Abstract

We have prepared a well-structured tellurium chalcogenide (ChG) fiber with a specialized double cladding structure by an improved extrusion method, and experimentally demonstrated an ultra-flat mid-infrared (MIR) supercontinuum (SC) generation in such a fiber. The step-index fiber had an optical loss of <1 dB/m in a range from 7.4 to 9.7 μm with a minimum loss of 0.69 dB/m at 7.87 μm. Simulation showed that an all-normal dispersion profile can be realized in this double cladding tellurium fiber. An ultra-flat MIR SC spectrum (~3.2-12.1μm at −10 dB, ~2-14 μm at −30 dB) was generated from a 22-cm long fiber pumped with a femtosecond laser at 5 μm (~150 fs, 1 kHz). Then the degree of coherence was calculated out based on a simulation, showing that a high coherent MIR SC (from 2.9 to 13.1 μm) can be generated in this double-cladding tellurium fiber.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrabroadband and coherent mid-infrared supercontinuum generation in Te-based chalcogenide tapered fiber with all-normal dispersion

Nan Zhang, Xuefeng Peng, Yingying Wang, Shixun Dai, Yuan Yuan, Jingxiang Su, Guangtao Li, Peiqing Zhang, Peilong Yang, and Xunsi Wang
Opt. Express 27(7) 10311-10319 (2019)

Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber

Bo Wu, Zheming Zhao, Xunsi Wang, Youmei Tian, Nan Mi, Peng Chen, Zugang Xue, Zijun Liu, Peiqing Zhang, Xiang Shen, Qiuhua Nie, Shixun Dai, and Rongping Wang
Opt. Mater. Express 8(5) 1341-1348 (2018)

Mid-infrared supercontinuum generation in low-loss single-mode Te-rich chalcogenide fiber

Xiange Wang, Zheming Zhao, Xunsi Wang, Kai Jiao, Zugang Xue, Youmei Tian, Peiqing Zhang, Xiang Shen, Shixun Dai, and Rongping Wang
Opt. Mater. Express 9(8) 3487-3493 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. Steinmeyer and J. S. Skibina, “Entering the mid-infrared,” Nat. Photonics 8(11), 814–815 (2014).
    [Crossref]
  2. C. R. Petersen, U. Møller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  3. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
    [Crossref] [PubMed]
  4. Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
    [Crossref] [PubMed]
  5. L. Mandel and E. Wolf, “Books-received-optical coherence and quantum optics,” Science 1995, 1859 (1996).
  6. K. Corwin, N. Newbury, J. Dudley, S. Cohen, S. Diddams, B. Washburn, K. Weber, and R. Windeler, “Intrinsic amplitude noise limitations to supercontinuum spectra generated in microstructure fiber,” APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts (2003).
  7. areJ. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  8. B. Ainslie and C. Day, “A review of single-mode fibers with modified dispersion characteristics,” J. Lightwave Technol. 4(8), 967–979 (1986).
    [Crossref]
  9. K. Nagasaka, T. H. Tuan, T. L. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber,” Appl. Phys. Express 10(3), 032103 (2017).
    [Crossref]
  10. V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge–As–Se–Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
    [Crossref]
  11. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
    [Crossref]
  12. areC. Vigreux-Bercovici, E. Bonhomme, and A. Pradel, “Te-rich Ge–As–Se–Te bulk glasses and films for future IR-integrated optics,” J. Non-Cryst. Solids 353(13–15), 1388–1391 (2007).
    [Crossref]
  13. I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513–2526 (2016).
    [Crossref] [PubMed]
  14. M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3 As2Se3, glasses,” Solid State Commun. 15(5), 855–858 (1974).
    [Crossref]
  15. I. Shavrin, S. Novotny, and H. Ludvigsen, “Mode excitation and supercontinuum generation in a few-mode suspended-core fiber,” Opt. Express 21(26), 32141–32150 (2013).
    [Crossref] [PubMed]
  16. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18(14), 14778–14787 (2010).
    [Crossref] [PubMed]
  17. U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
    [Crossref] [PubMed]
  18. A. M. Zheltikov, “An analytical model of the rotational Raman response function of molecular gases,” J. Raman Spectrosc. 39(6), 756–765 (2008).
    [Crossref]
  19. C. F. Yao, Z. X. Jia, Z. R. Li, S. J. Jia, Z. P. Zhao, L. Zhang, Y. Feng, G. S. Qin, Y. Ohishi, and W. P. Qin, “High-power mid-infrared supercontinuum laser source using fluorotellurite fiber,” Optica 5(10), 1264–1270 (2018).
    [Crossref]
  20. D. D. Hudson, S. Antipov, L. Z. Li, I. Alamgir, T. Hu, M. E. Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163–1166 (2017).
    [Crossref]
  21. Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
    [Crossref]

2018 (1)

2017 (3)

D. D. Hudson, S. Antipov, L. Z. Li, I. Alamgir, T. Hu, M. E. Amraoui, Y. Messaddeq, M. Rochette, S. D. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163–1166 (2017).
[Crossref]

