Abstract

We demonstrate a new method of cavity-enhanced non-destructive detection of atoms for a strontium optical lattice clock. The detection scheme is shown to be linear in atom number up to at least 2×104 atoms, to reject technical noise sources, to achieve signal to noise ratio close to the photon shot noise limit, to provide spatially uniform atom-cavity coupling, and to minimize inhomogeneous ac Stark shifts. These features enable detection of atoms with minimal perturbation to the atomic state, a critical step towards realizing an ultra-high-stability, quantum-enhanced optical lattice clock.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A superradiant clock laser on a magic wavelength optical lattice

Thomas Maier, Sebastian Kraemer, Laurin Ostermann, and Helmut Ritsch
Opt. Express 22(11) 13269-13279 (2014)

Realization of a timescale with an accurate optical lattice clock

Christian Grebing, Ali Al-Masoudi, Sören Dörscher, Sebastian Häfner, Vladislav Gerginov, Stefan Weyers, Burghard Lipphardt, Fritz Riehle, Uwe Sterr, and Christian Lisdat
Optica 3(6) 563-569 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81(3), 1051–1129 (2009).
    [Crossref]
  2. A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
    [Crossref]
  3. W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
    [Crossref]
  4. X. Wu, F. Zi, J. Dudley, R. J. Bilotta, P. Canoza, and H. Müller, “Multiaxis atom interferometry with a single-diode laser and a pyramidal magneto-optical trap,” Optica 4(12), 1545–1551 (2017).
    [Crossref]
  5. P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
    [Crossref]
  6. G. Rosi, G. D’Amico, L. Cacciapuoti, F. Sorrentino, M. Prevedelli, M. Zych, C. Brukner, and G. M. Tino, “Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states,” Nat. Commun. 8(1), 15529 (2017).
    [Crossref]
  7. V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, and A. C. M. E. Collaboration, “Improved limit on the electric dipole moment of the electron,” Nature 562(7727), 355–360 (2018).
    [Crossref]
  8. C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M. S. Safronova, and S. G. Porsev, “Optical clock comparison for lorentz symmetry testing,” Nature 567(7747), 204–208 (2019).
    [Crossref]
  9. W. Itano, J. Bergquist, J. Bollinger, J. Gilligan, D. Heinzen, F. Moore, M. Raizen, and D. Wineland, “Quantum projection noise: Population fluctuations in two-level systems,” Phys. Rev. A 47(5), 3554–3570 (1993).
    [Crossref]
  10. D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, “Spin squeezing and reduced quantum noise in spectroscopy,” Phys. Rev. A 46(11), R6797–R6800 (1992).
    [Crossref]
  11. O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature 529(7587), 505–508 (2016).
    [Crossref]
  12. K. C. Cox, G. P. Greve, J. M. Weiner, and J. K. Thompson, “Deterministic squeezed states with collective measurements and feedback,” Phys. Rev. Lett. 116(9), 093602 (2016).
    [Crossref]
  13. R. Kohlhaas, A. Bertoldi, E. Cantin, A. Aspect, A. Landragin, and P. Bouyer, “Phase locking a clock oscillator to a coherent atomic ensemble,” Phys. Rev. X 5, 021011 (2015).
    [Crossref]
  14. I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
    [Crossref]
  15. J. Lodewyck, P. G. Westergaard, and P. Lemonde, “Nondestructive measurement of the transition probability in a sr optical lattice clock,” Phys. Rev. A 79(6), 061401 (2009).
    [Crossref]
  16. G. Vallet, E. Bookjans, U. Eismann, S. Bilicki, R. L. Targat, and J. Lodewyck, “A noise-immune cavity-assisted non-destructive detection for an optical lattice clock in the quantum regime,” New J. Phys. 19(8), 083002 (2017).
    [Crossref]
  17. G. Dick, Local oscillator induced instabilities in trapped ion frequency standards, in Precise Time and Time Interval, (Redondo Beach, 1987), pp. 133–147.
  18. P. Westergaard, J. Lodewyck, and P. Lemonde, “Minimizing the Dick effect in an optical lattice clock,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 57(3), 623–628 (2010).
    [Crossref]
  19. H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scr. T76(1), 127 (1998).
    [Crossref]
  20. R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31(2), 97–105 (1983).
    [Crossref]
  21. J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15(1), 6–15 (1998).
    [Crossref]
  22. R. Long, A. K. Tuchman, and M. A. Kasevich, “Multiple frequency modulation for low-light atom measurements in an optical cavity,” Opt. Lett. 32(17), 2502–2504 (2007).
    [Crossref]
  23. J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113(26), 263603 (2014).
    [Crossref]
  24. W. Bowden, R. Hobson, I. R. Hill, A. Vianello, M. Schioppo, A. Silva, H. S. Margolis, P. E. G. Baird, and P. Gill, “A pyramid mot with integrated optical cavities as a cold atom platform for an optical lattice clock,” In preparation.
  25. D. A. Steck, Quantum and Atom Optics (Online, http://steck.us/teaching , 2012).
  26. J. Dalibard and C. Cohen-Tannoudji, “Dressed-atom approach to atomic motion in laser light: the dipole force revisited,” J. Opt. Soc. Am. B 2(11), 1707–1720 (1985).
    [Crossref]
  27. D. Antypas, A. Fabricant, and D. Budker, “Lineshape-asymmetry elimination in weak atomic transitions driven by an intense standing wave field,” Opt. Lett. 43(10), 2241–2243 (2018).
    [Crossref]
  28. S. C. Bennett, “High-precision measurements in atomic cesium supporting a low-energy test of the standard model,” Ph.D. thesis, University of Colorado (1998).
  29. B. Braverman, A. Kawasaki, and V. Vuletić, “Impact of non-unitary spin squeezing on atomic clock performance,” New J. Phys. 20(10), 103019 (2018).
    [Crossref]
  30. M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, “States of an ensemble of two-level atoms with reduced quantum uncertainty,” Phys. Rev. Lett. 104(7), 073604 (2010).
    [Crossref]
  31. A. Louchet-Chauvet, J. Appel, J. J. Renema, D. Oblak, N. Kjaergaard, and E. S. Polzik, “Entanglement-assisted atomic clock beyond the projection noise limit,” New J. Phys. 12(6), 065032 (2010).
    [Crossref]
  32. B. Braverman, A. Kawasaki, E. Pedrozo-Penafiel, S. Colombo, C. Shu, Z. Li, E. Mendez, M. Yamoah, L. Salvi, D. Akamatsu, Y. Xiao, and V. Vuletić, “Near-unitary spin squeezing in $^{171}\mathrm {Yb}$171Yb,” Phys. Rev. Lett. 122(22), 223203 (2019).
    [Crossref]
  33. M. A. Norcia and J. K. Thompson, “Strong coupling on a forbidden transition in strontium and nondestructive atom counting,” Phys. Rev. A 93(2), 023804 (2016).
    [Crossref]
  34. S. Blatt, J. W. Thomsen, G. K. Campbell, A. D. Ludlow, M. D. Swallows, M. J. Martin, M. M. Boyd, and J. Ye, “Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock,” Phys. Rev. A 80(5), 052703 (2009).
    [Crossref]
  35. J. Lodewyck, M. Zawada, L. Lorini, M. Gurov, and P. Lemonde, “Observation and cancellation of a perturbing dc Stark shift in strontium optical lattice clocks,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 59(3), 411–415 (2012).
    [Crossref]

2019 (2)

C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M. S. Safronova, and S. G. Porsev, “Optical clock comparison for lorentz symmetry testing,” Nature 567(7747), 204–208 (2019).
[Crossref]

B. Braverman, A. Kawasaki, E. Pedrozo-Penafiel, S. Colombo, C. Shu, Z. Li, E. Mendez, M. Yamoah, L. Salvi, D. Akamatsu, Y. Xiao, and V. Vuletić, “Near-unitary spin squeezing in $^{171}\mathrm {Yb}$171Yb,” Phys. Rev. Lett. 122(22), 223203 (2019).
[Crossref]

2018 (4)

V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, and A. C. M. E. Collaboration, “Improved limit on the electric dipole moment of the electron,” Nature 562(7727), 355–360 (2018).
[Crossref]

D. Antypas, A. Fabricant, and D. Budker, “Lineshape-asymmetry elimination in weak atomic transitions driven by an intense standing wave field,” Opt. Lett. 43(10), 2241–2243 (2018).
[Crossref]

B. Braverman, A. Kawasaki, and V. Vuletić, “Impact of non-unitary spin squeezing on atomic clock performance,” New J. Phys. 20(10), 103019 (2018).
[Crossref]

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

2017 (4)

X. Wu, F. Zi, J. Dudley, R. J. Bilotta, P. Canoza, and H. Müller, “Multiaxis atom interferometry with a single-diode laser and a pyramidal magneto-optical trap,” Optica 4(12), 1545–1551 (2017).
[Crossref]

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

G. Rosi, G. D’Amico, L. Cacciapuoti, F. Sorrentino, M. Prevedelli, M. Zych, C. Brukner, and G. M. Tino, “Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states,” Nat. Commun. 8(1), 15529 (2017).
[Crossref]

G. Vallet, E. Bookjans, U. Eismann, S. Bilicki, R. L. Targat, and J. Lodewyck, “A noise-immune cavity-assisted non-destructive detection for an optical lattice clock in the quantum regime,” New J. Phys. 19(8), 083002 (2017).
[Crossref]

2016 (3)

O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature 529(7587), 505–508 (2016).
[Crossref]

K. C. Cox, G. P. Greve, J. M. Weiner, and J. K. Thompson, “Deterministic squeezed states with collective measurements and feedback,” Phys. Rev. Lett. 116(9), 093602 (2016).
[Crossref]

M. A. Norcia and J. K. Thompson, “Strong coupling on a forbidden transition in strontium and nondestructive atom counting,” Phys. Rev. A 93(2), 023804 (2016).
[Crossref]

2015 (3)

R. Kohlhaas, A. Bertoldi, E. Cantin, A. Aspect, A. Landragin, and P. Bouyer, “Phase locking a clock oscillator to a coherent atomic ensemble,” Phys. Rev. X 5, 021011 (2015).
[Crossref]

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

2014 (1)

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113(26), 263603 (2014).
[Crossref]

2012 (1)

J. Lodewyck, M. Zawada, L. Lorini, M. Gurov, and P. Lemonde, “Observation and cancellation of a perturbing dc Stark shift in strontium optical lattice clocks,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 59(3), 411–415 (2012).
[Crossref]

2010 (3)

M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, “States of an ensemble of two-level atoms with reduced quantum uncertainty,” Phys. Rev. Lett. 104(7), 073604 (2010).
[Crossref]

A. Louchet-Chauvet, J. Appel, J. J. Renema, D. Oblak, N. Kjaergaard, and E. S. Polzik, “Entanglement-assisted atomic clock beyond the projection noise limit,” New J. Phys. 12(6), 065032 (2010).
[Crossref]

P. Westergaard, J. Lodewyck, and P. Lemonde, “Minimizing the Dick effect in an optical lattice clock,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 57(3), 623–628 (2010).
[Crossref]

2009 (3)

J. Lodewyck, P. G. Westergaard, and P. Lemonde, “Nondestructive measurement of the transition probability in a sr optical lattice clock,” Phys. Rev. A 79(6), 061401 (2009).
[Crossref]

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81(3), 1051–1129 (2009).
[Crossref]

S. Blatt, J. W. Thomsen, G. K. Campbell, A. D. Ludlow, M. D. Swallows, M. J. Martin, M. M. Boyd, and J. Ye, “Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock,” Phys. Rev. A 80(5), 052703 (2009).
[Crossref]

2007 (1)

1998 (2)

1993 (1)

W. Itano, J. Bergquist, J. Bollinger, J. Gilligan, D. Heinzen, F. Moore, M. Raizen, and D. Wineland, “Quantum projection noise: Population fluctuations in two-level systems,” Phys. Rev. A 47(5), 3554–3570 (1993).
[Crossref]

1992 (1)

D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, “Spin squeezing and reduced quantum noise in spectroscopy,” Phys. Rev. A 46(11), R6797–R6800 (1992).
[Crossref]

1985 (1)

1983 (1)

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31(2), 97–105 (1983).
[Crossref]

Akamatsu, D.

B. Braverman, A. Kawasaki, E. Pedrozo-Penafiel, S. Colombo, C. Shu, Z. Li, E. Mendez, M. Yamoah, L. Salvi, D. Akamatsu, Y. Xiao, and V. Vuletić, “Near-unitary spin squeezing in $^{171}\mathrm {Yb}$171Yb,” Phys. Rev. Lett. 122(22), 223203 (2019).
[Crossref]

Al-Masoudi, A.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Amy-Klein, A.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Andreev, V.

V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, and A. C. M. E. Collaboration, “Improved limit on the electric dipole moment of the electron,” Nature 562(7727), 355–360 (2018).
[Crossref]

Ang, D. G.

V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, and A. C. M. E. Collaboration, “Improved limit on the electric dipole moment of the electron,” Nature 562(7727), 355–360 (2018).
[Crossref]

Antypas, D.

Appel, J.

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113(26), 263603 (2014).
[Crossref]

A. Louchet-Chauvet, J. Appel, J. J. Renema, D. Oblak, N. Kjaergaard, and E. S. Polzik, “Entanglement-assisted atomic clock beyond the projection noise limit,” New J. Phys. 12(6), 065032 (2010).
[Crossref]

Aspect, A.

R. Kohlhaas, A. Bertoldi, E. Cantin, A. Aspect, A. Landragin, and P. Bouyer, “Phase locking a clock oscillator to a coherent atomic ensemble,” Phys. Rev. X 5, 021011 (2015).
[Crossref]

Baird, P. E. G.

W. Bowden, R. Hobson, I. R. Hill, A. Vianello, M. Schioppo, A. Silva, H. S. Margolis, P. E. G. Baird, and P. Gill, “A pyramid mot with integrated optical cavities as a cold atom platform for an optical lattice clock,” In preparation.

Baynes, F. N.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Béguin, J.-B.

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113(26), 263603 (2014).
[Crossref]

Beloy, K.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Bennett, S. C.

S. C. Bennett, “High-precision measurements in atomic cesium supporting a low-energy test of the standard model,” Ph.D. thesis, University of Colorado (1998).

Bergquist, J.

W. Itano, J. Bergquist, J. Bollinger, J. Gilligan, D. Heinzen, F. Moore, M. Raizen, and D. Wineland, “Quantum projection noise: Population fluctuations in two-level systems,” Phys. Rev. A 47(5), 3554–3570 (1993).
[Crossref]

Bertoldi, A.

R. Kohlhaas, A. Bertoldi, E. Cantin, A. Aspect, A. Landragin, and P. Bouyer, “Phase locking a clock oscillator to a coherent atomic ensemble,” Phys. Rev. X 5, 021011 (2015).
[Crossref]

Bilicki, S.

G. Vallet, E. Bookjans, U. Eismann, S. Bilicki, R. L. Targat, and J. Lodewyck, “A noise-immune cavity-assisted non-destructive detection for an optical lattice clock in the quantum regime,” New J. Phys. 19(8), 083002 (2017).
[Crossref]

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Bilotta, R. J.

Blatt, S.

S. Blatt, J. W. Thomsen, G. K. Campbell, A. D. Ludlow, M. D. Swallows, M. J. Martin, M. M. Boyd, and J. Ye, “Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock,” Phys. Rev. A 80(5), 052703 (2009).
[Crossref]

Bollinger, J.

W. Itano, J. Bergquist, J. Bollinger, J. Gilligan, D. Heinzen, F. Moore, M. Raizen, and D. Wineland, “Quantum projection noise: Population fluctuations in two-level systems,” Phys. Rev. A 47(5), 3554–3570 (1993).
[Crossref]

Bollinger, J. J.

D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, “Spin squeezing and reduced quantum noise in spectroscopy,” Phys. Rev. A 46(11), R6797–R6800 (1992).
[Crossref]

Bookjans, E.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

G. Vallet, E. Bookjans, U. Eismann, S. Bilicki, R. L. Targat, and J. Lodewyck, “A noise-immune cavity-assisted non-destructive detection for an optical lattice clock in the quantum regime,” New J. Phys. 19(8), 083002 (2017).
[Crossref]

Bookjans, E. M.

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113(26), 263603 (2014).
[Crossref]

Bouyer, P.

R. Kohlhaas, A. Bertoldi, E. Cantin, A. Aspect, A. Landragin, and P. Bouyer, “Phase locking a clock oscillator to a coherent atomic ensemble,” Phys. Rev. X 5, 021011 (2015).
[Crossref]

Bowden, W.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

W. Bowden, R. Hobson, I. R. Hill, A. Vianello, M. Schioppo, A. Silva, H. S. Margolis, P. E. G. Baird, and P. Gill, “A pyramid mot with integrated optical cavities as a cold atom platform for an optical lattice clock,” In preparation.

Boyd, M. M.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

S. Blatt, J. W. Thomsen, G. K. Campbell, A. D. Ludlow, M. D. Swallows, M. J. Martin, M. M. Boyd, and J. Ye, “Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock,” Phys. Rev. A 80(5), 052703 (2009).
[Crossref]

Braverman, B.

B. Braverman, A. Kawasaki, E. Pedrozo-Penafiel, S. Colombo, C. Shu, Z. Li, E. Mendez, M. Yamoah, L. Salvi, D. Akamatsu, Y. Xiao, and V. Vuletić, “Near-unitary spin squeezing in $^{171}\mathrm {Yb}$171Yb,” Phys. Rev. Lett. 122(22), 223203 (2019).
[Crossref]

B. Braverman, A. Kawasaki, and V. Vuletić, “Impact of non-unitary spin squeezing on atomic clock performance,” New J. Phys. 20(10), 103019 (2018).
[Crossref]

Brown, R. C.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Brukner, C.

G. Rosi, G. D’Amico, L. Cacciapuoti, F. Sorrentino, M. Prevedelli, M. Zych, C. Brukner, and G. M. Tino, “Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states,” Nat. Commun. 8(1), 15529 (2017).
[Crossref]

Budker, D.

Cacciapuoti, L.

G. Rosi, G. D’Amico, L. Cacciapuoti, F. Sorrentino, M. Prevedelli, M. Zych, C. Brukner, and G. M. Tino, “Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states,” Nat. Commun. 8(1), 15529 (2017).
[Crossref]

Campbell, G. K.

S. Blatt, J. W. Thomsen, G. K. Campbell, A. D. Ludlow, M. D. Swallows, M. J. Martin, M. M. Boyd, and J. Ye, “Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock,” Phys. Rev. A 80(5), 052703 (2009).
[Crossref]

Canoza, P.

Cantin, E.

R. Kohlhaas, A. Bertoldi, E. Cantin, A. Aspect, A. Landragin, and P. Bouyer, “Phase locking a clock oscillator to a coherent atomic ensemble,” Phys. Rev. X 5, 021011 (2015).
[Crossref]

Christensen, S. L.

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113(26), 263603 (2014).
[Crossref]

Cohen-Tannoudji, C.

Colombo, S.

B. Braverman, A. Kawasaki, E. Pedrozo-Penafiel, S. Colombo, C. Shu, Z. Li, E. Mendez, M. Yamoah, L. Salvi, D. Akamatsu, Y. Xiao, and V. Vuletić, “Near-unitary spin squeezing in $^{171}\mathrm {Yb}$171Yb,” Phys. Rev. Lett. 122(22), 223203 (2019).
[Crossref]

Cox, K. C.

K. C. Cox, G. P. Greve, J. M. Weiner, and J. K. Thompson, “Deterministic squeezed states with collective measurements and feedback,” Phys. Rev. Lett. 116(9), 093602 (2016).
[Crossref]

Cronin, A. D.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81(3), 1051–1129 (2009).
[Crossref]

D’Amico, G.

G. Rosi, G. D’Amico, L. Cacciapuoti, F. Sorrentino, M. Prevedelli, M. Zych, C. Brukner, and G. M. Tino, “Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states,” Nat. Commun. 8(1), 15529 (2017).
[Crossref]

Dalibard, J.

Das, M.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Delva, P.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

DeMille, D.

V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, and A. C. M. E. Collaboration, “Improved limit on the electric dipole moment of the electron,” Nature 562(7727), 355–360 (2018).
[Crossref]

Dick, G.

G. Dick, Local oscillator induced instabilities in trapped ion frequency standards, in Precise Time and Time Interval, (Redondo Beach, 1987), pp. 133–147.

Dörscher, S.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Doyle, J. M.

V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, and A. C. M. E. Collaboration, “Improved limit on the electric dipole moment of the electron,” Nature 562(7727), 355–360 (2018).
[Crossref]

Drever, R.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31(2), 97–105 (1983).
[Crossref]

Dudley, J.

E. Collaboration, A. C. M.

V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, and A. C. M. E. Collaboration, “Improved limit on the electric dipole moment of the electron,” Nature 562(7727), 355–360 (2018).
[Crossref]

Eismann, U.

G. Vallet, E. Bookjans, U. Eismann, S. Bilicki, R. L. Targat, and J. Lodewyck, “A noise-immune cavity-assisted non-destructive detection for an optical lattice clock in the quantum regime,” New J. Phys. 19(8), 083002 (2017).
[Crossref]

Engelsen, N. J.

O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature 529(7587), 505–508 (2016).
[Crossref]

Fabricant, A.

Fasano, R. J.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Ford, G.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31(2), 97–105 (1983).
[Crossref]

Gabrielse, G.

V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, and A. C. M. E. Collaboration, “Improved limit on the electric dipole moment of the electron,” Nature 562(7727), 355–360 (2018).
[Crossref]

Gill, P.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

W. Bowden, R. Hobson, I. R. Hill, A. Vianello, M. Schioppo, A. Silva, H. S. Margolis, P. E. G. Baird, and P. Gill, “A pyramid mot with integrated optical cavities as a cold atom platform for an optical lattice clock,” In preparation.

Gilligan, J.

W. Itano, J. Bergquist, J. Bollinger, J. Gilligan, D. Heinzen, F. Moore, M. Raizen, and D. Wineland, “Quantum projection noise: Population fluctuations in two-level systems,” Phys. Rev. A 47(5), 3554–3570 (1993).
[Crossref]

Grebing, C.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Greve, G. P.

K. C. Cox, G. P. Greve, J. M. Weiner, and J. K. Thompson, “Deterministic squeezed states with collective measurements and feedback,” Phys. Rev. Lett. 116(9), 093602 (2016).
[Crossref]

Grosche, G.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Guerlin, C.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Gurov, M.

J. Lodewyck, M. Zawada, L. Lorini, M. Gurov, and P. Lemonde, “Observation and cancellation of a perturbing dc Stark shift in strontium optical lattice clocks,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 59(3), 411–415 (2012).
[Crossref]

Haefner, J.

V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, and A. C. M. E. Collaboration, “Improved limit on the electric dipole moment of the electron,” Nature 562(7727), 355–360 (2018).
[Crossref]

Hall, J.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31(2), 97–105 (1983).
[Crossref]

Hall, J. L.

Heinzen, D.

W. Itano, J. Bergquist, J. Bollinger, J. Gilligan, D. Heinzen, F. Moore, M. Raizen, and D. Wineland, “Quantum projection noise: Population fluctuations in two-level systems,” Phys. Rev. A 47(5), 3554–3570 (1993).
[Crossref]

Heinzen, D. J.

D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, “Spin squeezing and reduced quantum noise in spectroscopy,” Phys. Rev. A 46(11), R6797–R6800 (1992).
[Crossref]

Hill, I. R.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

W. Bowden, R. Hobson, I. R. Hill, A. Vianello, M. Schioppo, A. Silva, H. S. Margolis, P. E. G. Baird, and P. Gill, “A pyramid mot with integrated optical cavities as a cold atom platform for an optical lattice clock,” In preparation.

Hinkley, N.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Hobson, R.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

W. Bowden, R. Hobson, I. R. Hill, A. Vianello, M. Schioppo, A. Silva, H. S. Margolis, P. E. G. Baird, and P. Gill, “A pyramid mot with integrated optical cavities as a cold atom platform for an optical lattice clock,” In preparation.

Hosten, O.

O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature 529(7587), 505–508 (2016).
[Crossref]

Hough, J.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31(2), 97–105 (1983).
[Crossref]

Huntemann, N.

C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M. S. Safronova, and S. G. Porsev, “Optical clock comparison for lorentz symmetry testing,” Nature 567(7747), 204–208 (2019).
[Crossref]

Hutzler, N. R.

V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, and A. C. M. E. Collaboration, “Improved limit on the electric dipole moment of the electron,” Nature 562(7727), 355–360 (2018).
[Crossref]

Itano, W.

W. Itano, J. Bergquist, J. Bollinger, J. Gilligan, D. Heinzen, F. Moore, M. Raizen, and D. Wineland, “Quantum projection noise: Population fluctuations in two-level systems,” Phys. Rev. A 47(5), 3554–3570 (1993).
[Crossref]

Itano, W. M.

D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, “Spin squeezing and reduced quantum noise in spectroscopy,” Phys. Rev. A 46(11), R6797–R6800 (1992).
[Crossref]

Kasevich, M. A.

O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature 529(7587), 505–508 (2016).
[Crossref]

R. Long, A. K. Tuchman, and M. A. Kasevich, “Multiple frequency modulation for low-light atom measurements in an optical cavity,” Opt. Lett. 32(17), 2502–2504 (2007).
[Crossref]

Katori, H.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Kawasaki, A.

B. Braverman, A. Kawasaki, E. Pedrozo-Penafiel, S. Colombo, C. Shu, Z. Li, E. Mendez, M. Yamoah, L. Salvi, D. Akamatsu, Y. Xiao, and V. Vuletić, “Near-unitary spin squeezing in $^{171}\mathrm {Yb}$171Yb,” Phys. Rev. Lett. 122(22), 223203 (2019).
[Crossref]

B. Braverman, A. Kawasaki, and V. Vuletić, “Impact of non-unitary spin squeezing on atomic clock performance,” New J. Phys. 20(10), 103019 (2018).
[Crossref]

Kimble, H. J.

H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scr. T76(1), 127 (1998).
[Crossref]

Kjaergaard, N.

A. Louchet-Chauvet, J. Appel, J. J. Renema, D. Oblak, N. Kjaergaard, and E. S. Polzik, “Entanglement-assisted atomic clock beyond the projection noise limit,” New J. Phys. 12(6), 065032 (2010).
[Crossref]

Kohlhaas, R.

R. Kohlhaas, A. Bertoldi, E. Cantin, A. Aspect, A. Landragin, and P. Bouyer, “Phase locking a clock oscillator to a coherent atomic ensemble,” Phys. Rev. X 5, 021011 (2015).
[Crossref]

Kowalski, F.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31(2), 97–105 (1983).
[Crossref]

Krishnakumar, R.

O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature 529(7587), 505–508 (2016).
[Crossref]

Kronjäger, J.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Kuhl, A.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Landragin, A.

R. Kohlhaas, A. Bertoldi, E. Cantin, A. Aspect, A. Landragin, and P. Bouyer, “Phase locking a clock oscillator to a coherent atomic ensemble,” Phys. Rev. X 5, 021011 (2015).
[Crossref]

Lange, R.

C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M. S. Safronova, and S. G. Porsev, “Optical clock comparison for lorentz symmetry testing,” Nature 567(7747), 204–208 (2019).
[Crossref]

Lasner, Z.

V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, and A. C. M. E. Collaboration, “Improved limit on the electric dipole moment of the electron,” Nature 562(7727), 355–360 (2018).
[Crossref]

Le Poncin-Lafitte, C.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Le Targat, R.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Lee, W.-K.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Lemonde, P.

J. Lodewyck, M. Zawada, L. Lorini, M. Gurov, and P. Lemonde, “Observation and cancellation of a perturbing dc Stark shift in strontium optical lattice clocks,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 59(3), 411–415 (2012).
[Crossref]

P. Westergaard, J. Lodewyck, and P. Lemonde, “Minimizing the Dick effect in an optical lattice clock,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 57(3), 623–628 (2010).
[Crossref]

J. Lodewyck, P. G. Westergaard, and P. Lemonde, “Nondestructive measurement of the transition probability in a sr optical lattice clock,” Phys. Rev. A 79(6), 061401 (2009).
[Crossref]

Leroux, I. D.

M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, “States of an ensemble of two-level atoms with reduced quantum uncertainty,” Phys. Rev. Lett. 104(7), 073604 (2010).
[Crossref]

Li, Z.

B. Braverman, A. Kawasaki, E. Pedrozo-Penafiel, S. Colombo, C. Shu, Z. Li, E. Mendez, M. Yamoah, L. Salvi, D. Akamatsu, Y. Xiao, and V. Vuletić, “Near-unitary spin squeezing in $^{171}\mathrm {Yb}$171Yb,” Phys. Rev. Lett. 122(22), 223203 (2019).
[Crossref]

Lisdat, C.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Lodewyck, J.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

G. Vallet, E. Bookjans, U. Eismann, S. Bilicki, R. L. Targat, and J. Lodewyck, “A noise-immune cavity-assisted non-destructive detection for an optical lattice clock in the quantum regime,” New J. Phys. 19(8), 083002 (2017).
[Crossref]

J. Lodewyck, M. Zawada, L. Lorini, M. Gurov, and P. Lemonde, “Observation and cancellation of a perturbing dc Stark shift in strontium optical lattice clocks,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 59(3), 411–415 (2012).
[Crossref]

P. Westergaard, J. Lodewyck, and P. Lemonde, “Minimizing the Dick effect in an optical lattice clock,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 57(3), 623–628 (2010).
[Crossref]

J. Lodewyck, P. G. Westergaard, and P. Lemonde, “Nondestructive measurement of the transition probability in a sr optical lattice clock,” Phys. Rev. A 79(6), 061401 (2009).
[Crossref]

Long, R.

Lopez, O.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Lorini, L.

J. Lodewyck, M. Zawada, L. Lorini, M. Gurov, and P. Lemonde, “Observation and cancellation of a perturbing dc Stark shift in strontium optical lattice clocks,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 59(3), 411–415 (2012).
[Crossref]

Louchet-Chauvet, A.

A. Louchet-Chauvet, J. Appel, J. J. Renema, D. Oblak, N. Kjaergaard, and E. S. Polzik, “Entanglement-assisted atomic clock beyond the projection noise limit,” New J. Phys. 12(6), 065032 (2010).
[Crossref]

Ludlow, A. D.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

S. Blatt, J. W. Thomsen, G. K. Campbell, A. D. Ludlow, M. D. Swallows, M. J. Martin, M. M. Boyd, and J. Ye, “Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock,” Phys. Rev. A 80(5), 052703 (2009).
[Crossref]

Ma, L.-S.

Margolis, H. S.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

W. Bowden, R. Hobson, I. R. Hill, A. Vianello, M. Schioppo, A. Silva, H. S. Margolis, P. E. G. Baird, and P. Gill, “A pyramid mot with integrated optical cavities as a cold atom platform for an optical lattice clock,” In preparation.

Marra, G.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Martin, M. J.

S. Blatt, J. W. Thomsen, G. K. Campbell, A. D. Ludlow, M. D. Swallows, M. J. Martin, M. M. Boyd, and J. Ye, “Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock,” Phys. Rev. A 80(5), 052703 (2009).
[Crossref]

McGrew, W. F.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Meisenhelder, C.

V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, and A. C. M. E. Collaboration, “Improved limit on the electric dipole moment of the electron,” Nature 562(7727), 355–360 (2018).
[Crossref]

Mendez, E.

B. Braverman, A. Kawasaki, E. Pedrozo-Penafiel, S. Colombo, C. Shu, Z. Li, E. Mendez, M. Yamoah, L. Salvi, D. Akamatsu, Y. Xiao, and V. Vuletić, “Near-unitary spin squeezing in $^{171}\mathrm {Yb}$171Yb,” Phys. Rev. Lett. 122(22), 223203 (2019).
[Crossref]

Meynadier, F.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Milani, G.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Moore, F.

W. Itano, J. Bergquist, J. Bollinger, J. Gilligan, D. Heinzen, F. Moore, M. Raizen, and D. Wineland, “Quantum projection noise: Population fluctuations in two-level systems,” Phys. Rev. A 47(5), 3554–3570 (1993).
[Crossref]

Moore, F. L.

D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, “Spin squeezing and reduced quantum noise in spectroscopy,” Phys. Rev. A 46(11), R6797–R6800 (1992).
[Crossref]

Müller, H.

Müller, J. H.

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113(26), 263603 (2014).
[Crossref]

Munley, A.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31(2), 97–105 (1983).
[Crossref]

Nicolodi, D.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Norcia, M. A.

M. A. Norcia and J. K. Thompson, “Strong coupling on a forbidden transition in strontium and nondestructive atom counting,” Phys. Rev. A 93(2), 023804 (2016).
[Crossref]

O’Leary, B. R.

V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, and A. C. M. E. Collaboration, “Improved limit on the electric dipole moment of the electron,” Nature 562(7727), 355–360 (2018).
[Crossref]

Oblak, D.

A. Louchet-Chauvet, J. Appel, J. J. Renema, D. Oblak, N. Kjaergaard, and E. S. Polzik, “Entanglement-assisted atomic clock beyond the projection noise limit,” New J. Phys. 12(6), 065032 (2010).
[Crossref]

Ohkubo, T.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Panda, C. D.

V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, and A. C. M. E. Collaboration, “Improved limit on the electric dipole moment of the electron,” Nature 562(7727), 355–360 (2018).
[Crossref]

Pedrozo-Penafiel, E.

B. Braverman, A. Kawasaki, E. Pedrozo-Penafiel, S. Colombo, C. Shu, Z. Li, E. Mendez, M. Yamoah, L. Salvi, D. Akamatsu, Y. Xiao, and V. Vuletić, “Near-unitary spin squeezing in $^{171}\mathrm {Yb}$171Yb,” Phys. Rev. Lett. 122(22), 223203 (2019).
[Crossref]

Peik, E.

C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M. S. Safronova, and S. G. Porsev, “Optical clock comparison for lorentz symmetry testing,” Nature 567(7747), 204–208 (2019).
[Crossref]

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

Polzik, E. S.

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113(26), 263603 (2014).
[Crossref]

A. Louchet-Chauvet, J. Appel, J. J. Renema, D. Oblak, N. Kjaergaard, and E. S. Polzik, “Entanglement-assisted atomic clock beyond the projection noise limit,” New J. Phys. 12(6), 065032 (2010).
[Crossref]

Porsev, S. G.

C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M. S. Safronova, and S. G. Porsev, “Optical clock comparison for lorentz symmetry testing,” Nature 567(7747), 204–208 (2019).
[Crossref]

Pottie, P.-E.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Prevedelli, M.

G. Rosi, G. D’Amico, L. Cacciapuoti, F. Sorrentino, M. Prevedelli, M. Zych, C. Brukner, and G. M. Tino, “Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states,” Nat. Commun. 8(1), 15529 (2017).
[Crossref]

Pritchard, D. E.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81(3), 1051–1129 (2009).
[Crossref]

Quintin, N.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Raizen, M.

W. Itano, J. Bergquist, J. Bollinger, J. Gilligan, D. Heinzen, F. Moore, M. Raizen, and D. Wineland, “Quantum projection noise: Population fluctuations in two-level systems,” Phys. Rev. A 47(5), 3554–3570 (1993).
[Crossref]

Raupach, S.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Renema, J. J.

A. Louchet-Chauvet, J. Appel, J. J. Renema, D. Oblak, N. Kjaergaard, and E. S. Polzik, “Entanglement-assisted atomic clock beyond the projection noise limit,” New J. Phys. 12(6), 065032 (2010).
[Crossref]

Rolland, A.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Rosi, G.

G. Rosi, G. D’Amico, L. Cacciapuoti, F. Sorrentino, M. Prevedelli, M. Zych, C. Brukner, and G. M. Tino, “Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states,” Nat. Commun. 8(1), 15529 (2017).
[Crossref]

Safronova, M. S.

C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M. S. Safronova, and S. G. Porsev, “Optical clock comparison for lorentz symmetry testing,” Nature 567(7747), 204–208 (2019).
[Crossref]

Salvi, L.

B. Braverman, A. Kawasaki, E. Pedrozo-Penafiel, S. Colombo, C. Shu, Z. Li, E. Mendez, M. Yamoah, L. Salvi, D. Akamatsu, Y. Xiao, and V. Vuletić, “Near-unitary spin squeezing in $^{171}\mathrm {Yb}$171Yb,” Phys. Rev. Lett. 122(22), 223203 (2019).
[Crossref]

Sanner, C.

C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M. S. Safronova, and S. G. Porsev, “Optical clock comparison for lorentz symmetry testing,” Nature 567(7747), 204–208 (2019).
[Crossref]

Schäffer, S. A.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Schioppo, M.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

W. Bowden, R. Hobson, I. R. Hill, A. Vianello, M. Schioppo, A. Silva, H. S. Margolis, P. E. G. Baird, and P. Gill, “A pyramid mot with integrated optical cavities as a cold atom platform for an optical lattice clock,” In preparation.

Schleier-Smith, M. H.

M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, “States of an ensemble of two-level atoms with reduced quantum uncertainty,” Phys. Rev. Lett. 104(7), 073604 (2010).
[Crossref]

Schmidt, P. O.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

Schmiedmayer, J.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81(3), 1051–1129 (2009).
[Crossref]

Shu, C.

B. Braverman, A. Kawasaki, E. Pedrozo-Penafiel, S. Colombo, C. Shu, Z. Li, E. Mendez, M. Yamoah, L. Salvi, D. Akamatsu, Y. Xiao, and V. Vuletić, “Near-unitary spin squeezing in $^{171}\mathrm {Yb}$171Yb,” Phys. Rev. Lett. 122(22), 223203 (2019).
[Crossref]

Silva, A.

W. Bowden, R. Hobson, I. R. Hill, A. Vianello, M. Schioppo, A. Silva, H. S. Margolis, P. E. G. Baird, and P. Gill, “A pyramid mot with integrated optical cavities as a cold atom platform for an optical lattice clock,” In preparation.

Sørensen, H. L.

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113(26), 263603 (2014).
[Crossref]

Sorrentino, F.

G. Rosi, G. D’Amico, L. Cacciapuoti, F. Sorrentino, M. Prevedelli, M. Zych, C. Brukner, and G. M. Tino, “Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states,” Nat. Commun. 8(1), 15529 (2017).
[Crossref]

Steck, D. A.

D. A. Steck, Quantum and Atom Optics (Online, http://steck.us/teaching , 2012).

Sterr, U.

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Swallows, M. D.

S. Blatt, J. W. Thomsen, G. K. Campbell, A. D. Ludlow, M. D. Swallows, M. J. Martin, M. M. Boyd, and J. Ye, “Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock,” Phys. Rev. A 80(5), 052703 (2009).
[Crossref]

Takamoto, M.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Tamm, C.

C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M. S. Safronova, and S. G. Porsev, “Optical clock comparison for lorentz symmetry testing,” Nature 567(7747), 204–208 (2019).
[Crossref]

Targat, R. L.

G. Vallet, E. Bookjans, U. Eismann, S. Bilicki, R. L. Targat, and J. Lodewyck, “A noise-immune cavity-assisted non-destructive detection for an optical lattice clock in the quantum regime,” New J. Phys. 19(8), 083002 (2017).
[Crossref]

Thompson, J. K.

K. C. Cox, G. P. Greve, J. M. Weiner, and J. K. Thompson, “Deterministic squeezed states with collective measurements and feedback,” Phys. Rev. Lett. 116(9), 093602 (2016).
[Crossref]

M. A. Norcia and J. K. Thompson, “Strong coupling on a forbidden transition in strontium and nondestructive atom counting,” Phys. Rev. A 93(2), 023804 (2016).
[Crossref]

Thomsen, J. W.

S. Blatt, J. W. Thomsen, G. K. Campbell, A. D. Ludlow, M. D. Swallows, M. J. Martin, M. M. Boyd, and J. Ye, “Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock,” Phys. Rev. A 80(5), 052703 (2009).
[Crossref]

Tino, G. M.

G. Rosi, G. D’Amico, L. Cacciapuoti, F. Sorrentino, M. Prevedelli, M. Zych, C. Brukner, and G. M. Tino, “Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states,” Nat. Commun. 8(1), 15529 (2017).
[Crossref]

Tuchman, A. K.

Ushijima, I.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Vallet, G.

G. Vallet, E. Bookjans, U. Eismann, S. Bilicki, R. L. Targat, and J. Lodewyck, “A noise-immune cavity-assisted non-destructive detection for an optical lattice clock in the quantum regime,” New J. Phys. 19(8), 083002 (2017).
[Crossref]

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Vianello, A.

W. Bowden, R. Hobson, I. R. Hill, A. Vianello, M. Schioppo, A. Silva, H. S. Margolis, P. E. G. Baird, and P. Gill, “A pyramid mot with integrated optical cavities as a cold atom platform for an optical lattice clock,” In preparation.

Vuletic, V.

B. Braverman, A. Kawasaki, E. Pedrozo-Penafiel, S. Colombo, C. Shu, Z. Li, E. Mendez, M. Yamoah, L. Salvi, D. Akamatsu, Y. Xiao, and V. Vuletić, “Near-unitary spin squeezing in $^{171}\mathrm {Yb}$171Yb,” Phys. Rev. Lett. 122(22), 223203 (2019).
[Crossref]

B. Braverman, A. Kawasaki, and V. Vuletić, “Impact of non-unitary spin squeezing on atomic clock performance,” New J. Phys. 20(10), 103019 (2018).
[Crossref]

M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, “States of an ensemble of two-level atoms with reduced quantum uncertainty,” Phys. Rev. Lett. 104(7), 073604 (2010).
[Crossref]

Ward, H.

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31(2), 97–105 (1983).
[Crossref]

Weiner, J. M.

K. C. Cox, G. P. Greve, J. M. Weiner, and J. K. Thompson, “Deterministic squeezed states with collective measurements and feedback,” Phys. Rev. Lett. 116(9), 093602 (2016).
[Crossref]

West, A. D.

V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, and A. C. M. E. Collaboration, “Improved limit on the electric dipole moment of the electron,” Nature 562(7727), 355–360 (2018).
[Crossref]

West, E. P.

V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, and A. C. M. E. Collaboration, “Improved limit on the electric dipole moment of the electron,” Nature 562(7727), 355–360 (2018).
[Crossref]

Westergaard, P.

P. Westergaard, J. Lodewyck, and P. Lemonde, “Minimizing the Dick effect in an optical lattice clock,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 57(3), 623–628 (2010).
[Crossref]

Westergaard, P. G.

J. Lodewyck, P. G. Westergaard, and P. Lemonde, “Nondestructive measurement of the transition probability in a sr optical lattice clock,” Phys. Rev. A 79(6), 061401 (2009).
[Crossref]

Wineland, D.

W. Itano, J. Bergquist, J. Bollinger, J. Gilligan, D. Heinzen, F. Moore, M. Raizen, and D. Wineland, “Quantum projection noise: Population fluctuations in two-level systems,” Phys. Rev. A 47(5), 3554–3570 (1993).
[Crossref]

Wineland, D. J.

D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, “Spin squeezing and reduced quantum noise in spectroscopy,” Phys. Rev. A 46(11), R6797–R6800 (1992).
[Crossref]

Wu, X.

