Abstract

We propose and demonstrate a four-wavelength-switchable erbium-doped fiber laser (4WS-EDFL) with a four-channel superimposed high-birefringence fiber Bragg grating (SI-HBFBG) and a dual-coupler ring based compound-cavity (DCR-CC) filter. Both for the first time, a SI-HBFBG as a four-channel reflective filter is used in a multi-wavelength switchable fiber laser to define wavelength channels and a DCR-CC filter is used to select a single mode from dense longitudinal-modes in a fiber laser. We present in detail how to design, fabricate, and characterize the DCR-CC filter with both theoretical analysis and experimental results, which we believe is the first systematic approach for making a compound-cavity based filter used for selecting single-longitudinal mode (SLM) in a fiber laser. The enhanced polarization hole burning effect in a 2.9 m long erbium-doped fiber, coiled inside a three-loop polarization controller, and the polarization-mismatch-induced losses are introduced into the laser cavity to achieve wavelength-switching operations. We show that the 4WS-EDFL can be switched among fifteen lasing states, including four single-wavelength operations, six dual-wavelength operations, four three-wavelength operations and one four-wavelength operation, all with high stability. For demonstration, in switchable single-wavelength operations, the four SLM lasing outputs measured are all with an optical signal to noise ratio of >80 dB, a linewidth of <700 Hz, a relative intensity noise of ≤−156.7 dB/Hz at frequencies over 3 MHz, an output power fluctuation of ≤0.555 dB and excellent polarization characteristics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter

Bin Yin, Suchun Feng, Zhibo Liu, Yunlong Bai, and Shuisheng Jian
Opt. Express 22(19) 22528-22533 (2014)

Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method

Ting Feng, Dongliang Ding, Fengping Yan, Ziwei Zhao, Hongxin Su, and X. Steve Yao
Opt. Express 24(17) 19760-19768 (2016)

Single- and dual-wavelength switchable erbium-doped fiber ring laser based on intracavity polarization selective tilted fiber gratings

Chengbo Mou, Pouneh Saffari, Hongyan Fu, Kaiming Zhou, Lin Zhang, and Ian Bennion
Appl. Opt. 48(18) 3455-3459 (2009)

