Abstract

Understanding energy transfer via near-field thermal radiation is essential for applications such as near-field imaging, thermophotovoltaics and thermal circuit devices. Evanescent waves and photon tunneling are responsible for the near-field energy transfer. In bulk noble metals, however, surface plasmons do not contribute efficiently to the near-field energy transfer because of the mismatch of wavelength. In this paper, a giant near-field radiative heat transfer rate that is orders-of-magnitude greater than the blackbody limit between two ultrathin metallic films is demonstrated at nanoscale separations. Moreover, different physical origins for near-field thermal radiation transfer for thick and thin metallic films are clarified, and the radiative heat transfer enhancement in ultrathin metallic films is proved to come from the excitation of surface plasmons. Meanwhile, because of the inevitable high sheet resistance of ultrathin metal films, the heat transfer coefficient is 4600 times greater than the Planckian limit for the separation of 10 nm in ultrathin metallic films, which is the same order or even greater than that in other 2D materials with low carrier density. Our work shows that ultrathin metallic films are excellent materials for radiative heat transfer, which may find promising applications in thermal nano-devices and thermal engineering.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modulation of near-field radiative heat transfer between graphene sheets by strain engineering

Lixin Ge, Zijun Xu, Yuping Cang, and Ke Gong
Opt. Express 27(16) A1109-A1117 (2019)

Near-field radiative heat transfer between metamaterial thin films

Soumyadipta Basu and Mathieu Francoeur
Opt. Lett. 39(5) 1266-1269 (2014)

Near-field radiative heat transfer in multilayered graphene system considering equilibrium temperature distribution

Ming-Jian He, Hong Qi, Yi-Fei Wang, Ya-Tao Ren, Wei-Hua Cai, and Li-Ming Ruan
Opt. Express 27(16) A953-A966 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Howell, M. P. Menguc, and R. Siegel, Thermal radiation heat transfer (CRC, 2015).
  2. D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
    [Crossref]
  3. S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
    [Crossref]
  4. S.-A. Biehs, O. Huth, and F. Rüting, “Near-field radiative heat transfer for structured surfaces,” Phys. Rev. B 78(8), 085414 (2008).
    [Crossref]
  5. J. C. Cuevas and F. J. García-Vidal, “Radiative heat transfer,” ACS Photonics 5(10), 3896–3915 (2018).
    [Crossref]
  6. R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3(1), 1383 (2013).
    [Crossref]
  7. B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
    [Crossref]
  8. P. J. van Zwol, K. Joulain, P. Ben Abdallah, J. J. Greffet, and J. Chevrier, “Fast nanoscale heat-flux modulation with phase-change materials,” Phys. Rev. B 83(20), 201404 (2011).
    [Crossref]
  9. C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett. 104(15), 154301 (2010).
    [Crossref]
  10. P. Ben-Abdallah and S.-A. Biehs, “Near-field thermal transistor,” Phys. Rev. Lett. 112(4), 044301 (2014).
    [Crossref]
  11. K. Joulain, J. Drevillon, Y. Ezzahri, and J. Ordonez-Miranda, “Quantum thermal transistor,” Phys. Rev. Lett. 116(20), 200601 (2016).
    [Crossref]
  12. O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85(15), 155422 (2012).
    [Crossref]
  13. V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B 85(15), 155418 (2012).
    [Crossref]
  14. R. Yu, A. Manjavacas, and F. J. García de Abajo, “Ultrafast radiative heat transfer,” Nat. Commun. 8(1), 2 (2017).
    [Crossref]
  15. J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).
    [Crossref]
  16. J.-J. Zhu, H.-B. Sun, Y.-Z. Wu, J.-G. Wan, and G.-H. Wang, “Graphene: Synthesis, characterization and application in transparent conductive films,” Acta Phys-Chim Sin. 32(10), 2399–2410 (2016).
    [Crossref]
  17. L. Ge, K. Gong, Y. Cang, Y. Luo, X. Shi, and Y. Wu, “Magnetically tunable multiband near-field radiative heat transfer between two graphene sheets,” Phys. Rev. B 100(3), 035414 (2019).
    [Crossref]
  18. L. Ge, Z. Xu, Y. Cang, and K. Gong, “Modulation of near-field radiative heat transfer between graphene sheets by strain engineering,” Opt. Express 27(16), A1109–A1117 (2019).
    [Crossref]
  19. Y. Zhang, H.-L. Yi, and H.-P. Tan, “Near-field radiative heat transfer between black phosphorus sheets via anisotropic surface plasmon polaritons,” ACS Photonics 5(9), 3739–3747 (2018).
    [Crossref]
  20. L. Ge, Y. Cang, K. Gong, L. Zhou, D. Yu, and Y. Luo, “Control of near-field radiative heat transfer based on anisotropic 2D materials,” AIP Adv. 8(8), 085321 (2018).
    [Crossref]
  21. A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  22. T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
    [Crossref]
  23. F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
    [Crossref]
  24. T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
    [Crossref]
  25. A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
    [Crossref]
  26. A. Manjavacas and F. J. García de Abajo, “Tunable plasmons in atomically thin gold nanodisks,” Nat. Commun. 5(1), 3548 (2014).
    [Crossref]
  27. F. J. García de Abajo and A. Manjavacas, “Plasmonics in atomically thin materials,” Faraday Discuss. 178, 87–107 (2015).
    [Crossref]
  28. R. A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D. S. Ghosh, R. Yongsunthon, D. E. Baker, A. Rezikyan, F. J. García de Abajo, and V. Pruneri, “Tunable plasmons in ultrathin metal films,” Nat. Photonics 13(5), 328–333 (2019).
    [Crossref]
  29. H. Qian, Y. Xiao, and Z. Liu, “Giant kerr response of ultrathin gold films from quantum size effect,” Nat. Commun. 7(1), 13153 (2016).
    [Crossref]
  30. J. Dryzek and A. Czapla, “Quantum size effect in optical spectra of thin metallic films,” Phys. Rev. Lett. 58(7), 721–724 (1987).
    [Crossref]
  31. P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).
    [Crossref]
  32. A. I. Volokitin and B. N. J. Persson, “Radiative heat transfer between nanostructures,” Phys. Rev. B 63(20), 205404 (2001).
    [Crossref]
  33. S. A. Biehs, P. Ben-Abdallah, F. S. S. Rosa, K. Joulain, and J. J. Greffet, “Nanoscale heat flux between nanoporous materials,” Opt. Express 19(S5), A1088–A1103 (2011).
    [Crossref]
  34. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
    [Crossref]
  35. L. Wang, W. Cai, X. Zhang, J. Xu, and Y. Luo, “Directional generation of graphene plasmons by near field interference,” Opt. Express 24(17), 19776–19787 (2016).
    [Crossref]
  36. G. E. Santoro and G. F. Giuliani, “Acoustic plasmons in a conducting double layer,” Phys. Rev. B 37(2), 937–940 (1988).
    [Crossref]
  37. X. Liu, R. Z. Zhang, and Z. Zhang, “Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes,” ACS Photonics 1(9), 785–789 (2014).
    [Crossref]
  38. E. H. Hwang and S. Das Sarma, “Plasmon modes of spatially separated double-layer graphene,” Phys. Rev. B 80(20), 205405 (2009).
    [Crossref]
  39. Z. M. Abd El-Fattah, V. Mkhitaryan, J. Brede, L. Fernández, C. Li, Q. Guo, A. Ghosh, A. R. Echarri, D. Naveh, F. Xia, J. E. Ortega, and F. J. García de Abajo, “Plasmonics in atomically thin crystalline silver films,” ACS Nano 13(7), 7771–7779 (2019).
    [Crossref]
  40. D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer graphene,” Laser Photonics Rev. 8(2), 291–296 (2014).
    [Crossref]
  41. E. Z. Luo, S. Heun, M. Kennedy, J. Wollschläger, and M. Henzler, “Surface roughness and conductivity of thin Ag films,” Phys. Rev. B 49(7), 4858–4865 (1994).
    [Crossref]
  42. D. Daghero, F. Paolucci, A. Sola, M. Tortello, G. A. Ummarino, M. Agosto, R. S. Gonnelli, J. R. Nair, and C. Gerbaldi, “Large conductance modulation of gold thin films by huge charge injection via electrochemical gating,” Phys. Rev. Lett. 108(6), 066807 (2012).
    [Crossref]
  43. O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačič, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12(3), 2474–2481 (2018).
    [Crossref]
  44. K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
    [Crossref]
  45. J.-Y. Wang, Y. Li, Z.-Y. Zhan, T. Li, L. Zhen, and C.-Y. Xu, “Elastic properties of suspended black phosphorus nanosheets,” Appl. Phys. Lett. 108(1), 013104 (2016).
    [Crossref]