V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, and A. C. M. E. Collaboration, “Improved limit on the electric dipole moment of the electron,” Nature 562(7727), 355–360 (2018).
[Crossref]

X. Wu, F. Zi, J. Dudley, R. J. Bilotta, P. Canoza, and H. Müller, “Multiaxis atom interferometry with a single-diode laser and a pyramidal magneto-optical trap,” Optica 4(12), 1545–1551 (2017).
[Crossref]

Xiao, Y.

B. Braverman, A. Kawasaki, E. Pedrozo-Penafiel, S. Colombo, C. Shu, Z. Li, E. Mendez, M. Yamoah, L. Salvi, D. Akamatsu, Y. Xiao, and V. Vuletić, “Near-unitary spin squeezing in $^{171}\mathrm {Yb}$171Yb,” Phys. Rev. Lett. 122(22), 223203 (2019).
[Crossref]

Yamoah, M.

B. Braverman, A. Kawasaki, E. Pedrozo-Penafiel, S. Colombo, C. Shu, Z. Li, E. Mendez, M. Yamoah, L. Salvi, D. Akamatsu, Y. Xiao, and V. Vuletić, “Near-unitary spin squeezing in $^{171}\mathrm {Yb}$171Yb,” Phys. Rev. Lett. 122(22), 223203 (2019).
[Crossref]

Ye, J.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

S. Blatt, J. W. Thomsen, G. K. Campbell, A. D. Ludlow, M. D. Swallows, M. J. Martin, M. M. Boyd, and J. Ye, “Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock,” Phys. Rev. A 80(5), 052703 (2009).
[Crossref]

J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15(1), 6–15 (1998).
[Crossref]

Yoon, T. H.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Zawada, M.

J. Lodewyck, M. Zawada, L. Lorini, M. Gurov, and P. Lemonde, “Observation and cancellation of a perturbing dc Stark shift in strontium optical lattice clocks,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 59(3), 411–415 (2012).
[Crossref]

Zhang, X.

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

Zi, F.

Zych, M.

G. Rosi, G. D’Amico, L. Cacciapuoti, F. Sorrentino, M. Prevedelli, M. Zych, C. Brukner, and G. M. Tino, “Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states,” Nat. Commun. 8(1), 15529 (2017).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

R. Drever, J. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Lasers Opt. 31(2), 97–105 (1983).
[Crossref]

IEEE Trans. Ultrason., Ferroelect., Freq. Contr. (2)

J. Lodewyck, M. Zawada, L. Lorini, M. Gurov, and P. Lemonde, “Observation and cancellation of a perturbing dc Stark shift in strontium optical lattice clocks,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 59(3), 411–415 (2012).
[Crossref]

P. Westergaard, J. Lodewyck, and P. Lemonde, “Minimizing the Dick effect in an optical lattice clock,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 57(3), 623–628 (2010).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Commun. (1)

G. Rosi, G. D’Amico, L. Cacciapuoti, F. Sorrentino, M. Prevedelli, M. Zych, C. Brukner, and G. M. Tino, “Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states,” Nat. Commun. 8(1), 15529 (2017).
[Crossref]

Nat. Photonics (1)

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Nature (4)

O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, “Measurement noise 100 times lower than the quantum-projection limit using entangled atoms,” Nature 529(7587), 505–508 (2016).
[Crossref]

V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse, J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R. O’Leary, C. D. Panda, A. D. West, E. P. West, X. Wu, and A. C. M. E. Collaboration, “Improved limit on the electric dipole moment of the electron,” Nature 562(7727), 355–360 (2018).
[Crossref]

C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M. S. Safronova, and S. G. Porsev, “Optical clock comparison for lorentz symmetry testing,” Nature 567(7747), 204–208 (2019).
[Crossref]

W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M. Schioppo, T. H. Yoon, and A. D. Ludlow, “Atomic clock performance enabling geodesy below the centimetre level,” Nature 564(7734), 87–90 (2018).
[Crossref]

New J. Phys. (3)

G. Vallet, E. Bookjans, U. Eismann, S. Bilicki, R. L. Targat, and J. Lodewyck, “A noise-immune cavity-assisted non-destructive detection for an optical lattice clock in the quantum regime,” New J. Phys. 19(8), 083002 (2017).
[Crossref]

B. Braverman, A. Kawasaki, and V. Vuletić, “Impact of non-unitary spin squeezing on atomic clock performance,” New J. Phys. 20(10), 103019 (2018).
[Crossref]

A. Louchet-Chauvet, J. Appel, J. J. Renema, D. Oblak, N. Kjaergaard, and E. S. Polzik, “Entanglement-assisted atomic clock beyond the projection noise limit,” New J. Phys. 12(6), 065032 (2010).
[Crossref]

Opt. Lett. (2)

Optica (1)

Phys. Rev. A (5)

W. Itano, J. Bergquist, J. Bollinger, J. Gilligan, D. Heinzen, F. Moore, M. Raizen, and D. Wineland, “Quantum projection noise: Population fluctuations in two-level systems,” Phys. Rev. A 47(5), 3554–3570 (1993).
[Crossref]

D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, “Spin squeezing and reduced quantum noise in spectroscopy,” Phys. Rev. A 46(11), R6797–R6800 (1992).
[Crossref]

J. Lodewyck, P. G. Westergaard, and P. Lemonde, “Nondestructive measurement of the transition probability in a sr optical lattice clock,” Phys. Rev. A 79(6), 061401 (2009).
[Crossref]

M. A. Norcia and J. K. Thompson, “Strong coupling on a forbidden transition in strontium and nondestructive atom counting,” Phys. Rev. A 93(2), 023804 (2016).
[Crossref]

S. Blatt, J. W. Thomsen, G. K. Campbell, A. D. Ludlow, M. D. Swallows, M. J. Martin, M. M. Boyd, and J. Ye, “Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock,” Phys. Rev. A 80(5), 052703 (2009).
[Crossref]

Phys. Rev. Lett. (5)

B. Braverman, A. Kawasaki, E. Pedrozo-Penafiel, S. Colombo, C. Shu, Z. Li, E. Mendez, M. Yamoah, L. Salvi, D. Akamatsu, Y. Xiao, and V. Vuletić, “Near-unitary spin squeezing in $^{171}\mathrm {Yb}$171Yb,” Phys. Rev. Lett. 122(22), 223203 (2019).
[Crossref]

J.-B. Béguin, E. M. Bookjans, S. L. Christensen, H. L. Sørensen, J. H. Müller, E. S. Polzik, and J. Appel, “Generation and detection of a sub-poissonian atom number distribution in a one-dimensional optical lattice,” Phys. Rev. Lett. 113(26), 263603 (2014).
[Crossref]

M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, “States of an ensemble of two-level atoms with reduced quantum uncertainty,” Phys. Rev. Lett. 104(7), 073604 (2010).
[Crossref]

K. C. Cox, G. P. Greve, J. M. Weiner, and J. K. Thompson, “Deterministic squeezed states with collective measurements and feedback,” Phys. Rev. Lett. 116(9), 093602 (2016).
[Crossref]

P. Delva, J. Lodewyck, S. Bilicki, E. Bookjans, G. Vallet, R. Le Targat, P.-E. Pottie, C. Guerlin, F. Meynadier, C. Le Poncin-Lafitte, O. Lopez, A. Amy-Klein, W.-K. Lee, N. Quintin, C. Lisdat, A. Al-Masoudi, S. Dörscher, C. Grebing, G. Grosche, A. Kuhl, S. Raupach, U. Sterr, I. R. Hill, R. Hobson, W. Bowden, J. Kronjäger, G. Marra, A. Rolland, F. N. Baynes, H. S. Margolis, and P. Gill, “Test of special relativity using a fiber network of optical clocks,” Phys. Rev. Lett. 118(22), 221102 (2017).
[Crossref]

Phys. Rev. X (1)

R. Kohlhaas, A. Bertoldi, E. Cantin, A. Aspect, A. Landragin, and P. Bouyer, “Phase locking a clock oscillator to a coherent atomic ensemble,” Phys. Rev. X 5, 021011 (2015).
[Crossref]

Phys. Scr. (1)

H. J. Kimble, “Strong interactions of single atoms and photons in cavity QED,” Phys. Scr. T76(1), 127 (1998).
[Crossref]

Rev. Mod. Phys. (2)

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81(3), 1051–1129 (2009).
[Crossref]

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

Other (4)

G. Dick, Local oscillator induced instabilities in trapped ion frequency standards, in Precise Time and Time Interval, (Redondo Beach, 1987), pp. 133–147.

