Abstract

The effect of magnetic fields on the optical output power of flip-chip light-emitting diodes (LEDs) with InGaN/GaN multiple quantum wells (MQWs) was investigated. Films and circular disks comprising ferromagnetic cobalt/platinum (Co/Pt) multilayers were deposited on a p-ohmic reflector to apply magnetic fields in the direction perpendicular to the MQWs of the LEDs. At an injection current of 20 mA, the ferromagnetic Co/Pt multilayer film increased the optical output power of the LED by 20% compared to an LED without a ferromagnetic Co/Pt multilayer. Furthermore, the optical output power of the LED with circular disks was 40% higher at 20 mA than the output of the LED with a film. The increase of the optical output power of the LEDs featuring ferromagnetic Co/Pt multilayers is attributed to the magnetic field gradient in the MQWs, which increases the carrier path in the MQWs. The time-resolved photoluminescence measurement indicates that the improvement of optical output power is owing to an enhanced radiative recombination rate of the carriers in the MQWs as a result of the magnetic field gradient from the ferromagnetic Co/Pt multilayer.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Magnetically enhanced luminescence of CdSe/ZnS quantum dot light-emitting diodes using circular ferromagnetic Co/Pt multilayer disks

Jang-Hwan Han, Na-Yeong Kim, Sang-Jo Kim, Wonyoung Kwak, BeongKi Cho, Seong-Ju Park, and Dong-Seon Lee
Opt. Express 27(25) 36601-36610 (2019)

Enhanced performance of InGaN/GaN multiple-quantum-well light-emitting diodes grown on nanoporous GaN layers

Kwang Jae Lee, Sang-Jo Kim, Jae-Joon Kim, Kyungwook Hwang, Sung-Tae Kim, and Seong-Ju Park
Opt. Express 22(S4) A1164-A1173 (2014)

GaN-based ultraviolet light-emitting diodes with AlN/GaN/InGaN multiple quantum wells

Hung-Ming Chang, Wei-Chih Lai, Wei-Shou Chen, and Shoou-Jinn Chang
Opt. Express 23(7) A337-A345 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: History, progress, and future,” Laser Photonics Rev. 11(2), 1600147 (2017).
    [Crossref]
  2. P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14(5), 454–458 (2015).
    [Crossref]
  3. J. Bhardwaj, J. M. Cesaratto, I. H. Wildeson, H. Choy, A. Tandon, W. A. Soer, P. J. Schmidt, B. Spinger, P. Deb, O. B. Shchekin, and W. Gotz, “Progress in high-luminance LED technology for solid-state lighting,” Phys. Status Solidi A 214(8), 1600826 (2017).
    [Crossref]
  4. Y. K. Kuo, J. Y. Chang, and M. C. Tsai, “Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer,” Opt. Lett. 35(19), 3285–3287 (2010).
    [Crossref]
  5. S. H. Han, C. Y. Cho, S. J. Lee, T. Y. Park, T. H. Kim, S. H. Park, S. W. Kang, J. W. Kim, Y. C. Kim, and S. J. Park, “Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes,” Appl. Phys. Lett. 96(5), 051113 (2010).
    [Crossref]
  6. S. P. Chang, T. C. Lu, L. F. Zhuo, C. Y. Jang, D. W. Lin, H. C. Yang, H. C. Kuo, and S. C. Wang, “Low droop nonpolar GaN/InGaN light emitting diode grown on m-Plane GaN substrate,” J. Electrochem. Soc. 157(5), H501–H503 (2010).
    [Crossref]
  7. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
    [Crossref]
  8. M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
    [Crossref]
  9. Q. X. Zhao, B. Monemar, P. O. Holtz, T. Lundström, M. Sundaram, J. L. Merz, and A. C. Gossard, “Magnetic-field-induced localization effects on radiative recombination in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B 50(11), 7514–7517 (1994).
    [Crossref]
  10. B. Arnaudov, T. Paskova, O. Valassiades, P. P. Paskov, S. Evtimova, B. Monomer, and M. Heuken, “Magnetic-field-induced localization of electrons in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 83(13), 2590–2592 (2003).
    [Crossref]
  11. F. Y. Tsai, C. P. Lee, O. Voskoboynikov, H. H. Cheng, J. Shen, and Y. Oka, “Time-resolved photoluminescence study of InGaAs/GaAs quantum wells on (111)B GaAs substrates under magnetic fields,” J. Appl. Phys. 89(12), 7875–7878 (2001).
    [Crossref]
  12. J. Reijniers, F. M. Peeters, and A. Matulis, “The Hall resistivity of a two-dimensional electron gas in the presence of magnetic clusters with perpendicular magnetization,” Phys. E 6(1-4), 759–762 (2000).
    [Crossref]
  13. J. Reijniers, F. M. Peeters, and A. Matulis, “Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas,” Phys. Rev. B 64(24), 245314 (2001).
    [Crossref]
  14. K. S. Novoselov, A. K. Geim, S. V. Dubonos, Y. G. Cornelissens, F. M. Peeters, and J. C. Maan, “Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field,” Phys. Rev. B 65(23), 233312 (2002).
    [Crossref]
  15. A. Nogaret, S. J. Bending, and M. Henini, “Resistance resonance effects through magnetic edge states,” Phys. Rev. Lett. 84(10), 2231–2234 (2000).
    [Crossref]
  16. A. Nogaret, S. Carlton, B. L. Gallagher, P. C. Main, M. Henini, R. Wirtz, R. Newbury, M. A. Howson, and S. P. Beaumont, “Observation of giant magnetoresistance due to open orbits in hybrid semiconductor/ferromagnet devices,” Phys. Rev. B 55(24), R16037 (1997).
    [Crossref]
  17. J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the optical output power of InGaN/GaN multiple quantum well light-emitting diodes by a CoFe ferromagnetic layer,” ACS Photonics 2(11), 1519–1523 (2015).
    [Crossref]
  18. J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380(5-6), 710–715 (2003).
    [Crossref]
  19. B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21(14-15), 1500–1516 (2009).
    [Crossref]
  20. N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Co/Pt multilayers: Magnetic circular X-ray dichroism study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
    [Crossref]
  21. S. Bandiera, R. C. Sousa, B. Rodmacq, and B. Dieny, “Asymmetric interfacial perpendicular magnetic anisotropy in Pt/Co/Pt trilayers,” IEEE Magn. Lett. 2, 3000504 (2011).
    [Crossref]
  22. J. Thiele, C. Boeglin, K. Hricovini, and F. Chevrier, “Magnetic circular X-ray-dichroism study of Co/Pt(111),” Phys. Rev. B 53(18), R11934(1996).
    [Crossref]
  23. A. Barman, S. Wang, and H. Schmidt, “Ultrafast magnetization dynamics in high perpendicular anisotropy [Co∕Pt]n multilayers,” J. Appl. Phys. 101(9), 09D102 (2007).
    [Crossref]
  24. R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, “Injection and detection of a spin-polarized current in a light-emitting diode,” Nature 402(6763), 787–790 (1999).
    [Crossref]
  25. E. D. Fraser, S. Hegde, L. Schweidenback, A. H. Russ, A. Petrou, H. Luo, and G. Kioseoglou, “Efficient electron spin injection in MnAs-based spin-light-emitting-diodes up to room temperature,” Phys. Rev. Lett. 97(4), 041103 (2010).
    [Crossref]
  26. D. Uzur, A. Nogaret, H. E. Beere, D. A. Ritchie, C. H. Marrows, and B. J. Hickey, “Probing the annular electronic shell structure of a magnetic corral,” Phys. Rev. B 69(24), 241301 (2004).
    [Crossref]
  27. S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
    [Crossref]
  28. Y. Narukawa, Y. Kawakami, S. Fujita, and S. Fujita, “Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells,” Phys. Rev. B 55(4), R1938–R1941 (1997).
    [Crossref]
  29. G. E. Weng, W. R. Zhao, S. Q. Chen, H. Akiyama, Z. C. Li, J. P. Liu, and B. P. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10(1), 31 (2015).
    [Crossref]
  30. T. Lin, H. C. Kuo, X. D. Jiang, and Z. C. Feng, “Recombination Pathways in Green InGaN/GaN Multiple Quantum Wells,” Nanoscale Res. Lett. 12(1), 137 (2017).
    [Crossref]
  31. Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1137–1143 (2009).
    [Crossref]