References

  • View by:
  • |
  • |
  • |

  1. H. Al-Taiy, N. Wenzel, S. Preußler, J. Klinger, and T. Schneider, “Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy,” Opt. Lett. 39(20), 5826–5829 (2014).
    [Crossref]
  2. T. Omiya, M. Yoshida, and M. Nakazawa, “400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using high-resolution FDE,” Opt. Express 21(3), 2632–2641 (2013).
    [Crossref]
  3. Y. Liu, J. Liu, and W. Chen, “Eye-safe, single-frequency pulsed all-fiber laser for Doppler wind lidar,” Chin. Opt. Lett. 9(9), 090604 (2011).
    [Crossref]
  4. B. Liu, C. Jia, H. Zhang, and J. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett. 52(1), 41–44 (2010).
    [Crossref]
  5. J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
    [Crossref]
  6. C.-C. Lee, Y.-K. Chen, and S.-K. Liaw, “Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission,” Opt. Lett. 23(5), 358–360 (1998).
    [Crossref]
  7. H. Katori, “Optical lattice clocks and quantum metrology,” Nat. Photonics 5(4), 203–210 (2011).
    [Crossref]
  8. C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329(5999), 1630–1633 (2010).
    [Crossref]
  9. D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
    [Crossref]
  10. T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
    [Crossref]
  11. J. Zhou, X. Feng, Y. Wang, Z. Li, and B.-O. Guan, “Dual-wavelength single-frequency fiber laser based on FP-LD injection locking for millimeter-wave generation,” Opt. Laser Technol. 64, 328–332 (2014).
    [Crossref]
  12. S. Rota-Rodrigo, I. Ibanez, and M. Lopez-Amo, “Multi-wavelength fiber laser in single-longitudinal mode operation using a photonic crystal fiber Sagnac interferometer,” Appl. Phys. B: Lasers Opt. 110(3), 303–308 (2013).
    [Crossref]
  13. V. Kaman, Z. Xuezhe, Y. Shifu, J. Klingshirn, C. Pusarla, R. J. Helkey, O. Jerphagnon, and J. E. Bowers, “A 32/spl times/10 Gb/s DWDM metropolitan network demonstration using wavelength-selective photonic cross-connects and narrow-band EDFAs,” IEEE Photonics Technol. Lett. 17(9), 1977–1979 (2005).
    [Crossref]
  14. T. Morioka, K. Mori, S. Kawanishi, and M. Saruwatari, “Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers,” IEEE Photonics Technol. Lett. 6(3), 365–368 (1994).
    [Crossref]
  15. Y. Qi, Z. Kang, J. Sun, L. Ma, W. Jin, Y. Lian, and S. Jian, “Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure,” Opt. Laser Technol. 81, 26–32 (2016).
    [Crossref]
  16. R. A. Pérez-Herrera, L. Rodríguez-Cobo, M. A. Quintela, J. M. L. Higuera, and M. López-Amo, “Single-longitudinal-mode dual wavelength-switchable fiber laser based on superposed fiber Bragg gratings,” IEEE Photonics J. 7(2), 1–7 (2015).
    [Crossref]
  17. T. Feng, D. Ding, Z. Zhao, H. Su, F. Yan, and X. S. Yao, “Switchable 10 nm-spaced dual-wavelength SLM fiber laser with sub-kHz linewidth and high OSNR using a novel multiple-ring configuration,” Laser Phys. Lett. 13(10), 105104 (2016).
    [Crossref]
  18. T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
    [Crossref]
  19. C.-H. Yeh, Y. Hsu, and C.-W. Chow, “Utilizing a silicon-photonic micro-ring-resonator and multi-ring scheme for wavelength-switchable erbium fiber laser in single-longitudinal-mode,” Laser Phys. Lett. 13(6), 065103 (2016).
    [Crossref]
  20. W. He and L. Zhu, “Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on a thin-core fiber comb filter and saturable absorber,” Microw. Opt. Technol. Lett. 57(2), 287–292 (2015).
    [Crossref]
  21. A. A. Jasim, M. Dernaika, S. W. Harun, and H. Ahmad, “A switchable figure eight erbium-doped fiber laser based on inter-modal beating by means of non-adiabatic microfiber,” J. Lightwave Technol. 33(2), 528–534 (2015).
    [Crossref]
  22. B. Yin, S. Feng, Z. Liu, Y. Bai, and S. Jian, “Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter,” Opt. Express 22(19), 22528–22533 (2014).
    [Crossref]
  23. K. K. Qureshi, “Switchable dual-wavelength fiber ring laser featuring twin-core photonic crystal fiber-based filter,” Chin. Opt. Lett. 12(12), 020605 (2014).
    [Crossref]
  24. Z. Cao, Z. Zhang, T. Shui, X. Ji, R. Wang, C. Yin, and B. Yu, “Switchable dual-wavelength erbium-doped fiber ring laser with tunable wavelength spacing based on a compact fiber filter,” Opt. Laser Technol. 56, 137–141 (2014).
    [Crossref]
  25. W. Zheng, S. Ruan, M. Zhang, W. Liu, Y. Zhang, and X. Yang, “Switchable multi-wavelength erbium-doped photonic crystal fiber laser based on nonlinear polarization rotation,” Opt. Laser Technol. 50, 145–149 (2013).
    [Crossref]
  26. T. Feng, M. Wang, M. Jiang, X. Wang, F. Yan, Y. Suo, and X. S. Yao, “C-band 41-wavelength-switchable single-longitudinal-mode fiber laser with sub-kHz linewidth and high stability using a wide-band chirped Moiré fiber Bragg grating,” Laser Phys. Lett. 16(2), 025106 (2019).
    [Crossref]
  27. W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 µm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
    [Crossref]
  28. T. Feng, M. Wang, X. Wang, F. Yan, Y. Suo, and X. S. Yao, “Switchable 0.612-nm-Spaced Dual-Wavelength Fiber Laser With Sub-kHz Linewidth, Ultra-High OSNR, Ultra-Low RIN, and Orthogonal Polarization Outputs,” J. Lightwave Technol. 37(13), 3173–3182 (2019).
    [Crossref]
  29. W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, S. Tan, and S. Feng, “1.94 µm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Appl. Opt. 52(19), 4601–4607 (2013).
    [Crossref]
  30. T. Feng, M. Jiang, Y. Ren, M. Wang, F. Yan, Y. Suo, and X. S. Yao, “High stability multiwavelength random erbium-doped fiber laser with a reflecting-filter of six-superimposed fiber-Bragg-gratings,” OSA Continuum 2(9), 2526–2538 (2019).
    [Crossref]
  31. T. Feng, D. Ding, F. Yan, Z. Zhao, H. Su, and X. S. Yao, “Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method,” Opt. Express 24(17), 19760–19768 (2016).
    [Crossref]
  32. Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
    [Crossref]
  33. S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
    [Crossref]
  34. X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, “A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity,” Opt. Express 17(24), 21773–21781 (2009).
    [Crossref]
  35. X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
    [Crossref]
  36. X. He, D. N. Wang, and C. R. Liao, “Tunable and switchable dual-wavelength single-longitudinal-mode erbium-doped fiber lasers,” J. Lightwave Technol. 29(6), 123–127 (2011).
    [Crossref]
  37. S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
    [Crossref]
  38. J. Tang and J. Sun, “Stable and widely tunable wavelength-spacing single longitudinal mode dual-wavelength erbium-doped fiber laser,” Opt. Fiber Technol. 16(5), 299–303 (2010).
    [Crossref]
  39. V. J. Mazurczyk and J. L. Zyskind, “Polarization dependent gain in erbium doped-fiber amplifiers,” IEEE Photonics Technol. Lett. 6(5), 616–618 (1994).
    [Crossref]
  40. H. C. Lefevre, “Single-mode fibre fractional wave devices and polarisation controllers,” Electron. Lett. 16(20), 778–780 (1980).
    [Crossref]
  41. C. Zhang, J. Sun, and S. Jian, “A new mechanism to suppress the homogeneous gain broadening for stable multi-wavelength erbium-doped fiber laser,” Opt. Commun. 288, 97–100 (2013).
    [Crossref]
  42. J. Zhang and J. W. Y. Lit, “All-fiber compound ring resonator with a ring filter,” J. Lightwave Technol. 12(7), 1256–1262 (1994).
    [Crossref]
  43. L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991).
    [Crossref]
  44. K. J. Weingarten, B. Braun, and U. Keller, “In situ small-signal gain of solid-state lasers determined from relaxation oscillation frequency measurements,” Opt. Lett. 19(15), 1140–1142 (1994).
    [Crossref]
  45. S. Mo, Z. Li, X. Huang, S. Xu, Z. Feng, W. Zhang, C. Li, C. Yang, Q. Qian, and D. Chen, “820 Hz linewidth short-linear-cavity single-frequency fiber laser at 1.5 µm,” Laser Phys. Lett. 11(3), 035101 (2014).
    [Crossref]
  46. A. Yang, T. Wang, J. Zheng, X. Zeng, F. Pang, and T. Wang, “A single-longitudinal-mode narrow-linewidth dual-wavelength fiber laser using a microfiber knot resonator,” Laser Phys. Lett. 16(2), 025104 (2019).
    [Crossref]

