Abstract

We report the demonstration of a high average- and peak-power, 1925 nm, thulium-fiber based chirped pulse amplification (CPA) system. A compact, dissipative soliton thulium-fiber, mode-locked seed produced pre-chirped pulses with 25 ps duration, 45 mW output power and repetition rate of 15.7 MHz. After stretching to 105 ps in 83 m of normal dispersion fiber, the pulses were amplified in a core-pumped pre-amplifier and a cladding pumped power amplifier to average output powers of 28 W and 30 W with forward and backward pumping, respectively, with the output power limited only by the available pump power. After a pair of fused silica transmission gratings with an efficiency of 71%, the amplified pulses were re-compressed to 297 fs yielding pulses with a peak power of 4.2 MW (backward pumped) and a pulse energy of 1.27 µJ.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
1 μJ, sub-300 fs pulse generation from a compact thulium-doped chirped pulse amplifier seeded by Raman shifted erbium-doped fiber laser

Fangzhou Tan, Hongxing Shi, Ruoyu Sun, Peng Wang, and Pu Wang
Opt. Express 24(20) 22461-22468 (2016)

High-power all-fiber femtosecond chirped pulse amplification based on dispersive wave and chirped-volume Bragg grating

Ruoyu Sun, Dongchen Jin, Fangzhou Tan, Shouyu Wei, Chang Hong, Jia Xu, Jiang Liu, and Pu Wang
Opt. Express 24(20) 22806-22812 (2016)

172-fs, 27-µJ, Yb-doped all-fiber-integrated chirped pulse amplification system based on parabolic evolution by passive spectral amplitude shaping

Hong Chang, Zhaochen Cheng, Ruoyu Sun, Zhigang Peng, Miao Yu, Yu You, Min Wang, and Pu Wang
Opt. Express 27(23) 34103-34112 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. G. Frehlich, S. M. Hannon, and S. W. Henderson, “Performance of a 2-µm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11(6), 1517–1528 (1994).
    [Crossref]
  2. W. Shi, E. Petersen, N. Moor, A. Chavez-Pirson, and N. Peyghambarian, “All fiber-based single-frequency Q-switched laser pulses at 2 µm for lidar and remote sensing applications,” Proc. SPIE 8164, 81640M (2011).
    [Crossref]
  3. V. Konov, “Laser in micro and nanoprocessing of diamond materials,” Laser Photonics Rev. 6(6), 739–766 (2012).
    [Crossref]
  4. Q. Fu, L. Xu, S. Liang, D. P. Shepherd, D. J. Richardson, and S. Alam, “Widely Tunable, Narrow-Linewidth, High-Peak-Power, Picosecond Midinfrared Optical Parametric Amplifier,” IEEE J. Quantum Electron. 24(5), 1–6 (2018).
    [Crossref]
  5. M. P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105(17), 173901 (2010).
    [Crossref]
  6. E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
    [Crossref]
  7. F. Stutzki, C. Gaida, M. Gebhardt, F. Jansen, A. Wienke, U. Zeitner, F. Fuchs, C. Jauregui, D. Wandt, D. Kracht, J. Limpert, and A. Tünnermann, “152 W average power Tm-doped fiber CPA system,” Opt. Lett. 39(16), 4671–4674 (2014).
    [Crossref]
  8. A. Klenke, S. Breitkopf, M. Kienel, T. Gottschall, T. Eidam, S. Hädrich, J. Rothhardt, J. Limpert, and A. Tünnermann, “530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 38(13), 2283–2285 (2013).
    [Crossref]
  9. A. Klenke, M. Müller, H. Stark, F. Stutzki, C. Hupel, T. Schreiber, A. Tünnermann, and J. Limpert, “Coherently combined 16-channel multicore fiber laser system,” Opt. Lett. 43(7), 1519–1522 (2018).
    [Crossref]
  10. R. A. Sims, P. Kadwani, A. L. Shah, and M. Richardson, “1 µJ, sub-500 fs chirped pulse amplification in a Tm-doped fiber system,” Opt. Lett. 38(2), 121–123 (2013).
    [Crossref]
  11. H. Hoogland and R. Holzwarth, “Compact polarization-maintaining 2.05-µm fiber laser at 1-MHz and 1-MW peak power,” Opt. Lett. 40(15), 3520–3523 (2015).
    [Crossref]
  12. C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, and J. Limpert, “Ultrafast thulium fiber laser system emitting more than 1 kW of average power,” Opt. Lett. 43(23), 5853–5856 (2018).
    [Crossref]
  13. F. Tan, H. Shi, P. Wang, J. Liu, and P. Wang, “Chirped pulse amplification of a dissipative soliton thulium-doped fiber laser,” Proc. SPIE 9728, 97280Y (2016).
    [Crossref]
  14. D. Gaponov, L. Lavoute, S. Février, A. Hideur, and N. Ducros, “2µm all-fiber dissipative soliton master oscillator power amplifier,” Proc. SPIE 9728, 972834 (2016).
    [Crossref]
  15. P. Ciąćka, A. Rampur, A. Heidt, T. Feurer, and M. Klimczak, “Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths,” J. Opt. Soc. Am. B 35(6), 1301–1307 (2018).
    [Crossref]
  16. P. Elahi, H. Kalaycioğlu, Ö Akçaalan, Ç Şenel, and FÖ Ilday, “Burst-mode thulium all-fiber laser delivering femtosecond pulses at a 1 GHz intra-burst repetition rate,” Opt. Lett. 42(19), 3808–3811 (2017).
    [Crossref]
  17. E. Desurvire, “Analysis of gain difference between forward- and backward-pumped erbium-doped fiber amplifiers in the saturation regime,” IEEE Photonics Technol. Lett. 4(7), 711–714 (1992).
    [Crossref]
  18. S. Liang, L. Xu, Q. Fu, Y. Jung, D. P. Shepherd, D. J. Richardson, and S.-U. Alam, “295-kW peak power picosecond pulses from a thulium-doped-fiber MOPA and the generation of watt-level >2.5-octave supercontinuum extending up to 5 µm,” Opt. Express 26(6), 6490–6498 (2018).
    [Crossref]
  19. G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B: Lasers Opt. 71(1), 19–25 (2000).
    [Crossref]
  20. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999).
    [Crossref]
  21. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [Crossref]