2017 (3)

J. Bhardwaj, J. M. Cesaratto, I. H. Wildeson, H. Choy, A. Tandon, W. A. Soer, P. J. Schmidt, B. Spinger, P. Deb, O. B. Shchekin, and W. Gotz, “Progress in high-luminance LED technology for solid-state lighting,” Phys. Status Solidi A 214(8), 1600826 (2017).
[Crossref]

J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: History, progress, and future,” Laser Photonics Rev. 11(2), 1600147 (2017).
[Crossref]

T. Lin, H. C. Kuo, X. D. Jiang, and Z. C. Feng, “Recombination Pathways in Green InGaN/GaN Multiple Quantum Wells,” Nanoscale Res. Lett. 12(1), 137 (2017).
[Crossref]

2015 (3)

G. E. Weng, W. R. Zhao, S. Q. Chen, H. Akiyama, Z. C. Li, J. P. Liu, and B. P. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10(1), 31 (2015).
[Crossref]

P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14(5), 454–458 (2015).
[Crossref]

J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the optical output power of InGaN/GaN multiple quantum well light-emitting diodes by a CoFe ferromagnetic layer,” ACS Photonics 2(11), 1519–1523 (2015).
[Crossref]

2011 (1)

S. Bandiera, R. C. Sousa, B. Rodmacq, and B. Dieny, “Asymmetric interfacial perpendicular magnetic anisotropy in Pt/Co/Pt trilayers,” IEEE Magn. Lett. 2, 3000504 (2011).
[Crossref]

2010 (4)

Y. K. Kuo, J. Y. Chang, and M. C. Tsai, “Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer,” Opt. Lett. 35(19), 3285–3287 (2010).
[Crossref]

S. H. Han, C. Y. Cho, S. J. Lee, T. Y. Park, T. H. Kim, S. H. Park, S. W. Kang, J. W. Kim, Y. C. Kim, and S. J. Park, “Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes,” Appl. Phys. Lett. 96(5), 051113 (2010).
[Crossref]

S. P. Chang, T. C. Lu, L. F. Zhuo, C. Y. Jang, D. W. Lin, H. C. Yang, H. C. Kuo, and S. C. Wang, “Low droop nonpolar GaN/InGaN light emitting diode grown on m-Plane GaN substrate,” J. Electrochem. Soc. 157(5), H501–H503 (2010).
[Crossref]

E. D. Fraser, S. Hegde, L. Schweidenback, A. H. Russ, A. Petrou, H. Luo, and G. Kioseoglou, “Efficient electron spin injection in MnAs-based spin-light-emitting-diodes up to room temperature,” Phys. Rev. Lett. 97(4), 041103 (2010).
[Crossref]

2009 (2)

Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1137–1143 (2009).
[Crossref]

B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21(14-15), 1500–1516 (2009).
[Crossref]

2008 (1)

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

2007 (2)

M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

A. Barman, S. Wang, and H. Schmidt, “Ultrafast magnetization dynamics in high perpendicular anisotropy [Co∕Pt]n multilayers,” J. Appl. Phys. 101(9), 09D102 (2007).
[Crossref]

2004 (1)

D. Uzur, A. Nogaret, H. E. Beere, D. A. Ritchie, C. H. Marrows, and B. J. Hickey, “Probing the annular electronic shell structure of a magnetic corral,” Phys. Rev. B 69(24), 241301 (2004).
[Crossref]

2003 (2)

B. Arnaudov, T. Paskova, O. Valassiades, P. P. Paskov, S. Evtimova, B. Monomer, and M. Heuken, “Magnetic-field-induced localization of electrons in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 83(13), 2590–2592 (2003).
[Crossref]

J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380(5-6), 710–715 (2003).
[Crossref]

2002 (2)

K. S. Novoselov, A. K. Geim, S. V. Dubonos, Y. G. Cornelissens, F. M. Peeters, and J. C. Maan, “Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field,” Phys. Rev. B 65(23), 233312 (2002).
[Crossref]

S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[Crossref]

2001 (2)

J. Reijniers, F. M. Peeters, and A. Matulis, “Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas,” Phys. Rev. B 64(24), 245314 (2001).
[Crossref]

F. Y. Tsai, C. P. Lee, O. Voskoboynikov, H. H. Cheng, J. Shen, and Y. Oka, “Time-resolved photoluminescence study of InGaAs/GaAs quantum wells on (111)B GaAs substrates under magnetic fields,” J. Appl. Phys. 89(12), 7875–7878 (2001).
[Crossref]

2000 (2)

J. Reijniers, F. M. Peeters, and A. Matulis, “The Hall resistivity of a two-dimensional electron gas in the presence of magnetic clusters with perpendicular magnetization,” Phys. E 6(1-4), 759–762 (2000).
[Crossref]

A. Nogaret, S. J. Bending, and M. Henini, “Resistance resonance effects through magnetic edge states,” Phys. Rev. Lett. 84(10), 2231–2234 (2000).
[Crossref]

1999 (1)

R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, “Injection and detection of a spin-polarized current in a light-emitting diode,” Nature 402(6763), 787–790 (1999).
[Crossref]

1998 (1)

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Co/Pt multilayers: Magnetic circular X-ray dichroism study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

1997 (2)

A. Nogaret, S. Carlton, B. L. Gallagher, P. C. Main, M. Henini, R. Wirtz, R. Newbury, M. A. Howson, and S. P. Beaumont, “Observation of giant magnetoresistance due to open orbits in hybrid semiconductor/ferromagnet devices,” Phys. Rev. B 55(24), R16037 (1997).
[Crossref]

Y. Narukawa, Y. Kawakami, S. Fujita, and S. Fujita, “Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells,” Phys. Rev. B 55(4), R1938–R1941 (1997).
[Crossref]

1996 (1)

J. Thiele, C. Boeglin, K. Hricovini, and F. Chevrier, “Magnetic circular X-ray-dichroism study of Co/Pt(111),” Phys. Rev. B 53(18), R11934(1996).
[Crossref]

1994 (1)

Q. X. Zhao, B. Monemar, P. O. Holtz, T. Lundström, M. Sundaram, J. L. Merz, and A. C. Gossard, “Magnetic-field-induced localization effects on radiative recombination in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B 50(11), 7514–7517 (1994).
[Crossref]

Akiyama, H.

G. E. Weng, W. R. Zhao, S. Q. Chen, H. Akiyama, Z. C. Li, J. P. Liu, and B. P. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10(1), 31 (2015).
[Crossref]

Arnaudov, B.

B. Arnaudov, T. Paskova, O. Valassiades, P. P. Paskov, S. Evtimova, B. Monomer, and M. Heuken, “Magnetic-field-induced localization of electrons in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 83(13), 2590–2592 (2003).
[Crossref]

Baek, J. H.

J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the optical output power of InGaN/GaN multiple quantum well light-emitting diodes by a CoFe ferromagnetic layer,” ACS Photonics 2(11), 1519–1523 (2015).
[Crossref]

Bandiera, S.

S. Bandiera, R. C. Sousa, B. Rodmacq, and B. Dieny, “Asymmetric interfacial perpendicular magnetic anisotropy in Pt/Co/Pt trilayers,” IEEE Magn. Lett. 2, 3000504 (2011).
[Crossref]

Barman, A.

A. Barman, S. Wang, and H. Schmidt, “Ultrafast magnetization dynamics in high perpendicular anisotropy [Co∕Pt]n multilayers,” J. Appl. Phys. 101(9), 09D102 (2007).
[Crossref]

Beaumont, S. P.

A. Nogaret, S. Carlton, B. L. Gallagher, P. C. Main, M. Henini, R. Wirtz, R. Newbury, M. A. Howson, and S. P. Beaumont, “Observation of giant magnetoresistance due to open orbits in hybrid semiconductor/ferromagnet devices,” Phys. Rev. B 55(24), R16037 (1997).
[Crossref]

Beere, H. E.

D. Uzur, A. Nogaret, H. E. Beere, D. A. Ritchie, C. H. Marrows, and B. J. Hickey, “Probing the annular electronic shell structure of a magnetic corral,” Phys. Rev. B 69(24), 241301 (2004).
[Crossref]

Bending, S. J.

A. Nogaret, S. J. Bending, and M. Henini, “Resistance resonance effects through magnetic edge states,” Phys. Rev. Lett. 84(10), 2231–2234 (2000).
[Crossref]

Bhardwaj, J.

J. Bhardwaj, J. M. Cesaratto, I. H. Wildeson, H. Choy, A. Tandon, W. A. Soer, P. J. Schmidt, B. Spinger, P. Deb, O. B. Shchekin, and W. Gotz, “Progress in high-luminance LED technology for solid-state lighting,” Phys. Status Solidi A 214(8), 1600826 (2017).
[Crossref]

Boeglin, C.

J. Thiele, C. Boeglin, K. Hricovini, and F. Chevrier, “Magnetic circular X-ray-dichroism study of Co/Pt(111),” Phys. Rev. B 53(18), R11934(1996).
[Crossref]

Byeon, C. C.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Carlton, S.

A. Nogaret, S. Carlton, B. L. Gallagher, P. C. Main, M. Henini, R. Wirtz, R. Newbury, M. A. Howson, and S. P. Beaumont, “Observation of giant magnetoresistance due to open orbits in hybrid semiconductor/ferromagnet devices,” Phys. Rev. B 55(24), R16037 (1997).
[Crossref]

Cesaratto, J. M.

J. Bhardwaj, J. M. Cesaratto, I. H. Wildeson, H. Choy, A. Tandon, W. A. Soer, P. J. Schmidt, B. Spinger, P. Deb, O. B. Shchekin, and W. Gotz, “Progress in high-luminance LED technology for solid-state lighting,” Phys. Status Solidi A 214(8), 1600826 (2017).
[Crossref]

Chang, J. Y.

Chang, S. P.

S. P. Chang, T. C. Lu, L. F. Zhuo, C. Y. Jang, D. W. Lin, H. C. Yang, H. C. Kuo, and S. C. Wang, “Low droop nonpolar GaN/InGaN light emitting diode grown on m-Plane GaN substrate,” J. Electrochem. Soc. 157(5), H501–H503 (2010).
[Crossref]

Chen, S. Q.

G. E. Weng, W. R. Zhao, S. Q. Chen, H. Akiyama, Z. C. Li, J. P. Liu, and B. P. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10(1), 31 (2015).
[Crossref]

Cheng, H. H.

F. Y. Tsai, C. P. Lee, O. Voskoboynikov, H. H. Cheng, J. Shen, and Y. Oka, “Time-resolved photoluminescence study of InGaAs/GaAs quantum wells on (111)B GaAs substrates under magnetic fields,” J. Appl. Phys. 89(12), 7875–7878 (2001).
[Crossref]

Cheng, Y. C.

S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[Crossref]

Chevrier, F.

J. Thiele, C. Boeglin, K. Hricovini, and F. Chevrier, “Magnetic circular X-ray-dichroism study of Co/Pt(111),” Phys. Rev. B 53(18), R11934(1996).
[Crossref]

Chiu, C. H.

Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1137–1143 (2009).
[Crossref]

Cho, B.

J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the optical output power of InGaN/GaN multiple quantum well light-emitting diodes by a CoFe ferromagnetic layer,” ACS Photonics 2(11), 1519–1523 (2015).
[Crossref]

Cho, C. Y.

S. H. Han, C. Y. Cho, S. J. Lee, T. Y. Park, T. H. Kim, S. H. Park, S. W. Kang, J. W. Kim, Y. C. Kim, and S. J. Park, “Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes,” Appl. Phys. Lett. 96(5), 051113 (2010).
[Crossref]

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Cho, J.

J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: History, progress, and future,” Laser Photonics Rev. 11(2), 1600147 (2017).
[Crossref]

Choy, H.

J. Bhardwaj, J. M. Cesaratto, I. H. Wildeson, H. Choy, A. Tandon, W. A. Soer, P. J. Schmidt, B. Spinger, P. Deb, O. B. Shchekin, and W. Gotz, “Progress in high-luminance LED technology for solid-state lighting,” Phys. Status Solidi A 214(8), 1600826 (2017).
[Crossref]

Chung, Y. Y.

S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[Crossref]

Chyi, J. I.

S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[Crossref]

Cocchi, M.

J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380(5-6), 710–715 (2003).
[Crossref]

Cornelissens, Y. G.

K. S. Novoselov, A. K. Geim, S. V. Dubonos, Y. G. Cornelissens, F. M. Peeters, and J. C. Maan, “Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field,” Phys. Rev. B 65(23), 233312 (2002).
[Crossref]

Craford, M. G.

M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Deb, P.

J. Bhardwaj, J. M. Cesaratto, I. H. Wildeson, H. Choy, A. Tandon, W. A. Soer, P. J. Schmidt, B. Spinger, P. Deb, O. B. Shchekin, and W. Gotz, “Progress in high-luminance LED technology for solid-state lighting,” Phys. Status Solidi A 214(8), 1600826 (2017).
[Crossref]

Dieny, B.

S. Bandiera, R. C. Sousa, B. Rodmacq, and B. Dieny, “Asymmetric interfacial perpendicular magnetic anisotropy in Pt/Co/Pt trilayers,” IEEE Magn. Lett. 2, 3000504 (2011).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Dubonos, Y. G. Cornelissens, F. M. Peeters, and J. C. Maan, “Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field,” Phys. Rev. B 65(23), 233312 (2002).
[Crossref]

Evtimova, S.

B. Arnaudov, T. Paskova, O. Valassiades, P. P. Paskov, S. Evtimova, B. Monomer, and M. Heuken, “Magnetic-field-induced localization of electrons in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 83(13), 2590–2592 (2003).
[Crossref]

Fattori, V.

J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380(5-6), 710–715 (2003).
[Crossref]

Feng, S. W.

S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[Crossref]

Feng, Z. C.

T. Lin, H. C. Kuo, X. D. Jiang, and Z. C. Feng, “Recombination Pathways in Green InGaN/GaN Multiple Quantum Wells,” Nanoscale Res. Lett. 12(1), 137 (2017).
[Crossref]

Fiederling, R.

R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, “Injection and detection of a spin-polarized current in a light-emitting diode,” Nature 402(6763), 787–790 (1999).
[Crossref]

Fraser, E. D.

E. D. Fraser, S. Hegde, L. Schweidenback, A. H. Russ, A. Petrou, H. Luo, and G. Kioseoglou, “Efficient electron spin injection in MnAs-based spin-light-emitting-diodes up to room temperature,” Phys. Rev. Lett. 97(4), 041103 (2010).
[Crossref]

Fujimori, A.

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Co/Pt multilayers: Magnetic circular X-ray dichroism study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

Fujita, S.

Y. Narukawa, Y. Kawakami, S. Fujita, and S. Fujita, “Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells,” Phys. Rev. B 55(4), R1938–R1941 (1997).
[Crossref]

Y. Narukawa, Y. Kawakami, S. Fujita, and S. Fujita, “Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells,” Phys. Rev. B 55(4), R1938–R1941 (1997).
[Crossref]

Fukutani, H.

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Co/Pt multilayers: Magnetic circular X-ray dichroism study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

Gallagher, B. L.

A. Nogaret, S. Carlton, B. L. Gallagher, P. C. Main, M. Henini, R. Wirtz, R. Newbury, M. A. Howson, and S. P. Beaumont, “Observation of giant magnetoresistance due to open orbits in hybrid semiconductor/ferromagnet devices,” Phys. Rev. B 55(24), R16037 (1997).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Dubonos, Y. G. Cornelissens, F. M. Peeters, and J. C. Maan, “Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field,” Phys. Rev. B 65(23), 233312 (2002).
[Crossref]

Gossard, A. C.