2019 (4)

T. Feng, M. Wang, M. Jiang, X. Wang, F. Yan, Y. Suo, and X. S. Yao, “C-band 41-wavelength-switchable single-longitudinal-mode fiber laser with sub-kHz linewidth and high stability using a wide-band chirped Moiré fiber Bragg grating,” Laser Phys. Lett. 16(2), 025106 (2019).
[Crossref]

T. Feng, M. Wang, X. Wang, F. Yan, Y. Suo, and X. S. Yao, “Switchable 0.612-nm-Spaced Dual-Wavelength Fiber Laser With Sub-kHz Linewidth, Ultra-High OSNR, Ultra-Low RIN, and Orthogonal Polarization Outputs,” J. Lightwave Technol. 37(13), 3173–3182 (2019).
[Crossref]

T. Feng, M. Jiang, Y. Ren, M. Wang, F. Yan, Y. Suo, and X. S. Yao, “High stability multiwavelength random erbium-doped fiber laser with a reflecting-filter of six-superimposed fiber-Bragg-gratings,” OSA Continuum 2(9), 2526–2538 (2019).
[Crossref]

A. Yang, T. Wang, J. Zheng, X. Zeng, F. Pang, and T. Wang, “A single-longitudinal-mode narrow-linewidth dual-wavelength fiber laser using a microfiber knot resonator,” Laser Phys. Lett. 16(2), 025104 (2019).
[Crossref]

2016 (4)

T. Feng, D. Ding, F. Yan, Z. Zhao, H. Su, and X. S. Yao, “Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method,” Opt. Express 24(17), 19760–19768 (2016).
[Crossref]

T. Feng, D. Ding, Z. Zhao, H. Su, F. Yan, and X. S. Yao, “Switchable 10 nm-spaced dual-wavelength SLM fiber laser with sub-kHz linewidth and high OSNR using a novel multiple-ring configuration,” Laser Phys. Lett. 13(10), 105104 (2016).
[Crossref]

Y. Qi, Z. Kang, J. Sun, L. Ma, W. Jin, Y. Lian, and S. Jian, “Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure,” Opt. Laser Technol. 81, 26–32 (2016).
[Crossref]

C.-H. Yeh, Y. Hsu, and C.-W. Chow, “Utilizing a silicon-photonic micro-ring-resonator and multi-ring scheme for wavelength-switchable erbium fiber laser in single-longitudinal-mode,” Laser Phys. Lett. 13(6), 065103 (2016).
[Crossref]

2015 (4)

W. He and L. Zhu, “Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on a thin-core fiber comb filter and saturable absorber,” Microw. Opt. Technol. Lett. 57(2), 287–292 (2015).
[Crossref]

A. A. Jasim, M. Dernaika, S. W. Harun, and H. Ahmad, “A switchable figure eight erbium-doped fiber laser based on inter-modal beating by means of non-adiabatic microfiber,” J. