Abstract

We demonstrate here for the first time, to the best of our knowledge, an effective method to achieve low-loss light coupling from solid-core fibers to anti-resonant hollow-core fibers (AR-HCFs) by fiber tapering technique. We establish the coupling models by beam propagation method (BPM), and the simulation results show that the coupling efficiency can be optimized by choosing a proper waist diameter of the tapered solid-core fiber. Two types of AR-HCFs have been tested experimentally, and the maximum light coupling efficiency is ∼91.4% at 1.06 µm and ∼90.2% at 1.57 µm for the ice-cream AR-HCF, and ∼83.7% at 1.57 µm for the node-less AR-HCF. This work provides a feasible low-loss light coupling scheme for AR-HCFs, which is very useful for implementing all fiber systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-mode, low loss hollow-core anti-resonant fiber designs

Md. Selim Habib, J. E. Antonio-Lopez, Christos Markos, Axel Schülzgen, and Rodrigo Amezcua-Correa
Opt. Express 27(4) 3824-3836 (2019)

Simple and reliable light launch from a conventional single-mode fiber into a helical-core fiber through an adiabatically tapered splice

Hyuntai Kim, Jongki Kim, Yongmin Jung, Luis Alonso Vazquez-Zuniga, Seung Jong Lee, Geunchang Choi, Kyunghwan Oh, Pu Wang, W. A. Clarkson, and Yoonchan Jeong
Opt. Express 20(23) 25562-25571 (2012)

Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements

Md. Selim Habib, Ole Bang, and Morten Bache
Opt. Express 24(8) 8429-8436 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
    [Crossref]
  2. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [Crossref]
  3. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref]
  4. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4µm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref]
  5. F. Yu and J. C. Knight, “Negative Curvature Hollow-Core Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
    [Crossref]
  6. S. Gao, Y. Wang, W. Ding, D. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
    [Crossref]
  7. Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 µm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
    [Crossref]
  8. Y. Chen, Z. Wang, B. Gu, F. Yu, and Q. Lu, “Achieving a 1.5 µm fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth,” Opt. Lett. 41(21), 5118–5121 (2016).
    [Crossref]
  9. Y. Chen, Z. Wang, Z. Li, W. Huang, X. Xi, and Q. Lu, “Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 µm,” Opt. Express 25(17), 20944–20949 (2017).
    [Crossref]
  10. Z. Wang, B. Gu, Y. Chen, Z. Li, and X. Xi, “Demonstration of a 150-kW-peak-power, 2-GHz-linewidth, 1.9-µm fiber gas Raman source,” Appl. Opt. 56(27), 7657–7661 (2017).
    [Crossref]
  11. A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A.A. Krylov, A.D. Pryamikov, A.S. Biriukov, M.E. Likhachev, I.A. Bufetov, and E.M. Dianov, “4.4-µm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
    [Crossref]
  12. A.V. Gladyshev, A.F. Kosolapov, A.N. Kolyadin, M.S. Astapovich, A.D. Pryamikov, M.E. Likhachev, and I.A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47(12), 1078–1082 (2017).
    [Crossref]
  13. L. Cao, S. Gao, Z. Peng, X. Wang, Y. Wang, and P. Wang, “High peak power 2.8 µm Raman laser in a methane-filled negative-curvature fiber,” Opt. Express 26(5), 5609–5615 (2018).
    [Crossref]
  14. Z. Li, W. Huang, Y. Cui, and Z. Wang, “Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8 µm,” Opt. Lett. 43(19), 4671–4674 (2018).
    [Crossref]
  15. Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22(18), 21872–21878 (2014).
    [Crossref]
  16. M. R. A. Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, “Cavity-based mid-IR fiber gas laser pumped by a diode laser,” Optica 3(3), 218–221 (2016).
    [Crossref]
  17. M. Xu, F. Yu, and J. Knight, “Mid-infrared 1  W hollow-core fiber gas laser source,” Opt. Lett. 42(20), 4055–4058 (2017).
    [Crossref]
  18. Z. Zhou, N. Tang, Z. Li, W. Huang, Z. Wang, W. Wu, and W. Hua, “High-power tunable mid-infrared fiber gas laser source by acetylene-filled hollow-core fibers,” Opt. Express 26(15), 19144–19153 (2018).
    [Crossref]
  19. F. B. A. Aghbolagh, V. Nampoothiri, B. Debord, F. Gerome, L. Vincetti, F. Benabid, and W. Rudolph, “Mid IR hollow core fiber gas laser emitting at 4.6  µm,” Opt. Lett. 44(2), 383–386 (2019).
    [Crossref]
  20. J. H. Chong, M.K. Rao, Y. Zhu, and P. Shum, “An effective splicing method on photonic crystal fiber using CO2 laser,” IEEE Photonics Technol. Lett. 15(7), 942–944 (2003).
    [Crossref]
  21. J. H. Chong and M. K. Rao, “Development of a system for laser splicing photonic crystal fiber,” Opt. Express 11(12), 1365–1370 (2003).
    [Crossref]
  22. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
    [Crossref]
  23. P. S. Light, F. Couny, and F. Benabid, “Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber,” Opt. Lett. 31(17), 2538–2540 (2006).
    [Crossref]
  24. N. V. Wheeler, M. D. Grogan, P. S. Light, F. Couny, T. A. Birks, and F. Benabid, “Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber,” Opt. Lett. 35(11), 1875–1877 (2010).
    [Crossref]
  25. S. Xie, R. Pennetta, and P. S. J. Russell, “Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber,” Optica 3(3), 277–282 (2016).
    [Crossref]
  26. J. D. Love, “Spot size, adiabaticity and diffraction in tapered fibres,” Electron. Lett. 23(19), 993–994 (1987).
    [Crossref]
  27. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138(5), 343–354 (1991).
    [Crossref]
  28. D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
    [Crossref]
  29. R. Pennetta, S. Xie, F. Lenahan, M. Mridha, D. Novoa, and P. S. J. Russell, “Fresnel-Reflection-Free Self-Aligning Nanospike Interface between a Step-Index Fiber and a Hollow-Core Photonic-Crystal-Fiber Gas Cell,” Phys. Rev. Appl. 8(1), 014014 (2017).
    [Crossref]