Q. X. Zhao, B. Monemar, P. O. Holtz, T. Lundström, M. Sundaram, J. L. Merz, and A. C. Gossard, “Magnetic-field-induced localization effects on radiative recombination in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B 50(11), 7514–7517 (1994).
[Crossref]

Gotz, W.

J. Bhardwaj, J. M. Cesaratto, I. H. Wildeson, H. Choy, A. Tandon, W. A. Soer, P. J. Schmidt, B. Spinger, P. Deb, O. B. Shchekin, and W. Gotz, “Progress in high-luminance LED technology for solid-state lighting,” Phys. Status Solidi A 214(8), 1600826 (2017).
[Crossref]

Han, S. H.

S. H. Han, C. Y. Cho, S. J. Lee, T. Y. Park, T. H. Kim, S. H. Park, S. W. Kang, J. W. Kim, Y. C. Kim, and S. J. Park, “Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes,” Appl. Phys. Lett. 96(5), 051113 (2010).
[Crossref]

Harbers, G.

M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Hegde, S.

E. D. Fraser, S. Hegde, L. Schweidenback, A. H. Russ, A. Petrou, H. Luo, and G. Kioseoglou, “Efficient electron spin injection in MnAs-based spin-light-emitting-diodes up to room temperature,” Phys. Rev. Lett. 97(4), 041103 (2010).
[Crossref]

Henini, M.

A. Nogaret, S. J. Bending, and M. Henini, “Resistance resonance effects through magnetic edge states,” Phys. Rev. Lett. 84(10), 2231–2234 (2000).
[Crossref]

A. Nogaret, S. Carlton, B. L. Gallagher, P. C. Main, M. Henini, R. Wirtz, R. Newbury, M. A. Howson, and S. P. Beaumont, “Observation of giant magnetoresistance due to open orbits in hybrid semiconductor/ferromagnet devices,” Phys. Rev. B 55(24), R16037 (1997).
[Crossref]

Heuken, M.

B. Arnaudov, T. Paskova, O. Valassiades, P. P. Paskov, S. Evtimova, B. Monomer, and M. Heuken, “Magnetic-field-induced localization of electrons in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 83(13), 2590–2592 (2003).
[Crossref]

Hickey, B. J.

D. Uzur, A. Nogaret, H. E. Beere, D. A. Ritchie, C. H. Marrows, and B. J. Hickey, “Probing the annular electronic shell structure of a magnetic corral,” Phys. Rev. B 69(24), 241301 (2004).
[Crossref]

Holtz, P. O.

Q. X. Zhao, B. Monemar, P. O. Holtz, T. Lundström, M. Sundaram, J. L. Merz, and A. C. Gossard, “Magnetic-field-induced localization effects on radiative recombination in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B 50(11), 7514–7517 (1994).
[Crossref]

Howson, M. A.

A. Nogaret, S. Carlton, B. L. Gallagher, P. C. Main, M. Henini, R. Wirtz, R. Newbury, M. A. Howson, and S. P. Beaumont, “Observation of giant magnetoresistance due to open orbits in hybrid semiconductor/ferromagnet devices,” Phys. Rev. B 55(24), R16037 (1997).
[Crossref]

Hricovini, K.

J. Thiele, C. Boeglin, K. Hricovini, and F. Chevrier, “Magnetic circular X-ray-dichroism study of Co/Pt(111),” Phys. Rev. B 53(18), R11934(1996).
[Crossref]

Hsu, C.

S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[Crossref]

Hu, B.

B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21(14-15), 1500–1516 (2009).
[Crossref]

Iio, K.

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Co/Pt multilayers: Magnetic circular X-ray dichroism study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

Jang, C. Y.

S. P. Chang, T. C. Lu, L. F. Zhuo, C. Y. Jang, D. W. Lin, H. C. Yang, H. C. Kuo, and S. C. Wang, “Low droop nonpolar GaN/InGaN light emitting diode grown on m-Plane GaN substrate,” J. Electrochem. Soc. 157(5), H501–H503 (2010).
[Crossref]

Jiang, X. D.

T. Lin, H. C. Kuo, X. D. Jiang, and Z. C. Feng, “Recombination Pathways in Green InGaN/GaN Multiple Quantum Wells,” Nanoscale Res. Lett. 12(1), 137 (2017).
[Crossref]

Kalinowski, J.

J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380(5-6), 710–715 (2003).
[Crossref]

Kang, J. W.

J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the optical output power of InGaN/GaN multiple quantum well light-emitting diodes by a CoFe ferromagnetic layer,” ACS Photonics 2(11), 1519–1523 (2015).
[Crossref]

Kang, S. W.

S. H. Han, C. Y. Cho, S. J. Lee, T. Y. Park, T. H. Kim, S. H. Park, S. W. Kang, J. W. Kim, Y. C. Kim, and S. J. Park, “Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes,” Appl. Phys. Lett. 96(5), 051113 (2010).
[Crossref]

Katayama, T.

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Co/Pt multilayers: Magnetic circular X-ray dichroism study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

Kawakami, Y.

Y. Narukawa, Y. Kawakami, S. Fujita, and S. Fujita, “Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells,” Phys. Rev. B 55(4), R1938–R1941 (1997).
[Crossref]

Ke, C. C.

Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1137–1143 (2009).
[Crossref]

Keim, M.

R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, “Injection and detection of a spin-polarized current in a light-emitting diode,” Nature 402(6763), 787–790 (1999).
[Crossref]

Kim, B. H.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Kim, J. J.

J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the optical output power of InGaN/GaN multiple quantum well light-emitting diodes by a CoFe ferromagnetic layer,” ACS Photonics 2(11), 1519–1523 (2015).
[Crossref]

Kim, J. K.

J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: History, progress, and future,” Laser Photonics Rev. 11(2), 1600147 (2017).
[Crossref]

Kim, J. W.

S. H. Han, C. Y. Cho, S. J. Lee, T. Y. Park, T. H. Kim, S. H. Park, S. W. Kang, J. W. Kim, Y. C. Kim, and S. J. Park, “Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes,” Appl. Phys. Lett. 96(5), 051113 (2010).
[Crossref]

Kim, J. Y.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Kim, T. H.

S. H. Han, C. Y. Cho, S. J. Lee, T. Y. Park, T. H. Kim, S. H. Park, S. W. Kang, J. W. Kim, Y. C. Kim, and S. J. Park, “Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes,” Appl. Phys. Lett. 96(5), 051113 (2010).
[Crossref]

Kim, Y. C.

S. H. Han, C. Y. Cho, S. J. Lee, T. Y. Park, T. H. Kim, S. H. Park, S. W. Kang, J. W. Kim, Y. C. Kim, and S. J. Park, “Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes,” Appl. Phys. Lett. 96(5), 051113 (2010).
[Crossref]

Kioseoglou, G.

E. D. Fraser, S. Hegde, L. Schweidenback, A. H. Russ, A. Petrou, H. Luo, and G. Kioseoglou, “Efficient electron spin injection in MnAs-based spin-light-emitting-diodes up to room temperature,” Phys. Rev. Lett. 97(4), 041103 (2010).
[Crossref]

Koide, T.

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Co/Pt multilayers: Magnetic circular X-ray dichroism study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

Krames, M. R.

M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Kuo, H. C.

T. Lin, H. C. Kuo, X. D. Jiang, and Z. C. Feng, “Recombination Pathways in Green InGaN/GaN Multiple Quantum Wells,” Nanoscale Res. Lett. 12(1), 137 (2017).
[Crossref]

S. P. Chang, T. C. Lu, L. F. Zhuo, C. Y. Jang, D. W. Lin, H. C. Yang, H. C. Kuo, and S. C. Wang, “Low droop nonpolar GaN/InGaN light emitting diode grown on m-Plane GaN substrate,” J. Electrochem. Soc. 157(5), H501–H503 (2010).
[Crossref]

Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1137–1143 (2009).
[Crossref]

Kuo, Y. K.

Kwon, J.

J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the optical output power of InGaN/GaN multiple quantum well light-emitting diodes by a CoFe ferromagnetic layer,” ACS Photonics 2(11), 1519–1523 (2015).
[Crossref]

Kwon, M. K.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Lee, C. P.

F. Y. Tsai, C. P. Lee, O. Voskoboynikov, H. H. Cheng, J. Shen, and Y. Oka, “Time-resolved photoluminescence study of InGaAs/GaAs quantum wells on (111)B GaAs substrates under magnetic fields,” J. Appl. Phys. 89(12), 7875–7878 (2001).
[Crossref]

Lee, S. J.

S. H. Han, C. Y. Cho, S. J. Lee, T. Y. Park, T. H. Kim, S. H. Park, S. W. Kang, J. W. Kim, Y. C. Kim, and S. J. Park, “Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes,” Appl. Phys. Lett. 96(5), 051113 (2010).
[Crossref]

Lee, Y. J.

Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1137–1143 (2009).
[Crossref]

Leem, Y. C.

J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the optical output power of InGaN/GaN multiple quantum well light-emitting diodes by a CoFe ferromagnetic layer,” ACS Photonics 2(11), 1519–1523 (2015).
[Crossref]

Li, Z. C.

G. E. Weng, W. R. Zhao, S. Q. Chen, H. Akiyama, Z. C. Li, J. P. Liu, and B. P. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10(1), 31 (2015).
[Crossref]

Lin, D. W.

S. P. Chang, T. C. Lu, L. F. Zhuo, C. Y. Jang, D. W. Lin, H. C. Yang, H. C. Kuo, and S. C. Wang, “Low droop nonpolar GaN/InGaN light emitting diode grown on m-Plane GaN substrate,” J. Electrochem. Soc. 157(5), H501–H503 (2010).
[Crossref]

Lin, P. C.

Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1137–1143 (2009).
[Crossref]

Lin, T.

T. Lin, H. C. Kuo, X. D. Jiang, and Z. C. Feng, “Recombination Pathways in Green InGaN/GaN Multiple Quantum Wells,” Nanoscale Res. Lett. 12(1), 137 (2017).
[Crossref]

Lin, Y. S.

S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[Crossref]

Liu, J. P.

G. E. Weng, W. R. Zhao, S. Q. Chen, H. Akiyama, Z. C. Li, J. P. Liu, and B. P. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10(1), 31 (2015).
[Crossref]

Lu, T. C.

S. P. Chang, T. C. Lu, L. F. Zhuo, C. Y. Jang, D. W. Lin, H. C. Yang, H. C. Kuo, and S. C. Wang, “Low droop nonpolar GaN/InGaN light emitting diode grown on m-Plane GaN substrate,” J. Electrochem. Soc. 157(5), H501–H503 (2010).
[Crossref]

Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1137–1143 (2009).
[Crossref]

Lundström, T.

Q. X. Zhao, B. Monemar, P. O. Holtz, T. Lundström, M. Sundaram, J. L. Merz, and A. C. Gossard, “Magnetic-field-induced localization effects on radiative recombination in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B 50(11), 7514–7517 (1994).
[Crossref]

Luo, H.

E. D. Fraser, S. Hegde, L. Schweidenback, A. H. Russ, A. Petrou, H. Luo, and G. Kioseoglou, “Efficient electron spin injection in MnAs-based spin-light-emitting-diodes up to room temperature,” Phys. Rev. Lett. 97(4), 041103 (2010).
[Crossref]

Ma, K. J.

S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[Crossref]

Maan, J. C.

K. S. Novoselov, A. K. Geim, S. V. Dubonos, Y. G. Cornelissens, F. M. Peeters, and J. C. Maan, “Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field,” Phys. Rev. B 65(23), 233312 (2002).
[Crossref]

Mach, R. M.

M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Main, P. C.

A. Nogaret, S. Carlton, B. L. Gallagher, P. C. Main, M. Henini, R. Wirtz, R. Newbury, M. A. Howson, and S. P. Beaumont, “Observation of giant magnetoresistance due to open orbits in hybrid semiconductor/ferromagnet devices,” Phys. Rev. B 55(24), R16037 (1997).
[Crossref]

Marco, P. D.

J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380(5-6), 710–715 (2003).
[Crossref]

Marrows, C. H.

D. Uzur, A. Nogaret, H. E. Beere, D. A. Ritchie, C. H. Marrows, and B. J. Hickey, “Probing the annular electronic shell structure of a magnetic corral,” Phys. Rev. B 69(24), 241301 (2004).
[Crossref]

Matulis, A.

J. Reijniers, F. M. Peeters, and A. Matulis, “Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas,” Phys. Rev. B 64(24), 245314 (2001).
[Crossref]

J. Reijniers, F. M. Peeters, and A. Matulis, “The Hall resistivity of a two-dimensional electron gas in the presence of magnetic clusters with perpendicular magnetization,” Phys. E 6(1-4), 759–762 (2000).
[Crossref]

Merz, J. L.

Q. X. Zhao, B. Monemar, P. O. Holtz, T. Lundström, M. Sundaram, J. L. Merz, and A. C. Gossard, “Magnetic-field-induced localization effects on radiative recombination in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B 50(11), 7514–7517 (1994).
[Crossref]

Miyauchi, H.

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Co/Pt multilayers: Magnetic circular X-ray dichroism study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

Molenkamp, L. W.

R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, “Injection and detection of a spin-polarized current in a light-emitting diode,” Nature 402(6763), 787–790 (1999).
[Crossref]

Monemar, B.

Q. X. Zhao, B. Monemar, P. O. Holtz, T. Lundström, M. Sundaram, J. L. Merz, and A. C. Gossard, “Magnetic-field-induced localization effects on radiative recombination in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B 50(11), 7514–7517 (1994).
[Crossref]

Monomer, B.

B. Arnaudov, T. Paskova, O. Valassiades, P. P. Paskov, S. Evtimova, B. Monomer, and M. Heuken, “Magnetic-field-induced localization of electrons in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 83(13), 2590–2592 (2003).
[Crossref]

Mueller, G. O.

M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Nakajima, N.

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Co/Pt multilayers: Magnetic circular X-ray dichroism study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

Narukawa, Y.

Y. Narukawa, Y. Kawakami, S. Fujita, and S. Fujita, “Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells,” Phys. Rev. B 55(4), R1938–R1941 (1997).
[Crossref]

Newbury, R.

A. Nogaret, S. Carlton, B. L. Gallagher, P. C. Main, M. Henini, R. Wirtz, R. Newbury, M. A. Howson, and S. P. Beaumont, “Observation of giant magnetoresistance due to open orbits in hybrid semiconductor/ferromagnet devices,” Phys. Rev. B 55(24), R16037 (1997).
[Crossref]

Nogaret, A.

D. Uzur, A. Nogaret, H. E. Beere, D. A. Ritchie, C. H. Marrows, and B. J. Hickey, “Probing the annular electronic shell structure of a magnetic corral,” Phys. Rev. B 69(24), 241301 (2004).
[Crossref]

A. Nogaret, S. J. Bending, and M. Henini, “Resistance resonance effects through magnetic edge states,” Phys. Rev. Lett. 84(10), 2231–2234 (2000).
[Crossref]

A. Nogaret, S. Carlton, B. L. Gallagher, P. C. Main, M. Henini, R. Wirtz, R. Newbury, M. A. Howson, and S. P. Beaumont, “Observation of giant magnetoresistance due to open orbits in hybrid semiconductor/ferromagnet devices,” Phys. Rev. B 55(24), R16037 (1997).
[Crossref]

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Dubonos, Y. G. Cornelissens, F. M. Peeters, and J. C. Maan, “Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field,” Phys. Rev. B 65(23), 233312 (2002).
[Crossref]

Nývlt, M.

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Co/Pt multilayers: Magnetic circular X-ray dichroism study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

Oka, Y.

F. Y. Tsai, C. P. Lee, O. Voskoboynikov, H. H. Cheng, J. Shen, and Y. Oka, “Time-resolved photoluminescence study of InGaAs/GaAs quantum wells on (111)B GaAs substrates under magnetic fields,” J. Appl. Phys. 89(12), 7875–7878 (2001).
[Crossref]

Ossau, W.