K. Nagasaka, T. H. Tuan, T. L. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber,” Appl. Phys. Express 10(3), 032103 (2017).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

2016 (3)

2015 (1)

2014 (2)

G. Steinmeyer and J. S. Skibina, “Entering the mid-infrared,” Nat. Photonics 8(11), 814–815 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

2013 (1)

2010 (1)

2009 (1)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

2008 (1)

A. M. Zheltikov, “An analytical model of the rotational Raman response function of molecular gases,” J. Raman Spectrosc. 39(6), 756–765 (2008).
[Crossref]

2007 (1)

areC. Vigreux-Bercovici, E. Bonhomme, and A. Pradel, “Te-rich Ge–As–Se–Te bulk glasses and films for future IR-integrated optics,” J. Non-Cryst. Solids 353(13–15), 1388–1391 (2007).
[Crossref]

2006 (1)

areJ. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2004 (1)

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge–As–Se–Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

1996 (1)

L. Mandel and E. Wolf, “Books-received-optical coherence and quantum optics,” Science 1995, 1859 (1996).

1986 (1)

B. Ainslie and C. Day, “A review of single-mode fibers with modified dispersion characteristics,” J. Lightwave Technol. 4(8), 967–979 (1986).
[Crossref]

1974 (1)

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3 As2Se3, glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Ainslie, B.

B. Ainslie and C. Day, “A review of single-mode fibers with modified dispersion characteristics,” J. Lightwave Technol. 4(8), 967–979 (1986).
[Crossref]

Alamgir, I.

Amraoui, M. E.

Antipov, S.

Bang, O.

I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513–2526 (2016).
[Crossref] [PubMed]

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Bonhomme, E.

areC. Vigreux-Bercovici, E. Bonhomme, and A. Pradel, “Te-rich Ge–As–Se–Te bulk glasses and films for future IR-integrated optics,” J. Non-Cryst. Solids 353(13–15), 1388–1391 (2007).
[Crossref]

Brilland, L.

Caillaud, C.

Cheng, T.

Cheng, T. L.

K. Nagasaka, T. H. Tuan, T. L. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber,” Appl. Phys. Express 10(3), 032103 (2017).
[Crossref]

Churbanov, M. F.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Coen, S.

areJ. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dai, S.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Day, C.

B. Ainslie and C. Day, “A review of single-mode fibers with modified dispersion characteristics,” J. Lightwave Technol. 4(8), 967–979 (1986).
[Crossref]

Dianov, E. M.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Dudley, J. M.

areJ. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Feng, Y.

Frosz, M. H.

Fuerbach, A.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge–As–Se–Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Gai, X.

Genty, G.

areJ. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Howard, R. E.

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3 As2Se3, glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

Hu, T.

Hudson, D. D.

Jackson, S. D.

Jia, S. J.

Jia, Z. X.

Kubat, I.

I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513–2526 (2016).
[Crossref] [PubMed]

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Lewis, K. L.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge–As–Se–Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Li, L. Z.

Li, Z. R.

Liu, S.

Liu, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Ludvigsen, H.

Luther-Davies, B.

Macedo, P. B.

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3 As2Se3, glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

Maklad, M. S.

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3 As2Se3, glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

Mandel, L.

L. Mandel and E. Wolf, “Books-received-optical coherence and quantum optics,” Science 1995, 1859 (1996).

Mason, P. D.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge–As–Se–Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Matsumoto, M.

K. Nagasaka, T. H. Tuan, T. L. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber,” Appl. Phys. Express 10(3), 032103 (2017).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

Méchin, D.

Messaddeq, Y.

Mohr, R. K.

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3 As2Se3, glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

Møller, U.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Moynihan, C. T.

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3 As2Se3, glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

Nagasaka, K.

K. Nagasaka, T. H. Tuan, T. L. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber,” Appl. Phys. Express 10(3), 032103 (2017).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

Nie, Q.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Novotny, S.

Ohishi, Y.

Orchard, D. A.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge–As–Se–Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Pan, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Petersen, C. R.

U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Méchin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref] [PubMed]

C. R. Petersen, U. Møller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Plotnichenko, V. G.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Pradel, A.

areC. Vigreux-Bercovici, E. Bonhomme, and A. Pradel, “Te-rich Ge–As–Se–Te bulk glasses and films for future IR-integrated optics,” J. Non-Cryst. Solids 353(13–15), 1388–1391 (2007).
[Crossref]

Qin, G. S.

Qin, W. P.

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Rochette, M.

Savage, J. A.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge–As–Se–Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Seddon, A. B.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge–As–Se–Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Shavrin, I.

Shen, X.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Shiryaev, V. S.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Skibina, J. S.

G. Steinmeyer and J. S. Skibina, “Entering the mid-infrared,” Nat. Photonics 8(11), 814–815 (2014).
[Crossref]

Snopatin, G. E.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Steinmeyer, G.