2019 (1)

2018 (4)

2017 (6)

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A.A. Krylov, A.D. Pryamikov, A.S. Biriukov, M.E. Likhachev, I.A. Bufetov, and E.M. Dianov, “4.4-µm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

A.V. Gladyshev, A.F. Kosolapov, A.N. Kolyadin, M.S. Astapovich, A.D. Pryamikov, M.E. Likhachev, and I.A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47(12), 1078–1082 (2017).
[Crossref]

R. Pennetta, S. Xie, F. Lenahan, M. Mridha, D. Novoa, and P. S. J. Russell, “Fresnel-Reflection-Free Self-Aligning Nanospike Interface between a Step-Index Fiber and a Hollow-Core Photonic-Crystal-Fiber Gas Cell,” Phys. Rev. Appl. 8(1), 014014 (2017).
[Crossref]

Y. Chen, Z. Wang, Z. Li, W. Huang, X. Xi, and Q. Lu, “Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 µm,” Opt. Express 25(17), 20944–20949 (2017).
[Crossref]

Z. Wang, B. Gu, Y. Chen, Z. Li, and X. Xi, “Demonstration of a 150-kW-peak-power, 2-GHz-linewidth, 1.9-µm fiber gas Raman source,” Appl. Opt. 56(27), 7657–7661 (2017).
[Crossref]

M. Xu, F. Yu, and J. Knight, “Mid-infrared 1  W hollow-core fiber gas laser source,” Opt. Lett. 42(20), 4055–4058 (2017).
[Crossref]

2016 (4)

2014 (2)

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 µm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22(18), 21872–21878 (2014).
[Crossref]

2012 (1)

2011 (1)

2010 (1)

2006 (2)

2005 (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[Crossref]

2003 (2)

J. H. Chong, M.K. Rao, Y. Zhu, and P. Shum, “An effective splicing method on photonic crystal fiber using CO2 laser,” IEEE Photonics Technol. Lett. 15(7), 942–944 (2003).
[Crossref]

J. H. Chong and M. K. Rao, “Development of a system for laser splicing photonic crystal fiber,” Opt. Express 11(12), 1365–1370 (2003).
[Crossref]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

1991 (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138(5), 343–354 (1991).
[Crossref]

1987 (1)

J. D. Love, “Spot size, adiabaticity and diffraction in tapered fibres,” Electron. Lett. 23(19), 993–994 (1987).
[Crossref]

1977 (1)

D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

Aghbolagh, F. B. A.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Astapovich, M.S.

A.V. Gladyshev, A.F. Kosolapov, A.N. Kolyadin, M.S. Astapovich, A.D. Pryamikov, M.E. Likhachev, and I.A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47(12), 1078–1082 (2017).
[Crossref]

Belardi, W.

Benabid, F.

Biriukov, A. S.

Biriukov, A.S.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A.A. Krylov, A.D. Pryamikov, A.S. Biriukov, M.E. Likhachev, I.A. Bufetov, and E.M. Dianov, “4.4-µm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

Birks, T. A.

N. V. Wheeler, M. D. Grogan, P. S. Light, F. Couny, T. A. Birks, and F. Benabid, “Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber,” Opt. Lett. 35(11), 1875–1877 (2010).
[Crossref]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138(5), 343–354 (1991).
[Crossref]

Bufetov, I.A.

A.V. Gladyshev, A.F. Kosolapov, A.N. Kolyadin, M.S. Astapovich, A.D. Pryamikov, M.E. Likhachev, and I.A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47(12), 1078–1082 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A.A. Krylov, A.D. Pryamikov, A.S. Biriukov, M.E. Likhachev, I.A. Bufetov, and E.M. Dianov, “4.4-µm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

Cao, L.

Chen, Y.

Chong, J. H.

J. H. Chong, M.K. Rao, Y. Zhu, and P. Shum, “An effective splicing method on photonic crystal fiber using CO2 laser,” IEEE Photonics Technol. Lett. 15(7), 942–944 (2003).
[Crossref]

J. H. Chong and M. K. Rao, “Development of a system for laser splicing photonic crystal fiber,” Opt. Express 11(12), 1365–1370 (2003).
[Crossref]

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Cui, Y.

Debord, B.

Dianov, E. M.

Dianov, E.M.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A.A. Krylov, A.D. Pryamikov, A.S. Biriukov, M.E. Likhachev, I.A. Bufetov, and E.M. Dianov, “4.4-µm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

Ding, W.

S. Gao, Y. Wang, W. Ding, D. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Gao, S.

S. Gao, Y. Wang, W. Ding, D. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

L. Cao, S. Gao, Z. Peng, X. Wang, Y. Wang, and P. Wang, “High peak power 2.8 µm Raman laser in a methane-filled negative-curvature fiber,” Opt. Express 26(5), 5609–5615 (2018).
[Crossref]

Gerome, F.

Gladyshev, A. V.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A.A. Krylov, A.D. Pryamikov, A.S. Biriukov, M.E. Likhachev, I.A. Bufetov, and E.M. Dianov, “4.4-µm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

Gladyshev, A.V.

A.V. Gladyshev, A.F. Kosolapov, A.N. Kolyadin, M.S. Astapovich, A.D. Pryamikov, M.E. Likhachev, and I.A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47(12), 1078–1082 (2017).
[Crossref]

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138(5), 343–354 (1991).
[Crossref]

Grogan, M. D.

Gu, B.

Gu, S.

S. Gao, Y. Wang, W. Ding, D. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Hassan, M. R. A.

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138(5), 343–354 (1991).
[Crossref]

Hua, W.

Huang, W.

Jiang, D.

S. Gao, Y. Wang, W. Ding, D. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Khudyakov, M. M.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A.A. Krylov, A.D. Pryamikov, A.S. Biriukov, M.E. Likhachev, I.A. Bufetov, and E.M. Dianov, “4.4-µm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

Knight, J.

Knight, J. C.