R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, “Injection and detection of a spin-polarized current in a light-emitting diode,” Nature 402(6763), 787–790 (1999).
[Crossref]

Park, I. K.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Park, J. H.

J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: History, progress, and future,” Laser Photonics Rev. 11(2), 1600147 (2017).
[Crossref]

Park, S. H.

S. H. Han, C. Y. Cho, S. J. Lee, T. Y. Park, T. H. Kim, S. H. Park, S. W. Kang, J. W. Kim, Y. C. Kim, and S. J. Park, “Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes,” Appl. Phys. Lett. 96(5), 051113 (2010).
[Crossref]

Park, S. J.

J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the optical output power of InGaN/GaN multiple quantum well light-emitting diodes by a CoFe ferromagnetic layer,” ACS Photonics 2(11), 1519–1523 (2015).
[Crossref]

S. H. Han, C. Y. Cho, S. J. Lee, T. Y. Park, T. H. Kim, S. H. Park, S. W. Kang, J. W. Kim, Y. C. Kim, and S. J. Park, “Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes,” Appl. Phys. Lett. 96(5), 051113 (2010).
[Crossref]

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Park, T. Y.

S. H. Han, C. Y. Cho, S. J. Lee, T. Y. Park, T. H. Kim, S. H. Park, S. W. Kang, J. W. Kim, Y. C. Kim, and S. J. Park, “Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes,” Appl. Phys. Lett. 96(5), 051113 (2010).
[Crossref]

Paskov, P. P.

B. Arnaudov, T. Paskova, O. Valassiades, P. P. Paskov, S. Evtimova, B. Monomer, and M. Heuken, “Magnetic-field-induced localization of electrons in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 83(13), 2590–2592 (2003).
[Crossref]

Paskova, T.

B. Arnaudov, T. Paskova, O. Valassiades, P. P. Paskov, S. Evtimova, B. Monomer, and M. Heuken, “Magnetic-field-induced localization of electrons in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 83(13), 2590–2592 (2003).
[Crossref]

Peeters, F. M.

K. S. Novoselov, A. K. Geim, S. V. Dubonos, Y. G. Cornelissens, F. M. Peeters, and J. C. Maan, “Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field,” Phys. Rev. B 65(23), 233312 (2002).
[Crossref]

J. Reijniers, F. M. Peeters, and A. Matulis, “Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas,” Phys. Rev. B 64(24), 245314 (2001).
[Crossref]

J. Reijniers, F. M. Peeters, and A. Matulis, “The Hall resistivity of a two-dimensional electron gas in the presence of magnetic clusters with perpendicular magnetization,” Phys. E 6(1-4), 759–762 (2000).
[Crossref]

Petrou, A.

E. D. Fraser, S. Hegde, L. Schweidenback, A. H. Russ, A. Petrou, H. Luo, and G. Kioseoglou, “Efficient electron spin injection in MnAs-based spin-light-emitting-diodes up to room temperature,” Phys. Rev. Lett. 97(4), 041103 (2010).
[Crossref]

Pust, P.

P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14(5), 454–458 (2015).
[Crossref]

Reijniers, J.

J. Reijniers, F. M. Peeters, and A. Matulis, “Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas,” Phys. Rev. B 64(24), 245314 (2001).
[Crossref]

J. Reijniers, F. M. Peeters, and A. Matulis, “The Hall resistivity of a two-dimensional electron gas in the presence of magnetic clusters with perpendicular magnetization,” Phys. E 6(1-4), 759–762 (2000).
[Crossref]

Reuscher, G.

R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, “Injection and detection of a spin-polarized current in a light-emitting diode,” Nature 402(6763), 787–790 (1999).
[Crossref]

Ritchie, D. A.

D. Uzur, A. Nogaret, H. E. Beere, D. A. Ritchie, C. H. Marrows, and B. J. Hickey, “Probing the annular electronic shell structure of a magnetic corral,” Phys. Rev. B 69(24), 241301 (2004).
[Crossref]

Rodmacq, B.

S. Bandiera, R. C. Sousa, B. Rodmacq, and B. Dieny, “Asymmetric interfacial perpendicular magnetic anisotropy in Pt/Co/Pt trilayers,” IEEE Magn. Lett. 2, 3000504 (2011).
[Crossref]

Russ, A. H.

E. D. Fraser, S. Hegde, L. Schweidenback, A. H. Russ, A. Petrou, H. Luo, and G. Kioseoglou, “Efficient electron spin injection in MnAs-based spin-light-emitting-diodes up to room temperature,” Phys. Rev. Lett. 97(4), 041103 (2010).
[Crossref]

Schmidt, G.

R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, “Injection and detection of a spin-polarized current in a light-emitting diode,” Nature 402(6763), 787–790 (1999).
[Crossref]

Schmidt, H.

A. Barman, S. Wang, and H. Schmidt, “Ultrafast magnetization dynamics in high perpendicular anisotropy [Co∕Pt]n multilayers,” J. Appl. Phys. 101(9), 09D102 (2007).
[Crossref]

Schmidt, P. J.

J. Bhardwaj, J. M. Cesaratto, I. H. Wildeson, H. Choy, A. Tandon, W. A. Soer, P. J. Schmidt, B. Spinger, P. Deb, O. B. Shchekin, and W. Gotz, “Progress in high-luminance LED technology for solid-state lighting,” Phys. Status Solidi A 214(8), 1600826 (2017).
[Crossref]

P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14(5), 454–458 (2015).
[Crossref]

Schnick, W.

P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14(5), 454–458 (2015).
[Crossref]

Schubert, E. F.

J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: History, progress, and future,” Laser Photonics Rev. 11(2), 1600147 (2017).
[Crossref]

Schweidenback, L.

E. D. Fraser, S. Hegde, L. Schweidenback, A. H. Russ, A. Petrou, H. Luo, and G. Kioseoglou, “Efficient electron spin injection in MnAs-based spin-light-emitting-diodes up to room temperature,” Phys. Rev. Lett. 97(4), 041103 (2010).
[Crossref]

Shao, M.

B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21(14-15), 1500–1516 (2009).
[Crossref]

Shchekin, O. B.

J. Bhardwaj, J. M. Cesaratto, I. H. Wildeson, H. Choy, A. Tandon, W. A. Soer, P. J. Schmidt, B. Spinger, P. Deb, O. B. Shchekin, and W. Gotz, “Progress in high-luminance LED technology for solid-state lighting,” Phys. Status Solidi A 214(8), 1600826 (2017).
[Crossref]

M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Shen, J.

F. Y. Tsai, C. P. Lee, O. Voskoboynikov, H. H. Cheng, J. Shen, and Y. Oka, “Time-resolved photoluminescence study of InGaAs/GaAs quantum wells on (111)B GaAs substrates under magnetic fields,” J. Appl. Phys. 89(12), 7875–7878 (2001).
[Crossref]

Shidara, T.

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Co/Pt multilayers: Magnetic circular X-ray dichroism study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

Soer, W. A.

J. Bhardwaj, J. M. Cesaratto, I. H. Wildeson, H. Choy, A. Tandon, W. A. Soer, P. J. Schmidt, B. Spinger, P. Deb, O. B. Shchekin, and W. Gotz, “Progress in high-luminance LED technology for solid-state lighting,” Phys. Status Solidi A 214(8), 1600826 (2017).
[Crossref]

Sousa, R. C.

S. Bandiera, R. C. Sousa, B. Rodmacq, and B. Dieny, “Asymmetric interfacial perpendicular magnetic anisotropy in Pt/Co/Pt trilayers,” IEEE Magn. Lett. 2, 3000504 (2011).
[Crossref]

Spinger, B.

J. Bhardwaj, J. M. Cesaratto, I. H. Wildeson, H. Choy, A. Tandon, W. A. Soer, P. J. Schmidt, B. Spinger, P. Deb, O. B. Shchekin, and W. Gotz, “Progress in high-luminance LED technology for solid-state lighting,” Phys. Status Solidi A 214(8), 1600826 (2017).
[Crossref]

Sundaram, M.

