Abstract

We fabricate and characterize a germanium/thulium (Ge/Tm) co-doped silica fiber in order to enhance the gain at the short wavelength edge of the thulium emission band (i.e. 1620-1660 nm). The Ge/Tm doped fiber shows an intrinsic blue-shifted absorption/emission cross-section compared to aluminum/thulium (Al/Tm) co-doped fiber, which greatly improves the short wavelength amplification and has enabled us to further extend the shortest wavelength of emission towards 1600 nm. Using this glass fiber composition, we have demonstrated both a silica-based thulium doped fiber amplifier (TDFA) in the 1628-1655 nm waveband and a tunable thulium-doped fiber laser (TDFL) capable of accessing the telecom U-band wavelength region. These results represent by far the shortest amplifier/laser wavelengths reported to-date from TDFAs/TDFLs.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-short wavelength operation of a thulium fibre laser in the 1660–1750 nm wavelength band

J. M. O. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson
Opt. Express 23(14) 18269-18276 (2015)

1.50-µm-band gain-shifted thulium-doped fiber amplifier with 1.05- and 1.56-µm dual-wavelength pumping

Tadashi Kasamatsu, Yutaka Yano, and Hitoshi Sekita
Opt. Lett. 24(23) 1684-1686 (1999)

Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson
Opt. Lett. 41(10) 2197-2200 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  2. C. Crotti, F. Deloison, F. Alahyane, F. Aptel, L. Kowalczuk, J. M. Legeais, D. A. Peyrot, M. Savoldelli, and K. Plaman, “Wavelength optimization in femtosecond laser corneal surgery,” Invest. Ophthalmol. Visual Sci. 54(5), 3340–3349 (2013).
    [Crossref]
  3. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [Crossref]
  4. U. Sharma, E. W. Chang, and S. H. Yun, “Long-wavelength optical coherence tomography at 1.7 µm for enhanced imaging depth,” Opt. Express 16(24), 19712–19723 (2008).
    [Crossref]
  5. P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
    [Crossref]
  6. T. Delahaye, S. E. Maxwell, Z. D. Reed, H. Lin, J. T. Hodges, K. Sung, V. M. Devi, T. Warneke, P. Spietz, and H. Tran, “Precise methane absorption measurements in the 1.64 µm spectral region for the MERLIN mission,” J. Geophys. Res.: Atmos. 121(12), 7360–7370 (2016).
    [Crossref]
  7. D. F. Siriani, J. J. Plant, T. J. Garrod, A. Napoleone, S. Mouser, and P. W. Juodawlkis, “High-Power 1.65 µm Slab-Coupled Optical Waveguide Amplifiers,” in CLEO, JTu5A.100 (2017).
  8. B. Niu, H. Yu, L. Yu, D. Zhou, D. Lu, L. Zhao, J. Pan, and W. Wang, “1.65 µm three-section Distributed Bragg Reflective (DBR) laser for CH4 gas sensor,” J. Semicond. 34(10), 104004 (2013).
    [Crossref]
  9. S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6(1), 28939–28946 (2016).
    [Crossref]
  10. C. Kakkar, G. Monnom, K. Thyagarajan, and B. Dussardier, “Inherently gain flattened L + band TDFA based on W-fiber design,” Opt. Commun. 262(2), 193–199 (2006).
    [Crossref]
  11. M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+–Tb3+-doped tunable fibre ring laser for 1700nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
    [Crossref]
  12. J. M. O. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson, “Ultra-short wavelength operation of a thulium fibre laser in the 1660–1750nm wavelength band,” Opt. Express 23(14), 18269 (2015).
    [Crossref]
  13. W. L. Barnes and J. E. Townsend, “Highly tunable and efficient diode pumped operation of Tm3+-doped fiber lasers,” Electron. Lett. 26(11), 746–747 (1990).
    [Crossref]
  14. D. A. Simpson and G. Baxter, “Spectroscopy of Thulium Doped Silica Glass,” PhD thesis, 181 (2007).
  15. S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14(1), 50 (2006).
    [Crossref]
  16. Y. Jung, Z. Li, N. Simakov, J. M. O. Daniel, D. Jain, P. C. Shardlow, A. M. Heidt, J. K. Sahu, A. Hemming, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Silica-based thulium doped fiber amplifiers for wavelengths beyond the L-band,” Opt. Fiber Commun. Conf.(OFC), M3D.5 (2016).
  17. Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197 (2016).
    [Crossref]
  18. A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
    [Crossref]
  19. D. E. McCumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev. 134(2A), A299–A306 (1964).
    [Crossref]
  20. R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+-doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
    [Crossref]
  21. M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39(6), 509–511 (2003).
    [Crossref]
  22. T. Tsuzaki, M. Kakui, M. Hirano, M. Onishi, Y. Nakai, and M. Nishimura, “Broadband Discrete Fiber Raman Amplifier with High Differential Gain Operating Over 1.65µm-band,” Opt. Fiber Commun. Conf.(OFC), paper MA3 (2001).
  23. J. Yang, H. Zhong, S. Zhang, and D. Fan, “Theoretical Characterization of the Ultra-Broadband Gain Spectra at ∼1600-2100 nm from Thulium-Doped Fiber Amplifiers,” IEEE Photonics J. 8(6), 1–10 (2016).
    [Crossref]