2018 (5)

2017 (1)

2016 (2)

F. Tan, H. Shi, P. Wang, J. Liu, and P. Wang, “Chirped pulse amplification of a dissipative soliton thulium-doped fiber laser,” Proc. SPIE 9728, 97280Y (2016).
[Crossref]

D. Gaponov, L. Lavoute, S. Février, A. Hideur, and N. Ducros, “2µm all-fiber dissipative soliton master oscillator power amplifier,” Proc. SPIE 9728, 972834 (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (3)

R. A. Sims, P. Kadwani, A. L. Shah, and M. Richardson, “1 µJ, sub-500 fs chirped pulse amplification in a Tm-doped fiber system,” Opt. Lett. 38(2), 121–123 (2013).
[Crossref]

A. Klenke, S. Breitkopf, M. Kienel, T. Gottschall, T. Eidam, S. Hädrich, J. Rothhardt, J. Limpert, and A. Tünnermann, “530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 38(13), 2283–2285 (2013).
[Crossref]

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref]

2012 (1)

V. Konov, “Laser in micro and nanoprocessing of diamond materials,” Laser Photonics Rev. 6(6), 739–766 (2012).
[Crossref]

2011 (1)

W. Shi, E. Petersen, N. Moor, A. Chavez-Pirson, and N. Peyghambarian, “All fiber-based single-frequency Q-switched laser pulses at 2 µm for lidar and remote sensing applications,” Proc. SPIE 8164, 81640M (2011).
[Crossref]

2010 (1)

M. P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105(17), 173901 (2010).
[Crossref]

2006 (1)

2000 (1)

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B: Lasers Opt. 71(1), 19–25 (2000).
[Crossref]

1999 (1)

1994 (1)

R. G. Frehlich, S. M. Hannon, and S. W. Henderson, “Performance of a 2-µm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11(6), 1517–1528 (1994).
[Crossref]

1992 (1)

E. Desurvire, “Analysis of gain difference between forward- and backward-pumped erbium-doped fiber amplifiers in the saturation regime,” IEEE Photonics Technol. Lett. 4(7), 711–714 (1992).
[Crossref]

Akçaalan, Ö

Alam, S.

Q. Fu, L. Xu, S. Liang, D. P. Shepherd, D. J. Richardson, and S. Alam, “Widely Tunable, Narrow-Linewidth, High-Peak-Power, Picosecond Midinfrared Optical Parametric Amplifier,” IEEE J. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Alam, S.-U.

Arpin, M. P.

M. P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105(17), 173901 (2010).
[Crossref]

Breitkopf, S.

Buckley, J.

Byer, R. L.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref]

Chavez-Pirson, A.

W. Shi, E. Petersen, N. Moor, A. Chavez-Pirson, and N. Peyghambarian, “All fiber-based single-frequency Q-switched laser pulses at 2 µm for lidar and remote sensing applications,” Proc. SPIE 8164, 81640M (2011).
[Crossref]

Chong, A.

Ciacka, P.

Colby, E. R.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref]

Cowan, B.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref]

Desurvire, E.

E. Desurvire, “Analysis of gain difference between forward- and backward-pumped erbium-doped fiber amplifiers in the saturation regime,” IEEE Photonics Technol. Lett. 4(7), 711–714 (1992).
[Crossref]

Ducros, N.

D. Gaponov, L. Lavoute, S. Février, A. Hideur, and N. Ducros, “2µm all-fiber dissipative soliton master oscillator power amplifier,” Proc. SPIE 9728, 972834 (2016).
[Crossref]

Eidam, T.

Elahi, P.

England, R. J.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref]

Feurer, T.

Février, S.

D. Gaponov, L. Lavoute, S. Février, A. Hideur, and N. Ducros, “2µm all-fiber dissipative soliton master oscillator power amplifier,” Proc. SPIE 9728, 972834 (2016).
[Crossref]

Frehlich, R. G.

R. G. Frehlich, S. M. Hannon, and S. W. Henderson, “Performance of a 2-µm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11(6), 1517–1528 (1994).
[Crossref]

Fu, Q.

Q. Fu, L. Xu, S. Liang, D. P. Shepherd, D. J. Richardson, and S. Alam, “Widely Tunable, Narrow-Linewidth, High-Peak-Power, Picosecond Midinfrared Optical Parametric Amplifier,” IEEE J. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

S. Liang, L. Xu, Q. Fu, Y. Jung, D. P. Shepherd, D. J. Richardson, and S.-U. Alam, “295-kW peak power picosecond pulses from a thulium-doped-fiber MOPA and the generation of watt-level >2.5-octave supercontinuum extending up to 5 µm,” Opt. Express 26(6), 6490–6498 (2018).
[Crossref]

Fuchs, F.

Gaida, C.

Gaponov, D.

D. Gaponov, L. Lavoute, S. Février, A. Hideur, and N. Ducros, “2µm all-fiber dissipative soliton master oscillator power amplifier,” Proc. SPIE 9728, 972834 (2016).
[Crossref]

Gebhardt, M.

Gerrity, M.

M. P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105(17), 173901 (2010).
[Crossref]

Gottschall, T.

Hädrich, S.

Hannon, S. M.

R. G. Frehlich, S. M. Hannon, and S. W. Henderson, “Performance of a 2-µm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11(6), 1517–1528 (1994).
[Crossref]

Heidt, A.

Henderson, S. W.

R. G. Frehlich, S. M. Hannon, and S. W. Henderson, “Performance of a 2-µm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11(6), 1517–1528 (1994).
[Crossref]

Heuermann, T.

Hideur, A.

D. Gaponov, L. Lavoute, S. Février, A. Hideur, and N. Ducros, “2µm all-fiber dissipative soliton master oscillator power amplifier,” Proc. SPIE 9728, 972834 (2016).
[Crossref]

Holzwarth, R.

Hönninger, C.

Hoogland, H.

Hupel, C.

Ilday, FÖ

Jansen, F.

Jauregui, C.

Jung, Y.

Kadwani, P.

Kalaycioglu, H.

Kapteyn, H. C.

M. P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105(17), 173901 (2010).
[Crossref]

Keller, U.

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B: Lasers Opt. 71(1), 19–25 (2000).
[Crossref]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999).
[Crossref]

Kienel, M.

Klenke, A.

Klimczak, M.

Konov, V.

V. Konov, “Laser in micro and nanoprocessing of diamond materials,” Laser Photonics Rev. 6(6), 739–766 (2012).
[Crossref]

Kracht, D.

Lavoute, L.

D. Gaponov, L. Lavoute, S. Février, A. Hideur, and N. Ducros, “2µm all-fiber dissipative soliton master oscillator power amplifier,” Proc. SPIE 9728, 972834 (2016).
[Crossref]

Leedle, K. J.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref]

Liang, S.

Q. Fu, L. Xu, S. Liang, D. P. Shepherd, D. J. Richardson, and S. Alam, “Widely Tunable, Narrow-Linewidth, High-Peak-Power, Picosecond Midinfrared Optical Parametric Amplifier,” IEEE J. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

S. Liang, L. Xu, Q. Fu, Y. Jung, D. P. Shepherd, D. J. Richardson, and S.-U. Alam, “295-kW peak power picosecond pulses from a thulium-doped-fiber MOPA and the generation of watt-level >2.5-octave supercontinuum extending up to 5 µm,” Opt. Express 26(6), 6490–6498 (2018).
[Crossref]

Limpert, J.

Liu, J.

F. Tan, H. Shi, P. Wang, J. Liu, and P. Wang, “Chirped pulse amplification of a dissipative soliton thulium-doped fiber laser,” Proc. SPIE 9728, 97280Y (2016).
[Crossref]

McGuinness, C.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref]

McNeur, J.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref]

Montazeri, B.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref]

Moor, N.

W. Shi, E. Petersen, N. Moor, A. Chavez-Pirson, and N. Peyghambarian, “All fiber-based single-frequency Q-switched laser pulses at 2 µm for lidar and remote sensing applications,” Proc. SPIE 8164, 81640M (2011).
[Crossref]

Morier-Genoud, F.

Moser, M.

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B: Lasers Opt. 71(1), 19–25 (2000).
[Crossref]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999).
[Crossref]

Müller, M.

Murnane, M. M.

M. P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105(17), 173901 (2010).
[Crossref]

Paschotta, R.

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B: Lasers Opt. 71(1), 19–25 (2000).
[Crossref]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16(1), 46–56 (1999).
[Crossref]

Peralta, E. A.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref]

Petersen, E.

W. Shi, E. Petersen, N. Moor, A. Chavez-Pirson, and N. Peyghambarian, “All fiber-based single-frequency Q-switched laser pulses at 2 µm for lidar and remote sensing applications,” Proc. SPIE 8164, 81640M (2011).
[Crossref]

Peyghambarian, N.

W. Shi, E. Petersen, N. Moor, A. Chavez-Pirson, and N. Peyghambarian, “All fiber-based single-frequency Q-switched laser pulses at 2 µm for lidar and remote sensing applications,” Proc. SPIE 8164, 81640M (2011).
[Crossref]

Popmintchev, D.

M. P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105(17), 173901 (2010).
[Crossref]

Popmintchev, T.

M. P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105(17), 173901 (2010).
[Crossref]

Rampur, A.

Renninger, W.

Richardson, D. J.

Q. Fu, L. Xu, S. Liang, D. P. Shepherd, D. J. Richardson, and S. Alam, “Widely Tunable, Narrow-Linewidth, High-Peak-Power, Picosecond Midinfrared Optical Parametric Amplifier,” IEEE J. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

S. Liang, L. Xu, Q. Fu, Y. Jung, D. P. Shepherd, D. J. Richardson, and S.-U. Alam, “295-kW peak power picosecond pulses from a thulium-doped-fiber MOPA and the generation of watt-level >2.5-octave supercontinuum extending up to 5 µm,” Opt. Express 26(6), 6490–6498 (2018).
[Crossref]

Richardson, M.

Rothhardt, J.

Schreiber, T.

Schwartz, B.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref]

Seaberg, M.

M. P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105(17), 173901 (2010).
[Crossref]

Senel, Ç

Shah, A. L.

Shepherd, D. P.