Q. X. Zhao, B. Monemar, P. O. Holtz, T. Lundström, M. Sundaram, J. L. Merz, and A. C. Gossard, “Magnetic-field-induced localization effects on radiative recombination in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B 50(11), 7514–7517 (1994).
[Crossref]

Suzuki, Y.

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Co/Pt multilayers: Magnetic circular X-ray dichroism study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

Tandon, A.

J. Bhardwaj, J. M. Cesaratto, I. H. Wildeson, H. Choy, A. Tandon, W. A. Soer, P. J. Schmidt, B. Spinger, P. Deb, O. B. Shchekin, and W. Gotz, “Progress in high-luminance LED technology for solid-state lighting,” Phys. Status Solidi A 214(8), 1600826 (2017).
[Crossref]

Thiele, J.

J. Thiele, C. Boeglin, K. Hricovini, and F. Chevrier, “Magnetic circular X-ray-dichroism study of Co/Pt(111),” Phys. Rev. B 53(18), R11934(1996).
[Crossref]

Tsai, F. Y.

F. Y. Tsai, C. P. Lee, O. Voskoboynikov, H. H. Cheng, J. Shen, and Y. Oka, “Time-resolved photoluminescence study of InGaAs/GaAs quantum wells on (111)B GaAs substrates under magnetic fields,” J. Appl. Phys. 89(12), 7875–7878 (2001).
[Crossref]

Tsai, M. C.

Uzur, D.

D. Uzur, A. Nogaret, H. E. Beere, D. A. Ritchie, C. H. Marrows, and B. J. Hickey, “Probing the annular electronic shell structure of a magnetic corral,” Phys. Rev. B 69(24), 241301 (2004).
[Crossref]

Valassiades, O.

B. Arnaudov, T. Paskova, O. Valassiades, P. P. Paskov, S. Evtimova, B. Monomer, and M. Heuken, “Magnetic-field-induced localization of electrons in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 83(13), 2590–2592 (2003).
[Crossref]

Virgili, D.

J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380(5-6), 710–715 (2003).
[Crossref]

Voskoboynikov, O.

F. Y. Tsai, C. P. Lee, O. Voskoboynikov, H. H. Cheng, J. Shen, and Y. Oka, “Time-resolved photoluminescence study of InGaAs/GaAs quantum wells on (111)B GaAs substrates under magnetic fields,” J. Appl. Phys. 89(12), 7875–7878 (2001).
[Crossref]

Waag, A.

R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, “Injection and detection of a spin-polarized current in a light-emitting diode,” Nature 402(6763), 787–790 (1999).
[Crossref]

Wang, S.

A. Barman, S. Wang, and H. Schmidt, “Ultrafast magnetization dynamics in high perpendicular anisotropy [Co∕Pt]n multilayers,” J. Appl. Phys. 101(9), 09D102 (2007).
[Crossref]

Wang, S. C.

S. P. Chang, T. C. Lu, L. F. Zhuo, C. Y. Jang, D. W. Lin, H. C. Yang, H. C. Kuo, and S. C. Wang, “Low droop nonpolar GaN/InGaN light emitting diode grown on m-Plane GaN substrate,” J. Electrochem. Soc. 157(5), H501–H503 (2010).
[Crossref]

Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1137–1143 (2009).
[Crossref]

Weng, G. E.

G. E. Weng, W. R. Zhao, S. Q. Chen, H. Akiyama, Z. C. Li, J. P. Liu, and B. P. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10(1), 31 (2015).
[Crossref]

Wildeson, I. H.

J. Bhardwaj, J. M. Cesaratto, I. H. Wildeson, H. Choy, A. Tandon, W. A. Soer, P. J. Schmidt, B. Spinger, P. Deb, O. B. Shchekin, and W. Gotz, “Progress in high-luminance LED technology for solid-state lighting,” Phys. Status Solidi A 214(8), 1600826 (2017).
[Crossref]

Wirtz, R.

A. Nogaret, S. Carlton, B. L. Gallagher, P. C. Main, M. Henini, R. Wirtz, R. Newbury, M. A. Howson, and S. P. Beaumont, “Observation of giant magnetoresistance due to open orbits in hybrid semiconductor/ferromagnet devices,” Phys. Rev. B 55(24), R16037 (1997).
[Crossref]

Yan, L.

B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21(14-15), 1500–1516 (2009).
[Crossref]

Yang, C. C.

S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[Crossref]

Yang, H. C.

S. P. Chang, T. C. Lu, L. F. Zhuo, C. Y. Jang, D. W. Lin, H. C. Yang, H. C. Kuo, and S. C. Wang, “Low droop nonpolar GaN/InGaN light emitting diode grown on m-Plane GaN substrate,” J. Electrochem. Soc. 157(5), H501–H503 (2010).
[Crossref]

Yim, S. Y.

J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the optical output power of InGaN/GaN multiple quantum well light-emitting diodes by a CoFe ferromagnetic layer,” ACS Photonics 2(11), 1519–1523 (2015).
[Crossref]

Zhang, B. P.

G. E. Weng, W. R. Zhao, S. Q. Chen, H. Akiyama, Z. C. Li, J. P. Liu, and B. P. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10(1), 31 (2015).
[Crossref]

Zhao, Q. X.

Q. X. Zhao, B. Monemar, P. O. Holtz, T. Lundström, M. Sundaram, J. L. Merz, and A. C. Gossard, “Magnetic-field-induced localization effects on radiative recombination in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B 50(11), 7514–7517 (1994).
[Crossref]

Zhao, W. R.

G. E. Weng, W. R. Zhao, S. Q. Chen, H. Akiyama, Z. C. Li, J. P. Liu, and B. P. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10(1), 31 (2015).
[Crossref]

Zhou, L.

M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

Zhuo, L. F.

S. P. Chang, T. C. Lu, L. F. Zhuo, C. Y. Jang, D. W. Lin, H. C. Yang, H. C. Kuo, and S. C. Wang, “Low droop nonpolar GaN/InGaN light emitting diode grown on m-Plane GaN substrate,” J. Electrochem. Soc. 157(5), H501–H503 (2010).
[Crossref]

ACS Photonics (1)

J. J. Kim, Y. C. Leem, J. W. Kang, J. Kwon, B. Cho, S. Y. Yim, J. H. Baek, and S. J. Park, “Enhancement of the optical output power of InGaN/GaN multiple quantum well light-emitting diodes by a CoFe ferromagnetic layer,” ACS Photonics 2(11), 1519–1523 (2015).
[Crossref]

Adv. Mater. (2)

B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices,” Adv. Mater. 21(14-15), 1500–1516 (2009).
[Crossref]

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Appl. Phys. Lett. (2)

S. H. Han, C. Y. Cho, S. J. Lee, T. Y. Park, T. H. Kim, S. H. Park, S. W. Kang, J. W. Kim, Y. C. Kim, and S. J. Park, “Effect of Mg doping in the barrier of InGaN/GaN multiple quantum well on optical power of light-emitting diodes,” Appl. Phys. Lett. 96(5), 051113 (2010).
[Crossref]

B. Arnaudov, T. Paskova, O. Valassiades, P. P. Paskov, S. Evtimova, B. Monomer, and M. Heuken, “Magnetic-field-induced localization of electrons in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 83(13), 2590–2592 (2003).
[Crossref]

Chem. Phys. Lett. (1)

J. Kalinowski, M. Cocchi, D. Virgili, P. D. Marco, and V. Fattori, “Magnetic field effects on emission and current in Alq3-based electroluminescent diodes,” Chem. Phys. Lett. 380(5-6), 710–715 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. J. Lee, C. H. Chiu, C. C. Ke, P. C. Lin, T. C. Lu, H. C. Kuo, and S. C. Wang, “Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1137–1143 (2009).
[Crossref]

IEEE Magn. Lett. (1)

S. Bandiera, R. C. Sousa, B. Rodmacq, and B. Dieny, “Asymmetric interfacial perpendicular magnetic anisotropy in Pt/Co/Pt trilayers,” IEEE Magn. Lett. 2, 3000504 (2011).
[Crossref]