2018 (1)

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

2017 (1)

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

2016 (4)

T. Delahaye, S. E. Maxwell, Z. D. Reed, H. Lin, J. T. Hodges, K. Sung, V. M. Devi, T. Warneke, P. Spietz, and H. Tran, “Precise methane absorption measurements in the 1.64 µm spectral region for the MERLIN mission,” J. Geophys. Res.: Atmos. 121(12), 7360–7370 (2016).
[Crossref]

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6(1), 28939–28946 (2016).
[Crossref]

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197 (2016).
[Crossref]

J. Yang, H. Zhong, S. Zhang, and D. Fan, “Theoretical Characterization of the Ultra-Broadband Gain Spectra at ∼1600-2100 nm from Thulium-Doped Fiber Amplifiers,” IEEE Photonics J. 8(6), 1–10 (2016).
[Crossref]

2015 (2)

J. M. O. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson, “Ultra-short wavelength operation of a thulium fibre laser in the 1660–1750nm wavelength band,” Opt. Express 23(14), 18269 (2015).
[Crossref]

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+-doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

2013 (4)

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+–Tb3+-doped tunable fibre ring laser for 1700nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

B. Niu, H. Yu, L. Yu, D. Zhou, D. Lu, L. Zhao, J. Pan, and W. Wang, “1.65 µm three-section Distributed Bragg Reflective (DBR) laser for CH4 gas sensor,” J. Semicond. 34(10), 104004 (2013).
[Crossref]

C. Crotti, F. Deloison, F. Alahyane, F. Aptel, L. Kowalczuk, J. M. Legeais, D. A. Peyrot, M. Savoldelli, and K. Plaman, “Wavelength optimization in femtosecond laser corneal surgery,” Invest. Ophthalmol. Visual Sci. 54(5), 3340–3349 (2013).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

2012 (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

2008 (1)

2006 (2)

C. Kakkar, G. Monnom, K. Thyagarajan, and B. Dussardier, “Inherently gain flattened L + band TDFA based on W-fiber design,” Opt. Commun. 262(2), 193–199 (2006).
[Crossref]

S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14(1), 50 (2006).
[Crossref]

2003 (1)

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

1990 (1)

W. L. Barnes and J. E. Townsend, “Highly tunable and efficient diode pumped operation of Tm3+-doped fiber lasers,” Electron. Lett. 26(11), 746–747 (1990).
[Crossref]

1964 (1)

D. E. McCumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[Crossref]

Abdeladim, L.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Agger, S. D.

Alahyane, F.

C. Crotti, F. Deloison, F. Alahyane, F. Aptel, L. Kowalczuk, J. M. Legeais, D. A. Peyrot, M. Savoldelli, and K. Plaman, “Wavelength optimization in femtosecond laser corneal surgery,” Invest. Ophthalmol. Visual Sci. 54(5), 3340–3349 (2013).
[Crossref]

Alam, S. U.

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197 (2016).
[Crossref]

Y. Jung, Z. Li, N. Simakov, J. M. O. Daniel, D. Jain, P. C. Shardlow, A. M. Heidt, J. K. Sahu, A. Hemming, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Silica-based thulium doped fiber amplifiers for wavelengths beyond the L-band,” Opt. Fiber Commun. Conf.(OFC), M3D.5 (2016).

Alyshev, S. V.

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6(1), 28939–28946 (2016).
[Crossref]

Aozasa, S.

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+–Tb3+-doped tunable fibre ring laser for 1700nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

Aptel, F.

C. Crotti, F. Deloison, F. Alahyane, F. Aptel, L. Kowalczuk, J. M. Legeais, D. A. Peyrot, M. Savoldelli, and K. Plaman, “Wavelength optimization in femtosecond laser corneal surgery,” Invest. Ophthalmol. Visual Sci. 54(5), 3340–3349 (2013).
[Crossref]

Barnes, W. L.

W. L. Barnes and J. E. Townsend, “Highly tunable and efficient diode pumped operation of Tm3+-doped fiber lasers,” Electron. Lett. 26(11), 746–747 (1990).
[Crossref]

Baxter, G.

D. A. Simpson and G. Baxter, “Spectroscopy of Thulium Doped Silica Glass,” PhD thesis, 181 (2007).

Beaurepaire, E.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Bradford, J. D.

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Butler, S. A.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

Cadroas, P.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Chang, E. W.

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Clarkson, W. A.

Cook, J.

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Crotti, C.

C. Crotti, F. Deloison, F. Alahyane, F. Aptel, L. Kowalczuk, J. M. Legeais, D. A. Peyrot, M. Savoldelli, and K. Plaman, “Wavelength optimization in femtosecond laser corneal surgery,” Invest. Ophthalmol. Visual Sci. 54(5), 3340–3349 (2013).
[Crossref]

Daniel, J. M. O.

Delahaye, T.

T. Delahaye, S. E. Maxwell, Z. D. Reed, H. Lin, J. T. Hodges, K. Sung, V. M. Devi, T. Warneke, P. Spietz, and H. Tran, “Precise methane absorption measurements in the 1.64 µm spectral region for the MERLIN mission,” J. Geophys. Res.: Atmos. 121(12), 7360–7370 (2016).
[Crossref]

Deloison, F.

C. Crotti, F. Deloison, F. Alahyane, F. Aptel, L. Kowalczuk, J. M. Legeais, D. A. Peyrot, M. Savoldelli, and K. Plaman, “Wavelength optimization in femtosecond laser corneal surgery,” Invest. Ophthalmol. Visual Sci. 54(5), 3340–3349 (2013).
[Crossref]

Devi, V. M.

T. Delahaye, S. E. Maxwell, Z. D. Reed, H. Lin, J. T. Hodges, K. Sung, V. M. Devi, T. Warneke, P. Spietz, and H. Tran, “Precise methane absorption measurements in the 1.64 µm spectral region for the MERLIN mission,” J. Geophys. Res.: Atmos. 121(12), 7360–7370 (2016).
[Crossref]

Dianov, E. M.

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6(1), 28939–28946 (2016).
[Crossref]

Dussardier, B.

C. Kakkar, G. Monnom, K. Thyagarajan, and B. Dussardier, “Inherently gain flattened L + band TDFA based on W-fiber design,” Opt. Commun. 262(2), 193–199 (2006).
[Crossref]

Fan, D.

J. Yang, H. Zhong, S. Zhang, and D. Fan, “Theoretical Characterization of the Ultra-Broadband Gain Spectra at ∼1600-2100 nm from Thulium-Doped Fiber Amplifiers,” IEEE Photonics J. 8(6), 1–10 (2016).
[Crossref]

Février, S.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Firstov, S. V.

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6(1), 28939–28946 (2016).
[Crossref]

Gaponov, D.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Garrod, T. J.

D. F. Siriani, J. J. Plant, T. J. Garrod, A. Napoleone, S. Mouser, and P. W. Juodawlkis, “High-Power 1.65 µm Slab-Coupled Optical Waveguide Amplifiers,” in CLEO, JTu5A.100 (2017).

Goh, C. S.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

Guryanov, A. N.

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6(1), 28939–28946 (2016).
[Crossref]

Heidt, A. M.

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197 (2016).
[Crossref]

Y. Jung, Z. Li, N. Simakov, J. M. O. Daniel, D. Jain, P. C. Shardlow, A. M. Heidt, J. K. Sahu, A. Hemming, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Silica-based thulium doped fiber amplifiers for wavelengths beyond the L-band,” Opt. Fiber Commun. Conf.(OFC), M3D.5 (2016).

Hemming, A.

Y. Jung, Z. Li, N. Simakov, J. M. O. Daniel, D. Jain, P. C. Shardlow, A. M. Heidt, J. K. Sahu, A. Hemming, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Silica-based thulium doped fiber amplifiers for wavelengths beyond the L-band,” Opt. Fiber Commun. Conf.(OFC), M3D.5 (2016).

Hideur, A.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Hirano, M.

T. Tsuzaki, M. Kakui, M. Hirano, M. Onishi, Y. Nakai, and M. Nishimura, “Broadband Discrete Fiber Raman Amplifier with High Differential Gain Operating Over 1.65µm-band,” Opt. Fiber Commun. Conf.(OFC), paper MA3 (2001).

Hodges, J. T.

T. Delahaye, S. E. Maxwell, Z. D. Reed, H. Lin, J. T. Hodges, K. Sung, V. M. Devi, T. Warneke, P. Spietz, and H. Tran, “Precise methane absorption measurements in the 1.64 µm spectral region for the MERLIN mission,” J. Geophys. Res.: Atmos. 121(12), 7360–7370 (2016).
[Crossref]

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Ibsen, M.

J. M. O. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson, “Ultra-short wavelength operation of a thulium fibre laser in the 1660–1750nm wavelength band,” Opt. Express 23(14), 18269 (2015).
[Crossref]

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jain, D.

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197 (2016).
[Crossref]

Y. Jung, Z. Li, N. Simakov, J. M. O. Daniel, D. Jain, P. C. Shardlow, A. M. Heidt, J. K. Sahu, A. Hemming, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Silica-based thulium doped fiber amplifiers for wavelengths beyond the L-band,” Opt. Fiber Commun. Conf.(OFC), M3D.5 (2016).

Jing, X.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+-doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Jung, Y.

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197 (2016).
[Crossref]

Y. Jung, Z. Li, N. Simakov, J. M. O. Daniel, D. Jain, P. C. Shardlow, A. M. Heidt, J. K. Sahu, A. Hemming, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Silica-based thulium doped fiber amplifiers for wavelengths beyond the L-band,” Opt. Fiber Commun. Conf.(OFC), M3D.5 (2016).

Juodawlkis, P. W.

D. F. Siriani, J. J. Plant, T. J. Garrod, A. Napoleone, S. Mouser, and P. W. Juodawlkis, “High-Power 1.65 µm Slab-Coupled Optical Waveguide Amplifiers,” in CLEO, JTu5A.100 (2017).

Kakkar, C.

C. Kakkar, G. Monnom, K. Thyagarajan, and B. Dussardier, “Inherently gain flattened L + band TDFA based on W-fiber design,” Opt. Commun. 262(2), 193–199 (2006).
[Crossref]

Kakui, M.

T. Tsuzaki, M. Kakui, M. Hirano, M. Onishi, Y. Nakai, and M. Nishimura, “Broadband Discrete Fiber Raman Amplifier with High Differential Gain Operating Over 1.65µm-band,” Opt. Fiber Commun. Conf.(OFC), paper MA3 (2001).

Khopin, V. F.

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6(1), 28939–28946 (2016).
[Crossref]

Kikuchi, K.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Kotov, L.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Kowalczuk, L.

C. Crotti, F. Deloison, F. Alahyane, F. Aptel, L. Kowalczuk, J. M. Legeais, D. A. Peyrot, M. Savoldelli, and K. Plaman, “Wavelength optimization in femtosecond laser corneal surgery,” Invest. Ophthalmol. Visual Sci. 54(5), 3340–3349 (2013).
[Crossref]

Koyama, O.

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+–Tb3+-doped tunable fibre ring laser for 1700nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

Legeais, J. M.

C. Crotti, F. Deloison, F. Alahyane, F. Aptel, L. Kowalczuk, J. M. Legeais, D. A. Peyrot, M. Savoldelli, and K. Plaman, “Wavelength optimization in femtosecond laser corneal surgery,” Invest. Ophthalmol. Visual Sci. 54(5), 3340–3349 (2013).
[Crossref]

Li, B.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+-doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Li, R.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+-doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Li, Z.

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197 (2016).
[Crossref]

Y. Jung, Z. Li, N. Simakov, J. M. O. Daniel, D. Jain, P. C. Shardlow, A. M. Heidt, J. K. Sahu, A. Hemming, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Silica-based thulium doped fiber amplifiers for wavelengths beyond the L-band,” Opt. Fiber Commun. Conf.(OFC), M3D.5 (2016).

Likhachev, M.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Lin, H.

T. Delahaye, S. E. Maxwell, Z. D. Reed, H. Lin, J. T. Hodges, K. Sung, V. M. Devi, T. Warneke, P. Spietz, and H. Tran, “Precise methane absorption measurements in the 1.64 µm spectral region for the MERLIN mission,” J. Geophys. Res.: Atmos. 121(12), 7360–7370 (2016).
[Crossref]

Lipatov, D.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Livet, J.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Lu, D.

B. Niu, H. Yu, L. Yu, D. Zhou, D. Lu, L. Zhao, J. Pan, and W. Wang, “1.65 µm three-section Distributed Bragg Reflective (DBR) laser for CH4 gas sensor,” J. Semicond. 34(10), 104004 (2013).
[Crossref]

Maeda, Y.

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+–Tb3+-doped tunable fibre ring laser for 1700nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

Maxwell, S. E.

T. Delahaye, S. E. Maxwell, Z. D. Reed, H. Lin, J. T. Hodges, K. Sung, V. M. Devi, T. Warneke, P. Spietz, and H. Tran, “Precise methane absorption measurements in the 1.64 µm spectral region for the MERLIN mission,” J. Geophys. Res.: Atmos. 121(12), 7360–7370 (2016).
[Crossref]

McCumber, D. E.