Q. Fu, L. Xu, S. Liang, D. P. Shepherd, D. J. Richardson, and S. Alam, “Widely Tunable, Narrow-Linewidth, High-Peak-Power, Picosecond Midinfrared Optical Parametric Amplifier,” IEEE J. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

S. Liang, L. Xu, Q. Fu, Y. Jung, D. P. Shepherd, D. J. Richardson, and S.-U. Alam, “295-kW peak power picosecond pulses from a thulium-doped-fiber MOPA and the generation of watt-level >2.5-octave supercontinuum extending up to 5 µm,” Opt. Express 26(6), 6490–6498 (2018).
[Crossref]

Shi, H.

F. Tan, H. Shi, P. Wang, J. Liu, and P. Wang, “Chirped pulse amplification of a dissipative soliton thulium-doped fiber laser,” Proc. SPIE 9728, 97280Y (2016).
[Crossref]

Shi, W.

W. Shi, E. Petersen, N. Moor, A. Chavez-Pirson, and N. Peyghambarian, “All fiber-based single-frequency Q-switched laser pulses at 2 µm for lidar and remote sensing applications,” Proc. SPIE 8164, 81640M (2011).
[Crossref]

Sims, R. A.

Soong, K.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref]

Sozer, E. B.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref]

Spühler, G. J.

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B: Lasers Opt. 71(1), 19–25 (2000).
[Crossref]

Stark, H.

Stutzki, F.

Südmeyer, T.

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B: Lasers Opt. 71(1), 19–25 (2000).
[Crossref]

Tan, F.

F. Tan, H. Shi, P. Wang, J. Liu, and P. Wang, “Chirped pulse amplification of a dissipative soliton thulium-doped fiber laser,” Proc. SPIE 9728, 97280Y (2016).
[Crossref]

Travish, G.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref]

Tünnermann, A.

Walz, D.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref]

Wandt, D.

Wang, P.

F. Tan, H. Shi, P. Wang, J. Liu, and P. Wang, “Chirped pulse amplification of a dissipative soliton thulium-doped fiber laser,” Proc. SPIE 9728, 97280Y (2016).
[Crossref]

F. Tan, H. Shi, P. Wang, J. Liu, and P. Wang, “Chirped pulse amplification of a dissipative soliton thulium-doped fiber laser,” Proc. SPIE 9728, 97280Y (2016).
[Crossref]

Weingarten, K. J.

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B: Lasers Opt. 71(1), 19–25 (2000).
[Crossref]

Wienke, A.

Wise, F.

Wu, Z.

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref]

Xu, L.

Q. Fu, L. Xu, S. Liang, D. P. Shepherd, D. J. Richardson, and S. Alam, “Widely Tunable, Narrow-Linewidth, High-Peak-Power, Picosecond Midinfrared Optical Parametric Amplifier,” IEEE J. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

S. Liang, L. Xu, Q. Fu, Y. Jung, D. P. Shepherd, D. J. Richardson, and S.-U. Alam, “295-kW peak power picosecond pulses from a thulium-doped-fiber MOPA and the generation of watt-level >2.5-octave supercontinuum extending up to 5 µm,” Opt. Express 26(6), 6490–6498 (2018).
[Crossref]

Zeitner, U.

Zhang, B.

M. P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105(17), 173901 (2010).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

G. J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K. J. Weingarten, and U. Keller, “Passively mode-locked high-power Nd:YAG lasers with multiple laser heads,” Appl. Phys. B: Lasers Opt. 71(1), 19–25 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

Q. Fu, L. Xu, S. Liang, D. P. Shepherd, D. J. Richardson, and S. Alam, “Widely Tunable, Narrow-Linewidth, High-Peak-Power, Picosecond Midinfrared Optical Parametric Amplifier,” IEEE J. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

E. Desurvire, “Analysis of gain difference between forward- and backward-pumped erbium-doped fiber amplifiers in the saturation regime,” IEEE Photonics Technol. Lett. 4(7), 711–714 (1992).
[Crossref]

J. Atmos. Oceanic Technol. (1)

R. G. Frehlich, S. M. Hannon, and S. W. Henderson, “Performance of a 2-µm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11(6), 1517–1528 (1994).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

V. Konov, “Laser in micro and nanoprocessing of diamond materials,” Laser Photonics Rev. 6(6), 739–766 (2012).
[Crossref]