M. R. A. Hassan, F. Yu, W. J. Wadsworth, and J. C. Knight, “Cavity-based mid-IR fiber gas laser pumped by a diode laser,” Optica 3(3), 218–221 (2016).
[Crossref]

F. Yu and J. C. Knight, “Negative Curvature Hollow-Core Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 µm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

Z. Wang, W. Belardi, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber,” Opt. Express 22(18), 21872–21878 (2014).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4µm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Kolyadin, A. N.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A.A. Krylov, A.D. Pryamikov, A.S. Biriukov, M.E. Likhachev, I.A. Bufetov, and E.M. Dianov, “4.4-µm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

Kolyadin, A.N.

A.V. Gladyshev, A.F. Kosolapov, A.N. Kolyadin, M.S. Astapovich, A.D. Pryamikov, M.E. Likhachev, and I.A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47(12), 1078–1082 (2017).
[Crossref]

Kosolapov, A. F.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A.A. Krylov, A.D. Pryamikov, A.S. Biriukov, M.E. Likhachev, I.A. Bufetov, and E.M. Dianov, “4.4-µm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 µm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref]

Kosolapov, A.F.

A.V. Gladyshev, A.F. Kosolapov, A.N. Kolyadin, M.S. Astapovich, A.D. Pryamikov, M.E. Likhachev, and I.A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47(12), 1078–1082 (2017).
[Crossref]

Krylov, A.A.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A.A. Krylov, A.D. Pryamikov, A.S. Biriukov, M.E. Likhachev, I.A. Bufetov, and E.M. Dianov, “4.4-µm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138(5), 343–354 (1991).
[Crossref]

Lenahan, F.

R. Pennetta, S. Xie, F. Lenahan, M. Mridha, D. Novoa, and P. S. J. Russell, “Fresnel-Reflection-Free Self-Aligning Nanospike Interface between a Step-Index Fiber and a Hollow-Core Photonic-Crystal-Fiber Gas Cell,” Phys. Rev. Appl. 8(1), 014014 (2017).
[Crossref]

Li, Z.

Light, P. S.

Likhachev, M.E.

A.V. Gladyshev, A.F. Kosolapov, A.N. Kolyadin, M.S. Astapovich, A.D. Pryamikov, M.E. Likhachev, and I.A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47(12), 1078–1082 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A.A. Krylov, A.D. Pryamikov, A.S. Biriukov, M.E. Likhachev, I.A. Bufetov, and E.M. Dianov, “4.4-µm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138(5), 343–354 (1991).
[Crossref]

J. D. Love, “Spot size, adiabaticity and diffraction in tapered fibres,” Electron. Lett. 23(19), 993–994 (1987).
[Crossref]

Lu, Q.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Marcuse, D.

D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

Mridha, M.

R. Pennetta, S. Xie, F. Lenahan, M. Mridha, D. Novoa, and P. S. J. Russell, “Fresnel-Reflection-Free Self-Aligning Nanospike Interface between a Step-Index Fiber and a Hollow-Core Photonic-Crystal-Fiber Gas Cell,” Phys. Rev. Appl. 8(1), 014014 (2017).
[Crossref]

Nampoothiri, V.

Novoa, D.

R. Pennetta, S. Xie, F. Lenahan, M. Mridha, D. Novoa, and P. S. J. Russell, “Fresnel-Reflection-Free Self-Aligning Nanospike Interface between a Step-Index Fiber and a Hollow-Core Photonic-Crystal-Fiber Gas Cell,” Phys. Rev. Appl. 8(1), 014014 (2017).
[Crossref]

Peng, Z.

Pennetta, R.

R. Pennetta, S. Xie, F. Lenahan, M. Mridha, D. Novoa, and P. S. J. Russell, “Fresnel-Reflection-Free Self-Aligning Nanospike Interface between a Step-Index Fiber and a Hollow-Core Photonic-Crystal-Fiber Gas Cell,” Phys. Rev. Appl. 8(1), 014014 (2017).
[Crossref]

S. Xie, R. Pennetta, and P. S. J. Russell, “Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber,” Optica 3(3), 277–282 (2016).
[Crossref]

Plotnichenko, V. G.

Pryamikov, A. D.

Pryamikov, A.D.

A.V. Gladyshev, A.F. Kosolapov, A.N. Kolyadin, M.S. Astapovich, A.D. Pryamikov, M.E. Likhachev, and I.A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47(12), 1078–1082 (2017).
[Crossref]

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A.A. Krylov, A.D. Pryamikov, A.S. Biriukov, M.E. Likhachev, I.A. Bufetov, and E.M. Dianov, “4.4-µm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

Rao, M. K.

Rao, M.K.

J. H. Chong, M.K. Rao, Y. Zhu, and P. Shum, “An effective splicing method on photonic crystal fiber using CO2 laser,” IEEE Photonics Technol. Lett. 15(7), 942–944 (2003).
[Crossref]

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Rudolph, W.

Russell, P. S.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[Crossref]

Russell, P. S. J.

R. Pennetta, S. Xie, F. Lenahan, M. Mridha, D. Novoa, and P. S. J. Russell, “Fresnel-Reflection-Free Self-Aligning Nanospike Interface between a Step-Index Fiber and a Hollow-Core Photonic-Crystal-Fiber Gas Cell,” Phys. Rev. Appl. 8(1), 014014 (2017).
[Crossref]

S. Xie, R. Pennetta, and P. S. J. Russell, “Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber,” Optica 3(3), 277–282 (2016).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Semjonov, S. L.

Shum, P.

J. H. Chong, M.K. Rao, Y. Zhu, and P. Shum, “An effective splicing method on photonic crystal fiber using CO2 laser,” IEEE Photonics Technol. Lett. 15(7), 942–944 (2003).
[Crossref]

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138(5), 343–354 (1991).
[Crossref]

Tang, N.

Vincetti, L.

Wadsworth, W. J.

Wang, P.

L. Cao, S. Gao, Z. Peng, X. Wang, Y. Wang, and P. Wang, “High peak power 2.8 µm Raman laser in a methane-filled negative-curvature fiber,” Opt. Express 26(5), 5609–5615 (2018).
[Crossref]

S. Gao, Y. Wang, W. Ding, D. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Wang, X.

Wang, Y.

L. Cao, S. Gao, Z. Peng, X. Wang, Y. Wang, and P. Wang, “High peak power 2.8 µm Raman laser in a methane-filled negative-curvature fiber,” Opt. Express 26(5), 5609–5615 (2018).
[Crossref]

S. Gao, Y. Wang, W. Ding, D. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Wang, Z.

Wheeler, N. V.

Wu, W.

Xi, X.

Xie, S.

R. Pennetta, S. Xie, F. Lenahan, M. Mridha, D. Novoa, and P. S. J. Russell, “Fresnel-Reflection-Free Self-Aligning Nanospike Interface between a Step-Index Fiber and a Hollow-Core Photonic-Crystal-Fiber Gas Cell,” Phys. Rev. Appl. 8(1), 014014 (2017).
[Crossref]

S. Xie, R. Pennetta, and P. S. J. Russell, “Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber,” Optica 3(3), 277–282 (2016).
[Crossref]

Xu, M.

Yatsenko, Yu. P.

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A.A. Krylov, A.D. Pryamikov, A.S. Biriukov, M.E. Likhachev, I.A. Bufetov, and E.M. Dianov, “4.4-µm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

Yu, F.

Zhang, X.

S. Gao, Y. Wang, W. Ding, D. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Zhou, Z.

Zhu, Y.

J. H. Chong, M.K. Rao, Y. Zhu, and P. Shum, “An effective splicing method on photonic crystal fiber using CO2 laser,” IEEE Photonics Technol. Lett. 15(7), 942–944 (2003).
[Crossref]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

Electron. Lett. (1)

J. D. Love, “Spot size, adiabaticity and diffraction in tapered fibres,” Electron. Lett. 23(19), 993–994 (1987).
[Crossref]

IEE Proc.-J: Optoelectron. (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices. I. Adiabaticity criteria,” IEE Proc.-J: Optoelectron. 138(5), 343–354 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Yu and J. C. Knight, “Negative Curvature Hollow-Core Optical Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 146–155 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. H. Chong, M.K. Rao, Y. Zhu, and P. Shum, “An effective splicing method on photonic crystal fiber using CO2 laser,” IEEE Photonics Technol. Lett. 15(7), 942–944 (2003).
[Crossref]

Laser Phys. Lett. (1)