D. E. McCumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[Crossref]

Melkumov, M. A.

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6(1), 28939–28946 (2016).
[Crossref]

Mokhtar, M. R.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

Monnom, G.

C. Kakkar, G. Monnom, K. Thyagarajan, and B. Dussardier, “Inherently gain flattened L + band TDFA based on W-fiber design,” Opt. Commun. 262(2), 193–199 (2006).
[Crossref]

Mouser, S.

D. F. Siriani, J. J. Plant, T. J. Garrod, A. Napoleone, S. Mouser, and P. W. Juodawlkis, “High-Power 1.65 µm Slab-Coupled Optical Waveguide Amplifiers,” in CLEO, JTu5A.100 (2017).

Nakai, Y.

T. Tsuzaki, M. Kakui, M. Hirano, M. Onishi, Y. Nakai, and M. Nishimura, “Broadband Discrete Fiber Raman Amplifier with High Differential Gain Operating Over 1.65µm-band,” Opt. Fiber Commun. Conf.(OFC), paper MA3 (2001).

Napoleone, A.

D. F. Siriani, J. J. Plant, T. J. Garrod, A. Napoleone, S. Mouser, and P. W. Juodawlkis, “High-Power 1.65 µm Slab-Coupled Optical Waveguide Amplifiers,” in CLEO, JTu5A.100 (2017).

Nishimura, M.

T. Tsuzaki, M. Kakui, M. Hirano, M. Onishi, Y. Nakai, and M. Nishimura, “Broadband Discrete Fiber Raman Amplifier with High Differential Gain Operating Over 1.65µm-band,” Opt. Fiber Commun. Conf.(OFC), paper MA3 (2001).

Niu, B.

B. Niu, H. Yu, L. Yu, D. Zhou, D. Lu, L. Zhao, J. Pan, and W. Wang, “1.65 µm three-section Distributed Bragg Reflective (DBR) laser for CH4 gas sensor,” J. Semicond. 34(10), 104004 (2013).
[Crossref]

Onishi, M.

T. Tsuzaki, M. Kakui, M. Hirano, M. Onishi, Y. Nakai, and M. Nishimura, “Broadband Discrete Fiber Raman Amplifier with High Differential Gain Operating Over 1.65µm-band,” Opt. Fiber Commun. Conf.(OFC), paper MA3 (2001).

Ono, H.

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+–Tb3+-doped tunable fibre ring laser for 1700nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

Ono, J.

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+–Tb3+-doped tunable fibre ring laser for 1700nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

Ota, K.

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+–Tb3+-doped tunable fibre ring laser for 1700nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

Pan, J.

B. Niu, H. Yu, L. Yu, D. Zhou, D. Lu, L. Zhao, J. Pan, and W. Wang, “1.65 µm three-section Distributed Bragg Reflective (DBR) laser for CH4 gas sensor,” J. Semicond. 34(10), 104004 (2013).
[Crossref]

Peyrot, D. A.

C. Crotti, F. Deloison, F. Alahyane, F. Aptel, L. Kowalczuk, J. M. Legeais, D. A. Peyrot, M. Savoldelli, and K. Plaman, “Wavelength optimization in femtosecond laser corneal surgery,” Invest. Ophthalmol. Visual Sci. 54(5), 3340–3349 (2013).
[Crossref]

Plaman, K.

C. Crotti, F. Deloison, F. Alahyane, F. Aptel, L. Kowalczuk, J. M. Legeais, D. A. Peyrot, M. Savoldelli, and K. Plaman, “Wavelength optimization in femtosecond laser corneal surgery,” Invest. Ophthalmol. Visual Sci. 54(5), 3340–3349 (2013).
[Crossref]

Plant, J. J.

D. F. Siriani, J. J. Plant, T. J. Garrod, A. Napoleone, S. Mouser, and P. W. Juodawlkis, “High-Power 1.65 µm Slab-Coupled Optical Waveguide Amplifiers,” in CLEO, JTu5A.100 (2017).

Povlsen, J. H.

Reed, Z. D.

T. Delahaye, S. E. Maxwell, Z. D. Reed, H. Lin, J. T. Hodges, K. Sung, V. M. Devi, T. Warneke, P. Spietz, and H. Tran, “Precise methane absorption measurements in the 1.64 µm spectral region for the MERLIN mission,” J. Geophys. Res.: Atmos. 121(12), 7360–7370 (2016).
[Crossref]

Richardson, D. J.

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197 (2016).
[Crossref]

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

Y. Jung, Z. Li, N. Simakov, J. M. O. Daniel, D. Jain, P. C. Shardlow, A. M. Heidt, J. K. Sahu, A. Hemming, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Silica-based thulium doped fiber amplifiers for wavelengths beyond the L-band,” Opt. Fiber Commun. Conf.(OFC), M3D.5 (2016).

Richardson, M. C.

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Riumkin, K. E.

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6(1), 28939–28946 (2016).
[Crossref]

Ruan, F.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+-doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Sahu, J. K.

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197 (2016).
[Crossref]

Y. Jung, Z. Li, N. Simakov, J. M. O. Daniel, D. Jain, P. C. Shardlow, A. M. Heidt, J. K. Sahu, A. Hemming, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Silica-based thulium doped fiber amplifiers for wavelengths beyond the L-band,” Opt. Fiber Commun. Conf.(OFC), M3D.5 (2016).

Savoldelli, M.

C. Crotti, F. Deloison, F. Alahyane, F. Aptel, L. Kowalczuk, J. M. Legeais, D. A. Peyrot, M. Savoldelli, and K. Plaman, “Wavelength optimization in femtosecond laser corneal surgery,” Invest. Ophthalmol. Visual Sci. 54(5), 3340–3349 (2013).
[Crossref]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Senda, K.

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+–Tb3+-doped tunable fibre ring laser for 1700nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

Set, S. Y.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

Shah, L.

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Shardlow, P. C.

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197 (2016).
[Crossref]

Y. Jung, Z. Li, N. Simakov, J. M. O. Daniel, D. Jain, P. C. Shardlow, A. M. Heidt, J. K. Sahu, A. Hemming, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Silica-based thulium doped fiber amplifiers for wavelengths beyond the L-band,” Opt. Fiber Commun. Conf.(OFC), M3D.5 (2016).

Sharma, U.

Simakov, N.

Simpson, D. A.

D. A. Simpson and G. Baxter, “Spectroscopy of Thulium Doped Silica Glass,” PhD thesis, 181 (2007).

Sincore, A.

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Siriani, D. F.

D. F. Siriani, J. J. Plant, T. J. Garrod, A. Napoleone, S. Mouser, and P. W. Juodawlkis, “High-Power 1.65 µm Slab-Coupled Optical Waveguide Amplifiers,” in CLEO, JTu5A.100 (2017).

Spietz, P.

T. Delahaye, S. E. Maxwell, Z. D. Reed, H. Lin, J. T. Hodges, K. Sung, V. M. Devi, T. Warneke, P. Spietz, and H. Tran, “Precise methane absorption measurements in the 1.64 µm spectral region for the MERLIN mission,” J. Geophys. Res.: Atmos. 121(12), 7360–7370 (2016).
[Crossref]

Sung, K.

T. Delahaye, S. E. Maxwell, Z. D. Reed, H. Lin, J. T. Hodges, K. Sung, V. M. Devi, T. Warneke, P. Spietz, and H. Tran, “Precise methane absorption measurements in the 1.64 µm spectral region for the MERLIN mission,” J. Geophys. Res.: Atmos. 121(12), 7360–7370 (2016).
[Crossref]

Supatto, W.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Tanaka, T.

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+–Tb3+-doped tunable fibre ring laser for 1700nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

Tang, M.

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

Thyagarajan, K.

C. Kakkar, G. Monnom, K. Thyagarajan, and B. Dussardier, “Inherently gain flattened L + band TDFA based on W-fiber design,” Opt. Commun. 262(2), 193–199 (2006).
[Crossref]

Tian, C.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+-doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Tian, Y.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+-doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Tokurakawa, M.

Townsend, J. E.

W. L. Barnes and J. E. Townsend, “Highly tunable and efficient diode pumped operation of Tm3+-doped fiber lasers,” Electron. Lett. 26(11), 746–747 (1990).
[Crossref]

Tran, H.

T. Delahaye, S. E. Maxwell, Z. D. Reed, H. Lin, J. T. Hodges, K. Sung, V. M. Devi, T. Warneke, P. Spietz, and H. Tran, “Precise methane absorption measurements in the 1.64 µm spectral region for the MERLIN mission,” J. Geophys. Res.: Atmos. 121(12), 7360–7370 (2016).
[Crossref]

Tsuzaki, T.

T. Tsuzaki, M. Kakui, M. Hirano, M. Onishi, Y. Nakai, and M. Nishimura, “Broadband Discrete Fiber Raman Amplifier with High Differential Gain Operating Over 1.65µm-band,” Opt. Fiber Commun. Conf.(OFC), paper MA3 (2001).

Wang, F.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+-doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Wang, K.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Wang, W.