Nature (1)

E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, “Demonstration of electron acceleration in a laser-driven dielectric microstructure,” Nature 503(7474), 91–94 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (7)

P. Elahi, H. Kalaycioğlu, Ö Akçaalan, Ç Şenel, and FÖ Ilday, “Burst-mode thulium all-fiber laser delivering femtosecond pulses at a 1 GHz intra-burst repetition rate,” Opt. Lett. 42(19), 3808–3811 (2017).
[Crossref]

F. Stutzki, C. Gaida, M. Gebhardt, F. Jansen, A. Wienke, U. Zeitner, F. Fuchs, C. Jauregui, D. Wandt, D. Kracht, J. Limpert, and A. Tünnermann, “152 W average power Tm-doped fiber CPA system,” Opt. Lett. 39(16), 4671–4674 (2014).
[Crossref]

A. Klenke, S. Breitkopf, M. Kienel, T. Gottschall, T. Eidam, S. Hädrich, J. Rothhardt, J. Limpert, and A. Tünnermann, “530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 38(13), 2283–2285 (2013).
[Crossref]

A. Klenke, M. Müller, H. Stark, F. Stutzki, C. Hupel, T. Schreiber, A. Tünnermann, and J. Limpert, “Coherently combined 16-channel multicore fiber laser system,” Opt. Lett. 43(7), 1519–1522 (2018).
[Crossref]

R. A. Sims, P. Kadwani, A. L. Shah, and M. Richardson, “1 µJ, sub-500 fs chirped pulse amplification in a Tm-doped fiber system,” Opt. Lett. 38(2), 121–123 (2013).
[Crossref]

H. Hoogland and R. Holzwarth, “Compact polarization-maintaining 2.05-µm fiber laser at 1-MHz and 1-MW peak power,” Opt. Lett. 40(15), 3520–3523 (2015).
[Crossref]

C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, and J. Limpert, “Ultrafast thulium fiber laser system emitting more than 1 kW of average power,” Opt. Lett. 43(23), 5853–5856 (2018).
[Crossref]

Phys. Rev. Lett. (1)

M. P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105(17), 173901 (2010).
[Crossref]

Proc. SPIE (3)

W. Shi, E. Petersen, N. Moor, A. Chavez-Pirson, and N. Peyghambarian, “All fiber-based single-frequency Q-switched laser pulses at 2 µm for lidar and remote sensing applications,” Proc. SPIE 8164, 81640M (2011).
[Crossref]

F. Tan, H. Shi, P. Wang, J. Liu, and P. Wang, “Chirped pulse amplification of a dissipative soliton thulium-doped fiber laser,” Proc. SPIE 9728, 97280Y (2016).
[Crossref]

D. Gaponov, L. Lavoute, S. Février, A. Hideur, and N. Ducros, “2µm all-fiber dissipative soliton master oscillator power amplifier,” Proc. SPIE 9728, 972834 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic of the CPA system. WDM-Wavelength-division multiplexer, PC- Polarization controller, CIR- Circulator, DM- Dichroic mirror.
Fig. 2.
Fig. 2. (a) Oscilloscope trace of the output pulses. Inset: autocorrelation trace of the seed laser. (b) RF spectrum at the fundamental frequency of 15.7 MHz. Inset: RF spectrum with 1 GHz span.
Fig. 3.
Fig. 3. The optical spectrum of the seed laser (black) and the pre-amplified (blue), main amplified pulses (red) at the maximum output power obtained with the forward pumped version of the power amplifier.
Fig. 4.
Fig. 4. Forward pumped amplifier results: (a) Amplified power (black dot) vs. incident pump power. (b) Autocorrelation trace for the pulse after compression at maximum compressed average power of 20 W. Inset: 50 ps span.
Fig. 5.
Fig. 5. Reverse pumping results. (a) Optical spectra after the oscillator (black), pre-amplifier (blue) and final amplifier amplified pulses (red) at the maximum output power using backward pumping. (b) Power (black dot) from final amplifier vs. incident pump power. (c) Autocorrelation trace at maximum compressed average power of 21.5 W. (d) Optical spectrum with sidebands over nonlinear peak power threshold; inset shows corresponding compression pulse autocorrelation trace.

Metrics