J. Appl. Phys. (3)

A. Barman, S. Wang, and H. Schmidt, “Ultrafast magnetization dynamics in high perpendicular anisotropy [Co∕Pt]n multilayers,” J. Appl. Phys. 101(9), 09D102 (2007).
[Crossref]

S. W. Feng, Y. C. Cheng, Y. Y. Chung, C. C. Yang, Y. S. Lin, C. Hsu, K. J. Ma, and J. I. Chyi, “Impact of localized states on the recombination dynamics in InGaN/GaN quantum well structures,” J. Appl. Phys. 92(8), 4441–4448 (2002).
[Crossref]

F. Y. Tsai, C. P. Lee, O. Voskoboynikov, H. H. Cheng, J. Shen, and Y. Oka, “Time-resolved photoluminescence study of InGaAs/GaAs quantum wells on (111)B GaAs substrates under magnetic fields,” J. Appl. Phys. 89(12), 7875–7878 (2001).
[Crossref]

J. Disp. Technol. (1)

M. R. Krames, O. B. Shchekin, R. M. Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” J. Disp. Technol. 3(2), 160–175 (2007).
[Crossref]

J. Electrochem. Soc. (1)

S. P. Chang, T. C. Lu, L. F. Zhuo, C. Y. Jang, D. W. Lin, H. C. Yang, H. C. Kuo, and S. C. Wang, “Low droop nonpolar GaN/InGaN light emitting diode grown on m-Plane GaN substrate,” J. Electrochem. Soc. 157(5), H501–H503 (2010).
[Crossref]

Laser Photonics Rev. (1)

J. Cho, J. H. Park, J. K. Kim, and E. F. Schubert, “White light-emitting diodes: History, progress, and future,” Laser Photonics Rev. 11(2), 1600147 (2017).
[Crossref]

Nanoscale Res. Lett. (2)

G. E. Weng, W. R. Zhao, S. Q. Chen, H. Akiyama, Z. C. Li, J. P. Liu, and B. P. Zhang, “Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green,” Nanoscale Res. Lett. 10(1), 31 (2015).
[Crossref]

T. Lin, H. C. Kuo, X. D. Jiang, and Z. C. Feng, “Recombination Pathways in Green InGaN/GaN Multiple Quantum Wells,” Nanoscale Res. Lett. 12(1), 137 (2017).
[Crossref]

Nat. Mater. (1)

P. Pust, P. J. Schmidt, and W. Schnick, “A revolution in lighting,” Nat. Mater. 14(5), 454–458 (2015).
[Crossref]

Nature (1)

R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, “Injection and detection of a spin-polarized current in a light-emitting diode,” Nature 402(6763), 787–790 (1999).
[Crossref]

Opt. Lett. (1)

Phys. E (1)

J. Reijniers, F. M. Peeters, and A. Matulis, “The Hall resistivity of a two-dimensional electron gas in the presence of magnetic clusters with perpendicular magnetization,” Phys. E 6(1-4), 759–762 (2000).
[Crossref]

Phys. Rev. B (7)

J. Reijniers, F. M. Peeters, and A. Matulis, “Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas,” Phys. Rev. B 64(24), 245314 (2001).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Dubonos, Y. G. Cornelissens, F. M. Peeters, and J. C. Maan, “Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field,” Phys. Rev. B 65(23), 233312 (2002).
[Crossref]

A. Nogaret, S. Carlton, B. L. Gallagher, P. C. Main, M. Henini, R. Wirtz, R. Newbury, M. A. Howson, and S. P. Beaumont, “Observation of giant magnetoresistance due to open orbits in hybrid semiconductor/ferromagnet devices,” Phys. Rev. B 55(24), R16037 (1997).
[Crossref]

Q. X. Zhao, B. Monemar, P. O. Holtz, T. Lundström, M. Sundaram, J. L. Merz, and A. C. Gossard, “Magnetic-field-induced localization effects on radiative recombination in GaAs/AlxGa1-xAs heterostructures,” Phys. Rev. B 50(11), 7514–7517 (1994).
[Crossref]

J. Thiele, C. Boeglin, K. Hricovini, and F. Chevrier, “Magnetic circular X-ray-dichroism study of Co/Pt(111),” Phys. Rev. B 53(18), R11934(1996).
[Crossref]

Y. Narukawa, Y. Kawakami, S. Fujita, and S. Fujita, “Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells,” Phys. Rev. B 55(4), R1938–R1941 (1997).
[Crossref]

D. Uzur, A. Nogaret, H. E. Beere, D. A. Ritchie, C. H. Marrows, and B. J. Hickey, “Probing the annular electronic shell structure of a magnetic corral,” Phys. Rev. B 69(24), 241301 (2004).
[Crossref]

Phys. Rev. Lett. (3)

E. D. Fraser, S. Hegde, L. Schweidenback, A. H. Russ, A. Petrou, H. Luo, and G. Kioseoglou, “Efficient electron spin injection in MnAs-based spin-light-emitting-diodes up to room temperature,” Phys. Rev. Lett. 97(4), 041103 (2010).
[Crossref]

N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, “Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Co/Pt multilayers: Magnetic circular X-ray dichroism study,” Phys. Rev. Lett. 81(23), 5229–5232 (1998).
[Crossref]

A. Nogaret, S. J. Bending, and M. Henini, “Resistance resonance effects through magnetic edge states,” Phys. Rev. Lett. 84(10), 2231–2234 (2000).
[Crossref]

Phys. Status Solidi A (1)

J. Bhardwaj, J. M. Cesaratto, I. H. Wildeson, H. Choy, A. Tandon, W. A. Soer, P. J. Schmidt, B. Spinger, P. Deb, O. B. Shchekin, and W. Gotz, “Progress in high-luminance LED technology for solid-state lighting,” Phys. Status Solidi A 214(8), 1600826 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic of the ferromagnetic Co/Pt multilayer (FCPM) structure and (b) the vibrating sample magnetometer (VSM) characteristics of the ferromagnetic Co/Pt multilayer on a Si substrate. (Inset) Schematic of the FCPM film used for the VSM measurements on a 1 cm × 1 cm Si substrate.
Fig. 2.
Fig. 2. Schematic of the fabrication steps for flip-chip LEDs with a Co/Pt multilayer: (a) mesa etching to expose the n-contact area, (b) deposition of the p-ohmic reflector on the p-GaN, (c) deposition of the n- and p-electrodes on the n-GaN and p-ohmic reflector, (d) deposition of the Co/Pt multilayer film, and (e) circular FCPM disks on the p-ohmic layer. (f) SEM images (center) and schematics of the LEDs with a Co/Pt film (left) and with disks (right).
Fig. 3.
Fig. 3. (a) Current–voltage (I-V) characteristics, (Inset: detail of the I-V curve) (b) optical output power of an LED without a ferromagnetic Co/Pt multilayer (FCPM) (black squares), with an FCPM film (red triangles), and with circular FCPM disks (blue circles). (c–e) Electroluminescence spectra at injection currents between 4 mA and 20 mA of an LED (c) without an FCPM, (d) with an FCPM film, and (e) with circular FCPM disks.
Fig. 4.
Fig. 4. Schematics of (a) the magnetic field profile in the circular disk of a ferromagnetic Co/Pt multilayer and (b) the carrier trajectory induced by the local magnetic fields and kinetic energy of the carriers. The region marked “a” possesses an upward magnetic field direction where the field strength is relatively weak and the region marked “b” possesses a downward magnetic field direction where the field strength is relatively strong. Carrier trajectories with low (marked as 1), resonant (marked as 2), and high kinetic energy (marked as 3) react differently to the perpendicular magnetic field gradient. Finite Element Method Magnetics simulations of the magnetic field profiles of the (c) ferromagnetic Co/Pt multilayer film and (d) circular ferromagnetic Co/Pt multilayer disks. The strength of the magnetic field gradient of the (e) film and (f) circular disks.
Fig. 5.
Fig. 5. Time-resolved photoluminescence spectra of LEDs without an FCPM (black squares), with an FCPM film (red triangles), and with circular FCPM disks (blue circles).

Metrics