G. Steinmeyer and J. S. Skibina, “Entering the mid-infrared,” Nat. Photonics 8(11), 814–815 (2014).
[Crossref]

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Sun, L.

Suzuki, T.

K. Nagasaka, T. H. Tuan, T. L. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber,” Appl. Phys. Express 10(3), 032103 (2017).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

Tang, Z. Q.

C. R. Petersen, U. Møller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tezuka, H.

K. Nagasaka, T. H. Tuan, T. L. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber,” Appl. Phys. Express 10(3), 032103 (2017).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

Tikhomirov, V. K.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge–As–Se–Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Troles, J.

Tuan, T. H.

K. Nagasaka, T. H. Tuan, T. L. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber,” Appl. Phys. Express 10(3), 032103 (2017).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

Vigreux-Bercovici, C.

areC. Vigreux-Bercovici, E. Bonhomme, and A. Pradel, “Te-rich Ge–As–Se–Te bulk glasses and films for future IR-integrated optics,” J. Non-Cryst. Solids 353(13–15), 1388–1391 (2007).
[Crossref]

Wang, R.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Wang, X.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Wolf, E.

L. Mandel and E. Wolf, “Books-received-optical coherence and quantum optics,” Science 1995, 1859 (1996).

Wu, B.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Xue, X.

Yao, C. F.

Yu, Y.

Zhang, L.

Zhang, P.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Zhao, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Zhao, Z. P.

Zheltikov, A. M.

A. M. Zheltikov, “An analytical model of the rotational Raman response function of molecular gases,” J. Raman Spectrosc. 39(6), 756–765 (2008).
[Crossref]

Zhou, B. B.

C. R. Petersen, U. Møller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Appl. Phys. Express (1)

K. Nagasaka, T. H. Tuan, T. L. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Supercontinuum generation in the normal dispersion regime using chalcogenide double-clad fiber,” Appl. Phys. Express 10(3), 032103 (2017).
[Crossref]

Infrared Phys. Technol. (1)

V. K. Tikhomirov, D. Furniss, A. B. Seddon, J. A. Savage, P. D. Mason, D. A. Orchard, and K. L. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge–As–Se–Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Inorg. Mater. (1)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

J. Lightwave Technol. (1)

B. Ainslie and C. Day, “A review of single-mode fibers with modified dispersion characteristics,” J. Lightwave Technol. 4(8), 967–979 (1986).
[Crossref]

J. Non-Cryst. Solids (1)

areC. Vigreux-Bercovici, E. Bonhomme, and A. Pradel, “Te-rich Ge–As–Se–Te bulk glasses and films for future IR-integrated optics,” J. Non-Cryst. Solids 353(13–15), 1388–1391 (2007).
[Crossref]

J. Raman Spectrosc. (1)

A. M. Zheltikov, “An analytical model of the rotational Raman response function of molecular gases,” J. Raman Spectrosc. 39(6), 756–765 (2008).
[Crossref]

Laser Photonics Rev. (1)

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0–16μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 1700005 (2017).
[Crossref]

Nat. Photonics (2)

G. Steinmeyer and J. S. Skibina, “Entering the mid-infrared,” Nat. Photonics 8(11), 814–815 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Q. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (2)

Rev. Mod. Phys. (1)

areJ. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Science (1)

L. Mandel and E. Wolf, “Books-received-optical coherence and quantum optics,” Science 1995, 1859 (1996).

Solid State Commun. (1)

M. S. Maklad, R. K. Mohr, R. E. Howard, P. B. Macedo, and C. T. Moynihan, “Multiphonon absorption in As2S3 As2Se3, glasses,” Solid State Commun. 15(5), 855–858 (1974).
[Crossref]

Other (1)

K. Corwin, N. Newbury, J. Dudley, S. Cohen, S. Diddams, B. Washburn, K. Weber, and R. Windeler, “Intrinsic amplitude noise limitations to supercontinuum spectra generated in microstructure fiber,” APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Flowchart of the fiber extrusion.
Fig. 2
Fig. 2 (a) Transmission spectra of the glasses (~2 mm); (b) Thermal expansion curves of GAST glasses.
Fig. 3
Fig. 3 (a) Refractive indices of the glasses and the calculated NA; (b) Dispersion of fundamental model and material.
Fig. 4
Fig. 4 Cross-section: (a) and optical loss; (b) of the fiber.
Fig. 5
Fig. 5 (a) Pumping at different wavelength with input power of 30 mw by a 22 cm-long fiber; (b) Pumping at 5 μm with input power of 30mw by different length of fibers; (c) Pumping at different input powers at 5 μm by 22 cm-long fiber; (d) SC simulation and its spectral coherence.

Tables (2)

Tables Icon

Table 1 The physical parameter of the glasses.

Tables Icon

Table 2 Summary of this work and important results in SC generation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g 12 (1) (λ, t 1 t 2 )=| E 1 * (λ, t 1 ) E 2 (λ, t 2 ) | E 1 (λ, t 1 ) | 2 | E 2 (λ, t 2 ) | 2 |

Metrics