numerical model for different Er3+-doping concentrations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

q = A c ( i = 1 6 N i ω i ( E i E j ) + E T W i j N i N j δ E i j ) .

Metrics