Z. Wang, F. Yu, W. J. Wadsworth, and J. C. Knight, “Efficient 1.9 µm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering,” Laser Phys. Lett. 11(10), 105807 (2014).
[Crossref]

Nat. Commun. (1)

S. Gao, Y. Wang, W. Ding, D. Jiang, S. Gu, X. Zhang, and P. Wang, “Hollow-core conjoined-tube negative-curvature fibre with ultralow loss,” Nat. Commun. 9(1), 2828 (2018).
[Crossref]

Nature (1)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[Crossref]

Opt. Express (7)

Opt. Lett. (7)

Optica (2)

Phys. Rev. Appl. (1)

R. Pennetta, S. Xie, F. Lenahan, M. Mridha, D. Novoa, and P. S. J. Russell, “Fresnel-Reflection-Free Self-Aligning Nanospike Interface between a Step-Index Fiber and a Hollow-Core Photonic-Crystal-Fiber Gas Cell,” Phys. Rev. Appl. 8(1), 014014 (2017).
[Crossref]

Quantum Electron. (2)

A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Yu. P. Yatsenko, A. N. Kolyadin, A.A. Krylov, A.D. Pryamikov, A.S. Biriukov, M.E. Likhachev, I.A. Bufetov, and E.M. Dianov, “4.4-µm Raman laser based on hollow-core silica fibre,” Quantum Electron. 47(5), 491–494 (2017).
[Crossref]

A.V. Gladyshev, A.F. Kosolapov, A.N. Kolyadin, M.S. Astapovich, A.D. Pryamikov, M.E. Likhachev, and I.A. Bufetov, “Mid-IR hollow-core silica fibre Raman lasers,” Quantum Electron. 47(12), 1078–1082 (2017).
[Crossref]

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Scheme of tapered single-mode fiber.
Fig. 2.
Fig. 2. Equivalent MFD of tapered fiber changes with waist diameter at different tapering lengths for (a) SMF-28 at 1550 nm and (b) HI-1060 at 1064 nm.
Fig. 3.
Fig. 3. The measured transmission loss of the (a) ice-cream type and (c) node-less type AR-HCF. Inset: Scanning electron micrograph of the HCFs. And the transverse refractive index distribution of the (b) ice-cream type and (d) node-less type AR-HCFs in the simulation model.
Fig. 4.
Fig. 4. The low-loss coupling scheme by simulation.
Fig. 5.
Fig. 5. The simulation results of ice-cream type AR-HCFs. The longitudinal transmission light field changes with the waist diameters of 10, 20, 30, 40 µm (a) at 1064 nm and (b) at 1568 nm. (c) The variation of transverse light field in the HCF in an interference period at 1064 nm.
Fig. 6.
Fig. 6. Coupling efficiency changes with waist diameters of (a) HI-1060 tapered fibers at 1064 nm and (b) SMF-28 tapered fibers at 1568 nm.
Fig. 7.
Fig. 7. Node-less type AR-HCF coupling simulation results. Coupling efficiency changes with waist diameters of (a) HI-1060 tapered fibers at 1064 nm and (b) SMF-28 tapered fibers at 1568 nm.
Fig. 8.
Fig. 8. (a) Light coupling system between AR-HCFs and tapered fibers. (b) Photograph of an AR-HCF (right) inserted by a tapered fiber (left).
Fig. 9.
Fig. 9. Coupling efficiency changes with waist diameters of (a) HI-1060 tapered fibers at 1064 nm and (b) SMF-28 tapered fibers at 1568 nm for ice-cream AR-HCFs. Inset: Output light field from HCF at waist diameter of 40 µm.
Fig. 10.
Fig. 10. Coupling efficiency changes with waist diameters of SMF-28 tapered fibers at 1568 nm for node-less AR-HCFs.
Fig. 11.
Fig. 11. Simulated results of the relative coupling efficiency influenced by the (a) offset and (b) bend of the tapered fibers (HI-1060 and SMF-28) with 40 µm waist diameter inserted into the ice-cream AR-HCF. Inset: the schematic of the bending tapered fiber.

Tables (1)

Tables Icon

Table 1. The parameters of the AR-HCFs used for simulation and experiments

Metrics