2019 (4)

L. Ge, K. Gong, Y. Cang, Y. Luo, X. Shi, and Y. Wu, “Magnetically tunable multiband near-field radiative heat transfer between two graphene sheets,” Phys. Rev. B 100(3), 035414 (2019).
[Crossref]

L. Ge, Z. Xu, Y. Cang, and K. Gong, “Modulation of near-field radiative heat transfer between graphene sheets by strain engineering,” Opt. Express 27(16), A1109–A1117 (2019).
[Crossref]

R. A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D. S. Ghosh, R. Yongsunthon, D. E. Baker, A. Rezikyan, F. J. García de Abajo, and V. Pruneri, “Tunable plasmons in ultrathin metal films,” Nat. Photonics 13(5), 328–333 (2019).
[Crossref]

Z. M. Abd El-Fattah, V. Mkhitaryan, J. Brede, L. Fernández, C. Li, Q. Guo, A. Ghosh, A. R. Echarri, D. Naveh, F. Xia, J. E. Ortega, and F. J. García de Abajo, “Plasmonics in atomically thin crystalline silver films,” ACS Nano 13(7), 7771–7779 (2019).
[Crossref]

2018 (5)

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačič, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12(3), 2474–2481 (2018).
[Crossref]

Y. Zhang, H.-L. Yi, and H.-P. Tan, “Near-field radiative heat transfer between black phosphorus sheets via anisotropic surface plasmon polaritons,” ACS Photonics 5(9), 3739–3747 (2018).
[Crossref]

L. Ge, Y. Cang, K. Gong, L. Zhou, D. Yu, and Y. Luo, “Control of near-field radiative heat transfer based on anisotropic 2D materials,” AIP Adv. 8(8), 085321 (2018).
[Crossref]

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).
[Crossref]

J. C. Cuevas and F. J. García-Vidal, “Radiative heat transfer,” ACS Photonics 5(10), 3896–3915 (2018).
[Crossref]

2017 (2)

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

R. Yu, A. Manjavacas, and F. J. García de Abajo, “Ultrafast radiative heat transfer,” Nat. Commun. 8(1), 2 (2017).
[Crossref]

2016 (5)

H. Qian, Y. Xiao, and Z. Liu, “Giant kerr response of ultrathin gold films from quantum size effect,” Nat. Commun. 7(1), 13153 (2016).
[Crossref]

L. Wang, W. Cai, X. Zhang, J. Xu, and Y. Luo, “Directional generation of graphene plasmons by near field interference,” Opt. Express 24(17), 19776–19787 (2016).
[Crossref]

J.-J. Zhu, H.-B. Sun, Y.-Z. Wu, J.-G. Wan, and G.-H. Wang, “Graphene: Synthesis, characterization and application in transparent conductive films,” Acta Phys-Chim Sin. 32(10), 2399–2410 (2016).
[Crossref]

K. Joulain, J. Drevillon, Y. Ezzahri, and J. Ordonez-Miranda, “Quantum thermal transistor,” Phys. Rev. Lett. 116(20), 200601 (2016).
[Crossref]

J.-Y. Wang, Y. Li, Z.-Y. Zhan, T. Li, L. Zhen, and C.-Y. Xu, “Elastic properties of suspended black phosphorus nanosheets,” Appl. Phys. Lett. 108(1), 013104 (2016).
[Crossref]

2015 (1)

F. J. García de Abajo and A. Manjavacas, “Plasmonics in atomically thin materials,” Faraday Discuss. 178, 87–107 (2015).
[Crossref]

2014 (8)

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref]

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
[Crossref]

A. Manjavacas and F. J. García de Abajo, “Tunable plasmons in atomically thin gold nanodisks,” Nat. Commun. 5(1), 3548 (2014).
[Crossref]

X. Liu, R. Z. Zhang, and Z. Zhang, “Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes,” ACS Photonics 1(9), 785–789 (2014).
[Crossref]

P. Ben-Abdallah and S.-A. Biehs, “Near-field thermal transistor,” Phys. Rev. Lett. 112(4), 044301 (2014).
[Crossref]

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer graphene,” Laser Photonics Rev. 8(2), 291–296 (2014).
[Crossref]

2013 (1)

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3(1), 1383 (2013).
[Crossref]

2012 (4)

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85(15), 155422 (2012).
[Crossref]

V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B 85(15), 155418 (2012).
[Crossref]

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

D. Daghero, F. Paolucci, A. Sola, M. Tortello, G. A. Ummarino, M. Agosto, R. S. Gonnelli, J. R. Nair, and C. Gerbaldi, “Large conductance modulation of gold thin films by huge charge injection via electrochemical gating,” Phys. Rev. Lett. 108(6), 066807 (2012).
[Crossref]

2011 (3)

P. J. van Zwol, K. Joulain, P. Ben Abdallah, J. J. Greffet, and J. Chevrier, “Fast nanoscale heat-flux modulation with phase-change materials,” Phys. Rev. B 83(20), 201404 (2011).
[Crossref]

S. A. Biehs, P. Ben-Abdallah, F. S. S. Rosa, K. Joulain, and J. J. Greffet, “Nanoscale heat flux between nanoporous materials,” Opt. Express 19(S5), A1088–A1103 (2011).
[Crossref]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

2010 (1)

C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett. 104(15), 154301 (2010).
[Crossref]

2009 (2)

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
[Crossref]

E. H. Hwang and S. Das Sarma, “Plasmon modes of spatially separated double-layer graphene,” Phys. Rev. B 80(20), 205405 (2009).
[Crossref]

2008 (3)

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).
[Crossref]

S.-A. Biehs, O. Huth, and F. Rüting, “Near-field radiative heat transfer for structured surfaces,” Phys. Rev. B 78(8), 085414 (2008).
[Crossref]

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

2001 (1)

A. I. Volokitin and B. N. J. Persson, “Radiative heat transfer between nanostructures,” Phys. Rev. B 63(20), 205404 (2001).
[Crossref]

1994 (1)

E. Z. Luo, S. Heun, M. Kennedy, J. Wollschläger, and M. Henzler, “Surface roughness and conductivity of thin Ag films,” Phys. Rev. B 49(7), 4858–4865 (1994).
[Crossref]

1988 (1)

G. E. Santoro and G. F. Giuliani, “Acoustic plasmons in a conducting double layer,” Phys. Rev. B 37(2), 937–940 (1988).
[Crossref]

1987 (1)

J. Dryzek and A. Czapla, “Quantum size effect in optical spectra of thin metallic films,” Phys. Rev. Lett. 58(7), 721–724 (1987).
[Crossref]

1971 (1)

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
[Crossref]

Abd El-Fattah, Z. M.