B. Niu, H. Yu, L. Yu, D. Zhou, D. Lu, L. Zhao, J. Pan, and W. Wang, “1.65 µm three-section Distributed Bragg Reflective (DBR) laser for CH4 gas sensor,” J. Semicond. 34(10), 104004 (2013).
[Crossref]

Warneke, T.

T. Delahaye, S. E. Maxwell, Z. D. Reed, H. Lin, J. T. Hodges, K. Sung, V. M. Devi, T. Warneke, P. Spietz, and H. Tran, “Precise methane absorption measurements in the 1.64 µm spectral region for the MERLIN mission,” J. Geophys. Res.: Atmos. 121(12), 7360–7370 (2016).
[Crossref]

Wei, T.

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+-doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Xu, C.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Yamada, M.

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+–Tb3+-doped tunable fibre ring laser for 1700nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

Yang, J.

J. Yang, H. Zhong, S. Zhang, and D. Fan, “Theoretical Characterization of the Ultra-Broadband Gain Spectra at ∼1600-2100 nm from Thulium-Doped Fiber Amplifiers,” IEEE Photonics J. 8(6), 1–10 (2016).
[Crossref]

Yu, H.

B. Niu, H. Yu, L. Yu, D. Zhou, D. Lu, L. Zhao, J. Pan, and W. Wang, “1.65 µm three-section Distributed Bragg Reflective (DBR) laser for CH4 gas sensor,” J. Semicond. 34(10), 104004 (2013).
[Crossref]

Yu, L.

B. Niu, H. Yu, L. Yu, D. Zhou, D. Lu, L. Zhao, J. Pan, and W. Wang, “1.65 µm three-section Distributed Bragg Reflective (DBR) laser for CH4 gas sensor,” J. Semicond. 34(10), 104004 (2013).
[Crossref]

Yun, S. H.

Zhang, S.

J. Yang, H. Zhong, S. Zhang, and D. Fan, “Theoretical Characterization of the Ultra-Broadband Gain Spectra at ∼1600-2100 nm from Thulium-Doped Fiber Amplifiers,” IEEE Photonics J. 8(6), 1–10 (2016).
[Crossref]

Zhao, L.

B. Niu, H. Yu, L. Yu, D. Zhou, D. Lu, L. Zhao, J. Pan, and W. Wang, “1.65 µm three-section Distributed Bragg Reflective (DBR) laser for CH4 gas sensor,” J. Semicond. 34(10), 104004 (2013).
[Crossref]

Zhong, H.

J. Yang, H. Zhong, S. Zhang, and D. Fan, “Theoretical Characterization of the Ultra-Broadband Gain Spectra at ∼1600-2100 nm from Thulium-Doped Fiber Amplifiers,” IEEE Photonics J. 8(6), 1–10 (2016).
[Crossref]

Zhou, D.

B. Niu, H. Yu, L. Yu, D. Zhou, D. Lu, L. Zhao, J. Pan, and W. Wang, “1.65 µm three-section Distributed Bragg Reflective (DBR) laser for CH4 gas sensor,” J. Semicond. 34(10), 104004 (2013).
[Crossref]

Electron. Lett. (3)

M. Yamada, K. Senda, T. Tanaka, Y. Maeda, S. Aozasa, H. Ono, K. Ota, O. Koyama, and J. Ono, “Tm3+–Tb3+-doped tunable fibre ring laser for 1700nm wavelength region,” Electron. Lett. 49(20), 1287–1288 (2013).
[Crossref]

W. L. Barnes and J. E. Townsend, “Highly tunable and efficient diode pumped operation of Tm3+-doped fiber lasers,” Electron. Lett. 26(11), 746–747 (1990).
[Crossref]

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, “Fibre Bragg grating compression-tuned over 110 nm,” Electron. Lett. 39(6), 509–511 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High Average Power Thulium-Doped Silica Fiber Lasers: Review of Systems and Concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

IEEE Photonics J. (1)

J. Yang, H. Zhong, S. Zhang, and D. Fan, “Theoretical Characterization of the Ultra-Broadband Gain Spectra at ∼1600-2100 nm from Thulium-Doped Fiber Amplifiers,” IEEE Photonics J. 8(6), 1–10 (2016).
[Crossref]

Invest. Ophthalmol. Visual Sci. (1)

C. Crotti, F. Deloison, F. Alahyane, F. Aptel, L. Kowalczuk, J. M. Legeais, D. A. Peyrot, M. Savoldelli, and K. Plaman, “Wavelength optimization in femtosecond laser corneal surgery,” Invest. Ophthalmol. Visual Sci. 54(5), 3340–3349 (2013).
[Crossref]