S. C. Bennett, “High-precision measurements in atomic cesium supporting a low-energy test of the standard model,” Ph.D. thesis, University of Colorado (1998).

W. Bowden, R. Hobson, I. R. Hill, A. Vianello, M. Schioppo, A. Silva, H. S. Margolis, P. E. G. Baird, and P. Gill, “A pyramid mot with integrated optical cavities as a cold atom platform for an optical lattice clock,” In preparation.

D. A. Steck, Quantum and Atom Optics (Online, http://steck.us/teaching , 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) The cavity modes in green surround the atomic transition in grey. (b) The cavity is probed with a set of six discrete frequencies generated by a waveguide amplitude modulator. (c) The nearest cavity modes are shifted by $\delta \omega _{\mathrm {n}}$ and $\delta \omega _{\mathrm {n+1}}$ when atoms are in the cavity. The cavity shift is tracked in a feedback loop by sending a frequency tuning voltage to the RF modulation source, creating a signal $V_{\mathrm {tune}}$ proportional to the intracavity atom number (see text). Ideally the cavity modes at 461 nm would be placed symmetrically around the transition so that $\delta \omega _{\mathrm {n+1}} \approx - \delta \omega _{\mathrm {n}}$. However, there is also the constraint that the 813 nm lattice must be operated within a few MHz of the magic wavelength to realize an accurate atomic clock, and must be resonant with the same cavity. In our experimental system the closest magic-wavelength cavity mode within the piezo tuning range has a residual offset at 461 nm of $(\omega _{n+1} + \omega _{n})/2-\omega _0 = 2\pi \times - {173}\,{\textrm{MHz}}$.
Fig. 2.
Fig. 2. The transfer cavity is used to lock the 813 nm lattice and the 461 nm probe to the 698 nm clock laser frequency, ensuring that the 461 nm probe is passively on resonance with the atomic cavity when the atomic cavity length is locked to the 813 nm lattice. Definitions: TA: tapered amplifier, SHG: second harmonic generation, DAQ: data acquisition hardware (low noise oscilloscope), PDH: Pound-Drever-Hall frequency lock [20], $\Omega _{\mathrm {comp}}$: Modulation frequency for compensating inhomogeneous Stark shifts (see section 2.2), $\mathrm {V}_{\mathrm {tune}}$: frequency tuning voltage sent to the “master” oscillator $\Omega$, to which the other oscillators are phase locked with an offset of $\pm \Omega _m$.
Fig. 3.
Fig. 3. Measurements of the intracavity atom number with and without additional Stark shift compensation sidebands being injected into the cavity on the mode pair $(n-3,n+4)$. The blue shaded region indicates the region of interest (ROI) used to count the atom number. The sidebands reduce the settling time of the lock (see Section 2.2), which is critical for being able to quickly measure the atom-induced cavity detuning non-destructively. Also shown is a background trace with no atoms and no compensation sidebands, verifying that the slow settling time is a result of atom dynamics induced by the inhomogeneous Stark shift. Inset: The linearity of the cavity-aided detection scheme is verified by comparing the atom-induced cavity detuning in the ROI against the fluorescence signal that is typically used to measure atom number.
Fig. 4.
Fig. 4. Top: Measured power spectral density (PSD) of noise on the atom-induced cavity shift $\delta \Omega /2\pi$ using probe power $P_p = {1.6}\,{\textrm{nW}}$. The projected shot noise limit is also shown for reference. The noise peak at 50 Hz and subsequent harmonics result from a combination of electrical mains noise and a cooling fan close to the chamber, while the spike at 19 kHz corresponds to a dither frequency used to stabilize an etalon within the 813 nm laser. Bottom: Fraction of atoms lost from the lattice after a 300 µs probe pulse followed by a 10 ms delay, with $P_{\mathrm {LO}} = {30}$ µW and a range of $P_{p}$. Also plotted is rms noise in $\delta \Omega /2\pi$ integrated over a bandwidth of 10 Hz to 1.7 kHz, with a fit curve proportional to $1/\sqrt {P_{p}}$.
Fig. 5.
Fig. 5. 461 nm optics and electronics underpinning the non-destructive detection scheme—see text for explanation. Several signal conditioning and beam steering components have been omitted from the diagram for the sake of readability, such as RF attenuators, filters and amplifiers, as well as mirrors, lenses and polarization control optics. Definitions: AOM: acousto-optic modulator, EOM: electro-optic modulator (commercial waveguide module in potassium titanyl phosphate), FM: frequency modulation, AM: amplitude modulation, DDS: direct digital synthesis, CLK: clock signal for DDS.

Tables (1)

Tables Icon

Table 1. Atomic cavity properties at 461 nm

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

2 g n = 6 λ n 2 c Γ π 2 w 0 2 L e ρ 2 w 0 2 cos ( k n z + n π 2 )
δ ω n = N g n 2 Δ n 3 λ n 2 c Γ 4 π 2 w 0 2 L Δ n N
E r n ( Z 0 2 π j ( 1 Z 0 ) 2 t 1 2 ω n + δ ω n ω p n ω F S R ) E p n
Φ ( t ) = A [ cos ( Ω + Ω m ) t + cos ( Ω Ω m ) t ] + B sin Ω t
i ξ η q e ω 0 ( 1 Z 0 ) 2 t 1 2 4 π ω F S R P p P L O ( δ ω n + 1 δ ω n 2 δ Ω )
I q ( ρ , z ) = 8 ξ π w 0 2 ( 1 Z 0 ) 2 t 1 2 P p 2 e 2 ρ 2 w 0 2 cos 2 ( k q z + q π 2 )
Γ s c ( ρ , z ) = 3 λ 3 Γ 2 16 π 2 c ( I n ( ρ , z ) Δ n 2 + I n + 1 ( ρ , z ) Δ n + 1 2 )
Δ a c ( ρ , z ) = 3 λ 3 Γ 16 π 2 c ( I n ( ρ , z ) Δ n + I n + 1 ( ρ , z ) Δ n + 1 )
Γ s c t ξ ( 1 Z 0 t 1 ) 2 3 λ 2 Γ 2 2 π 2 w 0 2 Δ a v g 2 P p t ω 0
S N R p h o t = 1 Z 0 t 1 λ π w 0 N 6 ξ η Γ s c t
S N R p h o t S N R S Q L = N N c r i t Γ s c t
N c r i t = ( t 1 1 Z 0 ) 2 ( π w 0 λ ) 2 1 3 η ξ

Metrics