Z. M. Abd El-Fattah, V. Mkhitaryan, J. Brede, L. Fernández, C. Li, Q. Guo, A. Ghosh, A. R. Echarri, D. Naveh, F. Xia, J. E. Ortega, and F. J. García de Abajo, “Plasmonics in atomically thin crystalline silver films,” ACS Nano 13(7), 7771–7779 (2019).
[Crossref]

Agosto, M.

D. Daghero, F. Paolucci, A. Sola, M. Tortello, G. A. Ummarino, M. Agosto, R. S. Gonnelli, J. R. Nair, and C. Gerbaldi, “Large conductance modulation of gold thin films by huge charge injection via electrochemical gating,” Phys. Rev. Lett. 108(6), 066807 (2012).
[Crossref]

Atwater, H. A.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačič, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12(3), 2474–2481 (2018).
[Crossref]

Avouris, P.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref]

Baker, D. E.

R. A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D. S. Ghosh, R. Yongsunthon, D. E. Baker, A. Rezikyan, F. J. García de Abajo, and V. Pruneri, “Tunable plasmons in ultrathin metal films,” Nat. Photonics 13(5), 328–333 (2019).
[Crossref]

Basu, S.

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
[Crossref]

Ben Abdallah, P.

P. J. van Zwol, K. Joulain, P. Ben Abdallah, J. J. Greffet, and J. Chevrier, “Fast nanoscale heat-flux modulation with phase-change materials,” Phys. Rev. B 83(20), 201404 (2011).
[Crossref]

Ben-Abdallah, P.

P. Ben-Abdallah and S.-A. Biehs, “Near-field thermal transistor,” Phys. Rev. Lett. 112(4), 044301 (2014).
[Crossref]

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3(1), 1383 (2013).
[Crossref]

S. A. Biehs, P. Ben-Abdallah, F. S. S. Rosa, K. Joulain, and J. J. Greffet, “Nanoscale heat flux between nanoporous materials,” Opt. Express 19(S5), A1088–A1103 (2011).
[Crossref]

Bhatt, G.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

Biehs, S. A.

Biehs, S.-A.

P. Ben-Abdallah and S.-A. Biehs, “Near-field thermal transistor,” Phys. Rev. Lett. 112(4), 044301 (2014).
[Crossref]

S.-A. Biehs, O. Huth, and F. Rüting, “Near-field radiative heat transfer for structured surfaces,” Phys. Rev. B 78(8), 085414 (2008).
[Crossref]

Bolotin, K.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Brede, J.

Z. M. Abd El-Fattah, V. Mkhitaryan, J. Brede, L. Fernández, C. Li, Q. Guo, A. Ghosh, A. R. Echarri, D. Naveh, F. Xia, J. E. Ortega, and F. J. García de Abajo, “Plasmonics in atomically thin crystalline silver films,” ACS Nano 13(7), 7771–7779 (2019).
[Crossref]

Buddhiraju, S.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

Buljan, H.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85(15), 155422 (2012).
[Crossref]

Cai, W.

Canet-Ferrer, J.

R. A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D. S. Ghosh, R. Yongsunthon, D. E. Baker, A. Rezikyan, F. J. García de Abajo, and V. Pruneri, “Tunable plasmons in ultrathin metal films,” Nat. Photonics 13(5), 328–333 (2019).
[Crossref]

Cang, Y.

L. Ge, K. Gong, Y. Cang, Y. Luo, X. Shi, and Y. Wu, “Magnetically tunable multiband near-field radiative heat transfer between two graphene sheets,” Phys. Rev. B 100(3), 035414 (2019).
[Crossref]

L. Ge, Z. Xu, Y. Cang, and K. Gong, “Modulation of near-field radiative heat transfer between graphene sheets by strain engineering,” Opt. Express 27(16), A1109–A1117 (2019).
[Crossref]

L. Ge, Y. Cang, K. Gong, L. Zhou, D. Yu, and Y. Luo, “Control of near-field radiative heat transfer based on anisotropic 2D materials,” AIP Adv. 8(8), 085321 (2018).
[Crossref]

Carvalho, A.

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
[Crossref]

Castro Neto, A. H.

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
[Crossref]

Celanovic, I.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85(15), 155422 (2012).
[Crossref]

Chang, D. E.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

Chapuis, P.-O.

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).
[Crossref]

Chen, K.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

Chevrier, J.

V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B 85(15), 155418 (2012).
[Crossref]

P. J. van Zwol, K. Joulain, P. Ben Abdallah, J. J. Greffet, and J. Chevrier, “Fast nanoscale heat-flux modulation with phase-change materials,” Phys. Rev. B 83(20), 201404 (2011).
[Crossref]

Christensen, T.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačič, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12(3), 2474–2481 (2018).
[Crossref]

Cuevas, J. C.

J. C. Cuevas and F. J. García-Vidal, “Radiative heat transfer,” ACS Photonics 5(10), 3896–3915 (2018).
[Crossref]

Czapla, A.

J. Dryzek and A. Czapla, “Quantum size effect in optical spectra of thin metallic films,” Phys. Rev. Lett. 58(7), 721–724 (1987).
[Crossref]

Daghero, D.

D. Daghero, F. Paolucci, A. Sola, M. Tortello, G. A. Ummarino, M. Agosto, R. S. Gonnelli, J. R. Nair, and C. Gerbaldi, “Large conductance modulation of gold thin films by huge charge injection via electrochemical gating,” Phys. Rev. Lett. 108(6), 066807 (2012).
[Crossref]

Das Sarma, S.

E. H. Hwang and S. Das Sarma, “Plasmon modes of spatially separated double-layer graphene,” Phys. Rev. B 80(20), 205405 (2009).
[Crossref]

Drevillon, J.

K. Joulain, J. Drevillon, Y. Ezzahri, and J. Ordonez-Miranda, “Quantum thermal transistor,” Phys. Rev. Lett. 116(20), 200601 (2016).
[Crossref]

Dryzek, J.

J. Dryzek and A. Czapla, “Quantum size effect in optical spectra of thin metallic films,” Phys. Rev. Lett. 58(7), 721–724 (1987).
[Crossref]

Du, W.

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).
[Crossref]

Echarri, A. R.

Z. M. Abd El-Fattah, V. Mkhitaryan, J. Brede, L. Fernández, C. Li, Q. Guo, A. Ghosh, A. R. Echarri, D. Naveh, F. Xia, J. E. Ortega, and F. J. García de Abajo, “Plasmonics in atomically thin crystalline silver films,” ACS Nano 13(7), 7771–7779 (2019).
[Crossref]

Ezzahri, Y.

K. Joulain, J. Drevillon, Y. Ezzahri, and J. Ordonez-Miranda, “Quantum thermal transistor,” Phys. Rev. Lett. 116(20), 200601 (2016).
[Crossref]

Fan, S.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett. 104(15), 154301 (2010).
[Crossref]

Fernández, L.

Z. M. Abd El-Fattah, V. Mkhitaryan, J. Brede, L. Fernández, C. Li, Q. Guo, A. Ghosh, A. R. Echarri, D. Naveh, F. Xia, J. E. Ortega, and F. J. García de Abajo, “Plasmonics in atomically thin crystalline silver films,” ACS Nano 13(7), 7771–7779 (2019).
[Crossref]

Fu, C. J.

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
[Crossref]

Fu, Y.

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).
[Crossref]

Fudenberg, G.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

García de Abajo, F. J.

Z. M. Abd El-Fattah, V. Mkhitaryan, J. Brede, L. Fernández, C. Li, Q. Guo, A. Ghosh, A. R. Echarri, D. Naveh, F. Xia, J. E. Ortega, and F. J. García de Abajo, “Plasmonics in atomically thin crystalline silver films,” ACS Nano 13(7), 7771–7779 (2019).
[Crossref]

R. A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D. S. Ghosh, R. Yongsunthon, D. E. Baker, A. Rezikyan, F. J. García de Abajo, and V. Pruneri, “Tunable plasmons in ultrathin metal films,” Nat. Photonics 13(5), 328–333 (2019).
[Crossref]

R. Yu, A. Manjavacas, and F. J. García de Abajo, “Ultrafast radiative heat transfer,” Nat. Commun. 8(1), 2 (2017).
[Crossref]

F. J. García de Abajo and A. Manjavacas, “Plasmonics in atomically thin materials,” Faraday Discuss. 178, 87–107 (2015).
[Crossref]

A. Manjavacas and F. J. García de Abajo, “Tunable plasmons in atomically thin gold nanodisks,” Nat. Commun. 5(1), 3548 (2014).
[Crossref]

F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

García-Vidal, F. J.

J. C. Cuevas and F. J. García-Vidal, “Radiative heat transfer,” ACS Photonics 5(10), 3896–3915 (2018).
[Crossref]

Ge, L.

L. Ge, K. Gong, Y. Cang, Y. Luo, X. Shi, and Y. Wu, “Magnetically tunable multiband near-field radiative heat transfer between two graphene sheets,” Phys. Rev. B 100(3), 035414 (2019).
[Crossref]

L. Ge, Z. Xu, Y. Cang, and K. Gong, “Modulation of near-field radiative heat transfer between graphene sheets by strain engineering,” Opt. Express 27(16), A1109–A1117 (2019).
[Crossref]

L. Ge, Y. Cang, K. Gong, L. Zhou, D. Yu, and Y. Luo, “Control of near-field radiative heat transfer based on anisotropic 2D materials,” AIP Adv. 8(8), 085321 (2018).
[Crossref]

Gerbaldi, C.

D. Daghero, F. Paolucci, A. Sola, M. Tortello, G. A. Ummarino, M. Agosto, R. S. Gonnelli, J. R. Nair, and C. Gerbaldi, “Large conductance modulation of gold thin films by huge charge injection via electrochemical gating,” Phys. Rev. Lett. 108(6), 066807 (2012).
[Crossref]

Ghosh, A.

Z. M. Abd El-Fattah, V. Mkhitaryan, J. Brede, L. Fernández, C. Li, Q. Guo, A. Ghosh, A. R. Echarri, D. Naveh, F. Xia, J. E. Ortega, and F. J. García de Abajo, “Plasmonics in atomically thin crystalline silver films,” ACS Nano 13(7), 7771–7779 (2019).
[Crossref]

Ghosh, D. S.

R. A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D. S. Ghosh, R. Yongsunthon, D. E. Baker, A. Rezikyan, F. J. García de Abajo, and V. Pruneri, “Tunable plasmons in ultrathin metal films,” Nat. Photonics 13(5), 328–333 (2019).
[Crossref]

Giuliani, G. F.

G. E. Santoro and G. F. Giuliani, “Acoustic plasmons in a conducting double layer,” Phys. Rev. B 37(2), 937–940 (1988).
[Crossref]

Gong, K.

L. Ge, K. Gong, Y. Cang, Y. Luo, X. Shi, and Y. Wu, “Magnetically tunable multiband near-field radiative heat transfer between two graphene sheets,” Phys. Rev. B 100(3), 035414 (2019).
[Crossref]

L. Ge, Z. Xu, Y. Cang, and K. Gong, “Modulation of near-field radiative heat transfer between graphene sheets by strain engineering,” Opt. Express 27(16), A1109–A1117 (2019).
[Crossref]

L. Ge, Y. Cang, K. Gong, L. Zhou, D. Yu, and Y. Luo, “Control of near-field radiative heat transfer based on anisotropic 2D materials,” AIP Adv. 8(8), 085321 (2018).
[Crossref]

Gong, S.

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).
[Crossref]

Gonnelli, R. S.

D. Daghero, F. Paolucci, A. Sola, M. Tortello, G. A. Ummarino, M. Agosto, R. S. Gonnelli, J. R. Nair, and C. Gerbaldi, “Large conductance modulation of gold thin films by huge charge injection via electrochemical gating,” Phys. Rev. Lett. 108(6), 066807 (2012).
[Crossref]

Greffet, J. J.

S. A. Biehs, P. Ben-Abdallah, F. S. S. Rosa, K. Joulain, and J. J. Greffet, “Nanoscale heat flux between nanoporous materials,” Opt. Express 19(S5), A1088–A1103 (2011).
[Crossref]

P. J. van Zwol, K. Joulain, P. Ben Abdallah, J. J. Greffet, and J. Chevrier, “Fast nanoscale heat-flux modulation with phase-change materials,” Phys. Rev. B 83(20), 201404 (2011).
[Crossref]

Greffet, J.-J.

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).
[Crossref]

Grigorenko, A.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Guinea, F.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref]

Guo, Q.

Z. M. Abd El-Fattah, V. Mkhitaryan, J. Brede, L. Fernández, C. Li, Q. Guo, A. Ghosh, A. R. Echarri, D. Naveh, F. Xia, J. E. Ortega, and F. J. García de Abajo, “Plasmonics in atomically thin crystalline silver films,” ACS Nano 13(7), 7771–7779 (2019).
[Crossref]

He, S.

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).
[Crossref]

Henkel, C.

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).
[Crossref]

Henzler, M.

E. Z. Luo, S. Heun, M. Kennedy, J. Wollschläger, and M. Henzler, “Surface roughness and conductivity of thin Ag films,” Phys. Rev. B 49(7), 4858–4865 (1994).
[Crossref]

Heun, S.

E. Z. Luo, S. Heun, M. Kennedy, J. Wollschläger, and M. Henzler, “Surface roughness and conductivity of thin Ag films,” Phys. Rev. B 49(7), 4858–4865 (1994).
[Crossref]

Hone, J.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Howell, J. R.

J. R. Howell, M. P. Menguc, and R. Siegel, Thermal radiation heat transfer (CRC, 2015).

Huth, O.

S.-A. Biehs, O. Huth, and F. Rüting, “Near-field radiative heat transfer for structured surfaces,” Phys. Rev. B 78(8), 085414 (2008).
[Crossref]

Hwang, E. H.

E. H. Hwang and S. Das Sarma, “Plasmon modes of spatially separated double-layer graphene,” Phys. Rev. B 80(20), 205405 (2009).
[Crossref]

Ilic, O.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačič, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12(3), 2474–2481 (2018).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85(15), 155422 (2012).
[Crossref]

Jablan, M.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85(15), 155422 (2012).
[Crossref]

Jiang, Z.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Joannopoulos, J. D.

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85(15), 155422 (2012).
[Crossref]

Joulain, K.

K. Joulain, J. Drevillon, Y. Ezzahri, and J. Ordonez-Miranda, “Quantum thermal transistor,” Phys. Rev. Lett. 116(20), 200601 (2016).
[Crossref]

P. J. van Zwol, K. Joulain, P. Ben Abdallah, J. J. Greffet, and J. Chevrier, “Fast nanoscale heat-flux modulation with phase-change materials,” Phys. Rev. B 83(20), 201404 (2011).
[Crossref]

S. A. Biehs, P. Ben-Abdallah, F. S. S. Rosa, K. Joulain, and J. J. Greffet, “Nanoscale heat flux between nanoporous materials,” Opt. Express 19(S5), A1088–A1103 (2011).
[Crossref]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).
[Crossref]

Kennedy, M.

E. Z. Luo, S. Heun, M. Kennedy, J. Wollschläger, and M. Henzler, “Surface roughness and conductivity of thin Ag films,” Phys. Rev. B 49(7), 4858–4865 (1994).
[Crossref]

Kim, P.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Kivshar, Y. S.

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer graphene,” Laser Photonics Rev. 8(2), 291–296 (2014).
[Crossref]

Klima, M.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Koppens, F. H. L.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

Lau, W. T.

C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett. 104(15), 154301 (2010).
[Crossref]

Li, C.

Z. M. Abd El-Fattah, V. Mkhitaryan, J. Brede, L. Fernández, C. Li, Q. Guo, A. Ghosh, A. R. Echarri, D. Naveh, F. Xia, J. E. Ortega, and F. J. García de Abajo, “Plasmonics in atomically thin crystalline silver films,” ACS Nano 13(7), 7771–7779 (2019).
[Crossref]

Li, T.

J.-Y. Wang, Y. Li, Z.-Y. Zhan, T. Li, L. Zhen, and C.-Y. Xu, “Elastic properties of suspended black phosphorus nanosheets,” Appl. Phys. Lett. 108(1), 013104 (2016).
[Crossref]

Li, Y.

J.-Y. Wang, Y. Li, Z.-Y. Zhan, T. Li, L. Zhen, and C.-Y. Xu, “Elastic properties of suspended black phosphorus nanosheets,” Appl. Phys. Lett. 108(1), 013104 (2016).
[Crossref]

Lipson, M.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

Liu, X.

X. Liu, R. Z. Zhang, and Z. Zhang, “Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes,” ACS Photonics 1(9), 785–789 (2014).
[Crossref]

Liu, Z.

H. Qian, Y. Xiao, and Z. Liu, “Giant kerr response of ultrathin gold films from quantum size effect,” Nat. Commun. 7(1), 13153 (2016).
[Crossref]

Low, T.

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref]

Luo, E. Z.

E. Z. Luo, S. Heun, M. Kennedy, J. Wollschläger, and M. Henzler, “Surface roughness and conductivity of thin Ag films,” Phys. Rev. B 49(7), 4858–4865 (1994).
[Crossref]

Luo, Y.

L. Ge, K. Gong, Y. Cang, Y. Luo, X. Shi, and Y. Wu, “Magnetically tunable multiband near-field radiative heat transfer between two graphene sheets,” Phys. Rev. B 100(3), 035414 (2019).
[Crossref]

L. Ge, Y. Cang, K. Gong, L. Zhou, D. Yu, and Y. Luo, “Control of near-field radiative heat transfer based on anisotropic 2D materials,” AIP Adv. 8(8), 085321 (2018).
[Crossref]

L. Wang, W. Cai, X. Zhang, J. Xu, and Y. Luo, “Directional generation of graphene plasmons by near field interference,” Opt. Express 24(17), 19776–19787 (2016).
[Crossref]

Ma, Y.

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).
[Crossref]

Maniyara, R. A.

R. A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D. S. Ghosh, R. Yongsunthon, D. E. Baker, A. Rezikyan, F. J. García de Abajo, and V. Pruneri, “Tunable plasmons in ultrathin metal films,” Nat. Photonics 13(5), 328–333 (2019).
[Crossref]

Manjavacas, A.

R. Yu, A. Manjavacas, and F. J. García de Abajo, “Ultrafast radiative heat transfer,” Nat. Commun. 8(1), 2 (2017).
[Crossref]

F. J. García de Abajo and A. Manjavacas, “Plasmonics in atomically thin materials,” Faraday Discuss. 178, 87–107 (2015).
[Crossref]

A. Manjavacas and F. J. García de Abajo, “Tunable plasmons in atomically thin gold nanodisks,” Nat. Commun. 5(1), 3548 (2014).
[Crossref]

Menguc, M. P.

J. R. Howell, M. P. Menguc, and R. Siegel, Thermal radiation heat transfer (CRC, 2015).

Messina, R.

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3(1), 1383 (2013).
[Crossref]

Miller, O. D.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačič, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12(3), 2474–2481 (2018).
[Crossref]

Minnich, A. J.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačič, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12(3), 2474–2481 (2018).
[Crossref]

Mkhitaryan, V.

Z. M. Abd El-Fattah, V. Mkhitaryan, J. Brede, L. Fernández, C. Li, Q. Guo, A. Ghosh, A. R. Echarri, D. Naveh, F. Xia, J. E. Ortega, and F. J. García de Abajo, “Plasmonics in atomically thin crystalline silver films,” ACS Nano 13(7), 7771–7779 (2019).
[Crossref]

Moreno, L. M.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref]

Nair, J. R.

D. Daghero, F. Paolucci, A. Sola, M. Tortello, G. A. Ummarino, M. Agosto, R. S. Gonnelli, J. R. Nair, and C. Gerbaldi, “Large conductance modulation of gold thin films by huge charge injection via electrochemical gating,” Phys. Rev. Lett. 108(6), 066807 (2012).
[Crossref]

Naveh, D.

Z. M. Abd El-Fattah, V. Mkhitaryan, J. Brede, L. Fernández, C. Li, Q. Guo, A. Ghosh, A. R. Echarri, D. Naveh, F. Xia, J. E. Ortega, and F. J. García de Abajo, “Plasmonics in atomically thin crystalline silver films,” ACS Nano 13(7), 7771–7779 (2019).
[Crossref]

Novoselov, K.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Ordonez-Miranda, J.

K. Joulain, J. Drevillon, Y. Ezzahri, and J. Ordonez-Miranda, “Quantum thermal transistor,” Phys. Rev. Lett. 116(20), 200601 (2016).
[Crossref]

Ortega, J. E.

Z. M. Abd El-Fattah, V. Mkhitaryan, J. Brede, L. Fernández, C. Li, Q. Guo, A. Ghosh, A. R. Echarri, D. Naveh, F. Xia, J. E. Ortega, and F. J. García de Abajo, “Plasmonics in atomically thin crystalline silver films,” ACS Nano 13(7), 7771–7779 (2019).
[Crossref]

Otey, C. R.

C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett. 104(15), 154301 (2010).
[Crossref]

Paolucci, F.

D. Daghero, F. Paolucci, A. Sola, M. Tortello, G. A. Ummarino, M. Agosto, R. S. Gonnelli, J. R. Nair, and C. Gerbaldi, “Large conductance modulation of gold thin films by huge charge injection via electrochemical gating,” Phys. Rev. Lett. 108(6), 066807 (2012).
[Crossref]

Persson, B. N. J.

A. I. Volokitin and B. N. J. Persson, “Radiative heat transfer between nanostructures,” Phys. Rev. B 63(20), 205404 (2001).
[Crossref]

Polder, D.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
[Crossref]

Polini, M.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Pruneri, V.

R. A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D. S. Ghosh, R. Yongsunthon, D. E. Baker, A. Rezikyan, F. J. García de Abajo, and V. Pruneri, “Tunable plasmons in ultrathin metal films,” Nat. Photonics 13(5), 328–333 (2019).
[Crossref]

Qian, H.

H. Qian, Y. Xiao, and Z. Liu, “Giant kerr response of ultrathin gold films from quantum size effect,” Nat. Commun. 7(1), 13153 (2016).
[Crossref]

Rezikyan, A.

R. A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D. S. Ghosh, R. Yongsunthon, D. E. Baker, A. Rezikyan, F. J. García de Abajo, and V. Pruneri, “Tunable plasmons in ultrathin metal films,” Nat. Photonics 13(5), 328–333 (2019).
[Crossref]

Rodin, A. S.