J. Geophys. Res.: Atmos. (1)

T. Delahaye, S. E. Maxwell, Z. D. Reed, H. Lin, J. T. Hodges, K. Sung, V. M. Devi, T. Warneke, P. Spietz, and H. Tran, “Precise methane absorption measurements in the 1.64 µm spectral region for the MERLIN mission,” J. Geophys. Res.: Atmos. 121(12), 7360–7370 (2016).
[Crossref]

J. Lumin. (1)

R. Li, C. Tian, Y. Tian, T. Wei, B. Li, X. Jing, F. Ruan, and F. Wang, “Mid-infrared emission properties and energy transfer evaluation in Tm3+-doped fluorophosphate glasses,” J. Lumin. 162, 58–62 (2015).
[Crossref]

J. Opt. (1)

P. Cadroas, L. Abdeladim, L. Kotov, M. Likhachev, D. Lipatov, D. Gaponov, A. Hideur, M. Tang, J. Livet, W. Supatto, E. Beaurepaire, and S. Février, “All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy,” J. Opt. 19(6), 065506 (2017).
[Crossref]

J. Semicond. (1)

B. Niu, H. Yu, L. Yu, D. Zhou, D. Lu, L. Zhao, J. Pan, and W. Wang, “1.65 µm three-section Distributed Bragg Reflective (DBR) laser for CH4 gas sensor,” J. Semicond. 34(10), 104004 (2013).
[Crossref]

Nat. Photonics (2)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref]

Opt. Commun. (1)

C. Kakkar, G. Monnom, K. Thyagarajan, and B. Dussardier, “Inherently gain flattened L + band TDFA based on W-fiber design,” Opt. Commun. 262(2), 193–199 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. (1)

D. E. McCumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[Crossref]

Sci. Rep. (1)

S. V. Firstov, S. V. Alyshev, K. E. Riumkin, V. F. Khopin, A. N. Guryanov, M. A. Melkumov, and E. M. Dianov, “A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band,” Sci. Rep. 6(1), 28939–28946 (2016).
[Crossref]

Other (4)

D. F. Siriani, J. J. Plant, T. J. Garrod, A. Napoleone, S. Mouser, and P. W. Juodawlkis, “High-Power 1.65 µm Slab-Coupled Optical Waveguide Amplifiers,” in CLEO, JTu5A.100 (2017).

T. Tsuzaki, M. Kakui, M. Hirano, M. Onishi, Y. Nakai, and M. Nishimura, “Broadband Discrete Fiber Raman Amplifier with High Differential Gain Operating Over 1.65µm-band,” Opt. Fiber Commun. Conf.(OFC), paper MA3 (2001).

D. A. Simpson and G. Baxter, “Spectroscopy of Thulium Doped Silica Glass,” PhD thesis, 181 (2007).

Y. Jung, Z. Li, N. Simakov, J. M. O. Daniel, D. Jain, P. C. Shardlow, A. M. Heidt, J. K. Sahu, A. Hemming, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Silica-based thulium doped fiber amplifiers for wavelengths beyond the L-band,” Opt. Fiber Commun. Conf.(OFC), M3D.5 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. The gain and noise figure of TDFAs demonstrated by using Al/Tm co-doped fiber [16], with its corresponding absorption- (σA) and emission cross section (σE), respectively [15].
Fig. 2.
Fig. 2. (a) Measured doping concentration of a representative fabricated Ge/Tm co-doped fiber using an electron probe micro-analyzer (along the direction of the green arrow as shown in the inset), (b) the normalized absorption cross-section of the Al/Tm co-doped fiber and our in-house fabricated Ge/Tm co-doped fiber, respectively.
Fig. 3.
Fig. 3. (a) Normalized emission cross-sections for Al/Tm co-doped fiber and in-house fabricated Ge/Tm co-doped fiber, respectively, and (b) the calculated normalized gain coefficient of Ge/Tm co-doped fiber at different population inversion levels.
Fig. 4.
Fig. 4. (a) Schematic of a short-wavelength TDFA, TLS: tunable laser source, (b) gain and NF performances of the TDFA, and (c) amplified spectra for saturated signals, measured with 0.1 nm OSA resolution.
Fig. 5.
Fig. 5. (a) Schematic of the tunable TDFL, (b) output power of the tunable TDFL at different lasing wavelengths, (c) output spectra of the tunable TDFL (measured with 0.1 nm OSA resolution) and (d) slope efficiency at 1660 nm at port 1.

Tables (1)

Tables Icon

Table 1. Main characteristics of the state of the art TDFAs, BDFA and Raman fiber amplifier operating at 1650 nm

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

G ( λ ) = ρ 0 [ p σ e ( λ ) ( 1 p ) σ a ( λ ) ]

Metrics