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
[Crossref]

Rodrigo, D.

R. A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D. S. Ghosh, R. Yongsunthon, D. E. Baker, A. Rezikyan, F. J. García de Abajo, and V. Pruneri, “Tunable plasmons in ultrathin metal films,” Nat. Photonics 13(5), 328–333 (2019).
[Crossref]

Roldán, R.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref]

Rosa, F. S. S.

Rüting, F.

S.-A. Biehs, O. Huth, and F. Rüting, “Near-field radiative heat transfer for structured surfaces,” Phys. Rev. B 78(8), 085414 (2008).
[Crossref]

Santoro, G. E.

G. E. Santoro and G. F. Giuliani, “Acoustic plasmons in a conducting double layer,” Phys. Rev. B 37(2), 937–940 (1988).
[Crossref]

Shadrivov, I. V.

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer graphene,” Laser Photonics Rev. 8(2), 291–296 (2014).
[Crossref]

Sherrott, M. C.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačič, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12(3), 2474–2481 (2018).
[Crossref]

Shi, X.

L. Ge, K. Gong, Y. Cang, Y. Luo, X. Shi, and Y. Wu, “Magnetically tunable multiband near-field radiative heat transfer between two graphene sheets,” Phys. Rev. B 100(3), 035414 (2019).
[Crossref]

Siegel, R.

J. R. Howell, M. P. Menguc, and R. Siegel, Thermal radiation heat transfer (CRC, 2015).

Sikes, K.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Smirnov, A. I.

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer graphene,” Laser Photonics Rev. 8(2), 291–296 (2014).
[Crossref]

Smirnova, D. A.

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer graphene,” Laser Photonics Rev. 8(2), 291–296 (2014).
[Crossref]

Sola, A.

D. Daghero, F. Paolucci, A. Sola, M. Tortello, G. A. Ummarino, M. Agosto, R. S. Gonnelli, J. R. Nair, and C. Gerbaldi, “Large conductance modulation of gold thin films by huge charge injection via electrochemical gating,” Phys. Rev. Lett. 108(6), 066807 (2012).
[Crossref]

Soljacic, M.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačič, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12(3), 2474–2481 (2018).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85(15), 155422 (2012).
[Crossref]

Stormer, H.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Su, Y.

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).
[Crossref]

Sun, H.-B.

J.-J. Zhu, H.-B. Sun, Y.-Z. Wu, J.-G. Wan, and G.-H. Wang, “Graphene: Synthesis, characterization and application in transparent conductive films,” Acta Phys-Chim Sin. 32(10), 2399–2410 (2016).
[Crossref]

Svetovoy, V. B.

V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B 85(15), 155418 (2012).
[Crossref]

Tan, H.-P.

Y. Zhang, H.-L. Yi, and H.-P. Tan, “Near-field radiative heat transfer between black phosphorus sheets via anisotropic surface plasmon polaritons,” ACS Photonics 5(9), 3739–3747 (2018).
[Crossref]

Thomas, N. H.

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačič, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12(3), 2474–2481 (2018).
[Crossref]

Tortello, M.

D. Daghero, F. Paolucci, A. Sola, M. Tortello, G. A. Ummarino, M. Agosto, R. S. Gonnelli, J. R. Nair, and C. Gerbaldi, “Large conductance modulation of gold thin films by huge charge injection via electrochemical gating,” Phys. Rev. Lett. 108(6), 066807 (2012).
[Crossref]

Ummarino, G. A.

D. Daghero, F. Paolucci, A. Sola, M. Tortello, G. A. Ummarino, M. Agosto, R. S. Gonnelli, J. R. Nair, and C. Gerbaldi, “Large conductance modulation of gold thin films by huge charge injection via electrochemical gating,” Phys. Rev. Lett. 108(6), 066807 (2012).
[Crossref]

Van Hove, M.

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
[Crossref]

van Zwol, P. J.

V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B 85(15), 155418 (2012).
[Crossref]

P. J. van Zwol, K. Joulain, P. Ben Abdallah, J. J. Greffet, and J. Chevrier, “Fast nanoscale heat-flux modulation with phase-change materials,” Phys. Rev. B 83(20), 201404 (2011).
[Crossref]

Volokitin, A. I.

A. I. Volokitin and B. N. J. Persson, “Radiative heat transfer between nanostructures,” Phys. Rev. B 63(20), 205404 (2001).
[Crossref]

Volz, S.

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).
[Crossref]

Wan, J.-G.

J.-J. Zhu, H.-B. Sun, Y.-Z. Wu, J.-G. Wan, and G.-H. Wang, “Graphene: Synthesis, characterization and application in transparent conductive films,” Acta Phys-Chim Sin. 32(10), 2399–2410 (2016).
[Crossref]

Wang, G.-H.

J.-J. Zhu, H.-B. Sun, Y.-Z. Wu, J.-G. Wan, and G.-H. Wang, “Graphene: Synthesis, characterization and application in transparent conductive films,” Acta Phys-Chim Sin. 32(10), 2399–2410 (2016).
[Crossref]

Wang, H.

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref]

Wang, J.-Y.

J.-Y. Wang, Y. Li, Z.-Y. Zhan, T. Li, L. Zhen, and C.-Y. Xu, “Elastic properties of suspended black phosphorus nanosheets,” Appl. Phys. Lett. 108(1), 013104 (2016).
[Crossref]

Wang, L.

Wollschläger, J.

E. Z. Luo, S. Heun, M. Kennedy, J. Wollschläger, and M. Henzler, “Surface roughness and conductivity of thin Ag films,” Phys. Rev. B 49(7), 4858–4865 (1994).
[Crossref]

Wu, Y.

L. Ge, K. Gong, Y. Cang, Y. Luo, X. Shi, and Y. Wu, “Magnetically tunable multiband near-field radiative heat transfer between two graphene sheets,” Phys. Rev. B 100(3), 035414 (2019).
[Crossref]

Wu, Y.-Z.

J.-J. Zhu, H.-B. Sun, Y.-Z. Wu, J.-G. Wan, and G.-H. Wang, “Graphene: Synthesis, characterization and application in transparent conductive films,” Acta Phys-Chim Sin. 32(10), 2399–2410 (2016).
[Crossref]

Xia, F.

Z. M. Abd El-Fattah, V. Mkhitaryan, J. Brede, L. Fernández, C. Li, Q. Guo, A. Ghosh, A. R. Echarri, D. Naveh, F. Xia, J. E. Ortega, and F. J. García de Abajo, “Plasmonics in atomically thin crystalline silver films,” ACS Nano 13(7), 7771–7779 (2019).
[Crossref]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref]

Xiao, Y.

H. Qian, Y. Xiao, and Z. Liu, “Giant kerr response of ultrathin gold films from quantum size effect,” Nat. Commun. 7(1), 13153 (2016).
[Crossref]

Xu, C.-Y.

J.-Y. Wang, Y. Li, Z.-Y. Zhan, T. Li, L. Zhen, and C.-Y. Xu, “Elastic properties of suspended black phosphorus nanosheets,” Appl. Phys. Lett. 108(1), 013104 (2016).
[Crossref]

Xu, J.

Xu, Z.

Yang, J.

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).
[Crossref]

Yi, H.-L.

Y. Zhang, H.-L. Yi, and H.-P. Tan, “Near-field radiative heat transfer between black phosphorus sheets via anisotropic surface plasmon polaritons,” ACS Photonics 5(9), 3739–3747 (2018).
[Crossref]

Yongsunthon, R.

R. A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D. S. Ghosh, R. Yongsunthon, D. E. Baker, A. Rezikyan, F. J. García de Abajo, and V. Pruneri, “Tunable plasmons in ultrathin metal films,” Nat. Photonics 13(5), 328–333 (2019).
[Crossref]

Yu, D.

L. Ge, Y. Cang, K. Gong, L. Zhou, D. Yu, and Y. Luo, “Control of near-field radiative heat transfer based on anisotropic 2D materials,” AIP Adv. 8(8), 085321 (2018).
[Crossref]

Yu, R.

R. A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D. S. Ghosh, R. Yongsunthon, D. E. Baker, A. Rezikyan, F. J. García de Abajo, and V. Pruneri, “Tunable plasmons in ultrathin metal films,” Nat. Photonics 13(5), 328–333 (2019).
[Crossref]

R. Yu, A. Manjavacas, and F. J. García de Abajo, “Ultrafast radiative heat transfer,” Nat. Commun. 8(1), 2 (2017).
[Crossref]

Zhan, Z.-Y.

J.-Y. Wang, Y. Li, Z.-Y. Zhan, T. Li, L. Zhen, and C.-Y. Xu, “Elastic properties of suspended black phosphorus nanosheets,” Appl. Phys. Lett. 108(1), 013104 (2016).
[Crossref]

Zhang, R. Z.

X. Liu, R. Z. Zhang, and Z. Zhang, “Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes,” ACS Photonics 1(9), 785–789 (2014).
[Crossref]

Zhang, X.

Zhang, Y.

Y. Zhang, H.-L. Yi, and H.-P. Tan, “Near-field radiative heat transfer between black phosphorus sheets via anisotropic surface plasmon polaritons,” ACS Photonics 5(9), 3739–3747 (2018).
[Crossref]

Zhang, Z.

X. Liu, R. Z. Zhang, and Z. Zhang, “Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes,” ACS Photonics 1(9), 785–789 (2014).
[Crossref]

Zhang, Z. M.

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
[Crossref]

Zhao, B.

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

Zhen, L.

J.-Y. Wang, Y. Li, Z.-Y. Zhan, T. Li, L. Zhen, and C.-Y. Xu, “Elastic properties of suspended black phosphorus nanosheets,” Appl. Phys. Lett. 108(1), 013104 (2016).
[Crossref]

Zhou, L.

L. Ge, Y. Cang, K. Gong, L. Zhou, D. Yu, and Y. Luo, “Control of near-field radiative heat transfer based on anisotropic 2D materials,” AIP Adv. 8(8), 085321 (2018).
[Crossref]

Zhu, J.-J.

J.-J. Zhu, H.-B. Sun, Y.-Z. Wu, J.-G. Wan, and G.-H. Wang, “Graphene: Synthesis, characterization and application in transparent conductive films,” Acta Phys-Chim Sin. 32(10), 2399–2410 (2016).
[Crossref]

ACS Nano (3)

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8(2), 1086–1101 (2014).
[Crossref]

Z. M. Abd El-Fattah, V. Mkhitaryan, J. Brede, L. Fernández, C. Li, Q. Guo, A. Ghosh, A. R. Echarri, D. Naveh, F. Xia, J. E. Ortega, and F. J. García de Abajo, “Plasmonics in atomically thin crystalline silver films,” ACS Nano 13(7), 7771–7779 (2019).
[Crossref]

O. Ilic, N. H. Thomas, T. Christensen, M. C. Sherrott, M. Soljačič, A. J. Minnich, O. D. Miller, and H. A. Atwater, “Active radiative thermal switching with graphene plasmon resonators,” ACS Nano 12(3), 2474–2481 (2018).
[Crossref]

ACS Photonics (4)

X. Liu, R. Z. Zhang, and Z. Zhang, “Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes,” ACS Photonics 1(9), 785–789 (2014).
[Crossref]

F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

Y. Zhang, H.-L. Yi, and H.-P. Tan, “Near-field radiative heat transfer between black phosphorus sheets via anisotropic surface plasmon polaritons,” ACS Photonics 5(9), 3739–3747 (2018).
[Crossref]

J. C. Cuevas and F. J. García-Vidal, “Radiative heat transfer,” ACS Photonics 5(10), 3896–3915 (2018).
[Crossref]

Acta Phys-Chim Sin. (1)

J.-J. Zhu, H.-B. Sun, Y.-Z. Wu, J.-G. Wan, and G.-H. Wang, “Graphene: Synthesis, characterization and application in transparent conductive films,” Acta Phys-Chim Sin. 32(10), 2399–2410 (2016).
[Crossref]

AIP Adv. (1)

L. Ge, Y. Cang, K. Gong, L. Zhou, D. Yu, and Y. Luo, “Control of near-field radiative heat transfer based on anisotropic 2D materials,” AIP Adv. 8(8), 085321 (2018).
[Crossref]

Appl. Phys. Lett. (1)

J.-Y. Wang, Y. Li, Z.-Y. Zhan, T. Li, L. Zhen, and C.-Y. Xu, “Elastic properties of suspended black phosphorus nanosheets,” Appl. Phys. Lett. 108(1), 013104 (2016).
[Crossref]

Faraday Discuss. (1)

F. J. García de Abajo and A. Manjavacas, “Plasmonics in atomically thin materials,” Faraday Discuss. 178, 87–107 (2015).
[Crossref]

Int. J. Energy Res. (1)

S. Basu, Z. M. Zhang, and C. J. Fu, “Review of near-field thermal radiation and its application to energy conversion,” Int. J. Energy Res. 33(13), 1203–1232 (2009).
[Crossref]

Laser Photonics Rev. (1)

D. A. Smirnova, I. V. Shadrivov, A. I. Smirnov, and Y. S. Kivshar, “Dissipative plasmon-solitons in multilayer graphene,” Laser Photonics Rev. 8(2), 291–296 (2014).
[Crossref]

Nano Energy (1)

B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, and S. Fan, “High-performance near-field thermophotovoltaics for waste heat recovery,” Nano Energy 41, 344–350 (2017).
[Crossref]

Nano Lett. (1)

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]

Nat. Commun. (4)

H. Qian, Y. Xiao, and Z. Liu, “Giant kerr response of ultrathin gold films from quantum size effect,” Nat. Commun. 7(1), 13153 (2016).
[Crossref]

A. Manjavacas and F. J. García de Abajo, “Tunable plasmons in atomically thin gold nanodisks,” Nat. Commun. 5(1), 3548 (2014).
[Crossref]

R. Yu, A. Manjavacas, and F. J. García de Abajo, “Ultrafast radiative heat transfer,” Nat. Commun. 8(1), 2 (2017).
[Crossref]

J. Yang, W. Du, Y. Su, Y. Fu, S. Gong, S. He, and Y. Ma, “Observing of the super-planckian near-field thermal radiation between graphene sheets,” Nat. Commun. 9(1), 4033 (2018).
[Crossref]

Nat. Photonics (2)

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

R. A. Maniyara, D. Rodrigo, R. Yu, J. Canet-Ferrer, D. S. Ghosh, R. Yongsunthon, D. E. Baker, A. Rezikyan, F. J. García de Abajo, and V. Pruneri, “Tunable plasmons in ultrathin metal films,” Nat. Photonics 13(5), 328–333 (2019).
[Crossref]

Opt. Express (3)

Phys. Rev. B (11)

E. Z. Luo, S. Heun, M. Kennedy, J. Wollschläger, and M. Henzler, “Surface roughness and conductivity of thin Ag films,” Phys. Rev. B 49(7), 4858–4865 (1994).
[Crossref]

E. H. Hwang and S. Das Sarma, “Plasmon modes of spatially separated double-layer graphene,” Phys. Rev. B 80(20), 205405 (2009).
[Crossref]

G. E. Santoro and G. F. Giuliani, “Acoustic plasmons in a conducting double layer,” Phys. Rev. B 37(2), 937–940 (1988).
[Crossref]

P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77(3), 035431 (2008).
[Crossref]

A. I. Volokitin and B. N. J. Persson, “Radiative heat transfer between nanostructures,” Phys. Rev. B 63(20), 205404 (2001).
[Crossref]

L. Ge, K. Gong, Y. Cang, Y. Luo, X. Shi, and Y. Wu, “Magnetically tunable multiband near-field radiative heat transfer between two graphene sheets,” Phys. Rev. B 100(3), 035414 (2019).
[Crossref]

O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, “Near-field thermal radiation transfer controlled by plasmons in graphene,” Phys. Rev. B 85(15), 155422 (2012).
[Crossref]

V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, “Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics,” Phys. Rev. B 85(15), 155418 (2012).
[Crossref]

P. J. van Zwol, K. Joulain, P. Ben Abdallah, J. J. Greffet, and J. Chevrier, “Fast nanoscale heat-flux modulation with phase-change materials,” Phys. Rev. B 83(20), 201404 (2011).
[Crossref]

S.-A. Biehs, O. Huth, and F. Rüting, “Near-field radiative heat transfer for structured surfaces,” Phys. Rev. B 78(8), 085414 (2008).
[Crossref]

D. Polder and M. Van Hove, “Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4(10), 3303–3314 (1971).
[Crossref]

Phys. Rev. Lett. (7)

C. R. Otey, W. T. Lau, and S. Fan, “Thermal rectification through vacuum,” Phys. Rev. Lett. 104(15), 154301 (2010).
[Crossref]

P. Ben-Abdallah and S.-A. Biehs, “Near-field thermal transistor,” Phys. Rev. Lett. 112(4), 044301 (2014).
[Crossref]

K. Joulain, J. Drevillon, Y. Ezzahri, and J. Ordonez-Miranda, “Quantum thermal transistor,” Phys. Rev. Lett. 116(20), 200601 (2016).
[Crossref]

J. Dryzek and A. Czapla, “Quantum size effect in optical spectra of thin metallic films,” Phys. Rev. Lett. 58(7), 721–724 (1987).
[Crossref]

T. Low, R. Roldán, H. Wang, F. Xia, P. Avouris, L. M. Moreno, and F. Guinea, “Plasmons and screening in monolayer and multilayer black phosphorus,” Phys. Rev. Lett. 113(10), 106802 (2014).
[Crossref]

A. S. Rodin, A. Carvalho, and A. H. Castro Neto, “Strain-induced gap modification in black phosphorus,” Phys. Rev. Lett. 112(17), 176801 (2014).
[Crossref]

D. Daghero, F. Paolucci, A. Sola, M. Tortello, G. A. Ummarino, M. Agosto, R. S. Gonnelli, J. R. Nair, and C. Gerbaldi, “Large conductance modulation of gold thin films by huge charge injection via electrochemical gating,” Phys. Rev. Lett. 108(6), 066807 (2012).
[Crossref]

Sci. Rep. (1)

R. Messina and P. Ben-Abdallah, “Graphene-based photovoltaic cells for near-field thermal energy conversion,” Sci. Rep. 3(1), 1383 (2013).
[Crossref]

Solid State Commun. (1)

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9-10), 351–355 (2008).
[Crossref]

Other (1)

J. R. Howell, M. P. Menguc, and R. Siegel, Thermal radiation heat transfer (CRC, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) The schematic diagram of near-field radiative heat transfer (NFRHT) between two silver monolayer sheets. The gap size is $d$. The heat of the bottom sheet (temperature $T_1$) transfers to the upper sheet (temperature $T_2$) via radiation. (b) Heat transfer coefficient at room temperature (300 K) as a function of the gap size $d$. The different curves correspond to the total contribution (olive solid curve) and the contributions of propagating (dotted curves) and evanescent (dashed curves) waves for transverse electric (TE, colored in blue) and transverse magnetic (TM, colored in red) polarizations. The solid black line shows the result for the case of two blackbodies ($h_{\textrm {BB}}$=6.124 W/m$^2$K).
Fig. 2.
Fig. 2. (a) Spectral heat flux for different gap sizes as a function of the radiation frequency corresponding to Fig. 1(a). The solid curves correspond to the total contributions and the dotted lines denote the contributions of propagating waves only for separation $d=10$ nm$-2\mu$ m, while the magenta dashed curve denotes the result for two blackbodies. Additionally, the black vertical dashed curve and the blue arrow represent the maximum positions for blackbodies and propagating waves, respectively. (b) $k_\|-\omega$ dependence of the energy transmission coefficient $\xi$ between two silver monolayers for $d=50$ nm. The white dashed curve corresponds to the dispersion relations of plasmons in a single silver monolayer, and the black dashed curves correspond to the acoustic and optical plasmonic dispersion relations of the silver double layers by using Eq. (7).
Fig. 3.
Fig. 3. (a) Normalized HTC at room-temperature for the two atomically thin silver films with different number of layers $N$ at different gap sizes $d$. (b) Spectral heat flux for different number of layers $N$ with $d=50$ nm. The magenta curve corresponds to results between blackbodies, and the arrow denotes the spectral maximum for semi-infinite bulk silver separated by the gap size $d=50$ nm.
Fig. 4.
Fig. 4. (a) Normalized HTC at room-temperature for the two monolayer silver sheets with different damping rates $\gamma$ at different gap sizes $d$. (b) Normalized HTC as a function of doping charge density at different gap sizes $d$, here $\gamma =1$ eV is adopted.
Fig. 5.
Fig. 5. (a) Spectral heat flux for silver monolayers placed on top of semi-infinite substrates with different permittivity $\epsilon _s$ and electron scattering rates $\gamma$. (b) The substrate permittivity dependent HTC for different $\gamma$. Here $d=10$ nm is adopted.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

S ( T 1 , T 2 ) = 0 d ω ( 2 π ) 2 [ Θ ( ω , T 1 ) Θ ( ω , T 2 ) ] 0 ξ ( ω , k ) k d k ,
ξ j ( ω , k ) = { ( 1 | r 1 j | 2 | t 1 j | 2 ) ( 1 | r 2 j | 2 | t 2 j | 2 ) | 1 r 1 j r 2 j e 2 i k z d | 2 , k < ω / c 4 Im { r 1 j } Im { r 2 j } e 2 | k z | d | 1 r 1 j r 2 j e 2 i k z d | 2 , k > ω / c
h ( T ) = lim T 1 , T 2 T S ( T 1 , T 2 ) T 1 T 2 = 0 d ω ( 2 π ) 2 Θ ( ω , T ) T 0 ξ ( ω , k ) k d k .
r p = ϵ k z k z + 4 π σ ( ω ) k z k z / ω ϵ k z + k z + 4 π σ ( ω ) k z k z / ω , t p = 2 ϵ k z ϵ k z + k z + 4 π σ ( ω ) k z k z / ω , r s = k z k z 4 π σ ( ω ) k 0 / c k z + k z + 4 π σ ( ω ) k 0 / c , t s = 2 k z k z + k z + 4 π σ ( ω ) k 0 / c ,
σ ( ω ) = i ω 4 π ( 1 ϵ bulk ) d m ω bulk 2 d m 4 π i ω + i γ ,
k ω ( ω + i γ ) ( ϵ + 1 ) / ( ω bulk 2 d m ) .
1 + 4 π σ k z / ω = cot ( i k z d / 2 ) , acoustic 1 + 4 π σ k z / ω = tan ( i k z d / 2 ) . optical

Metrics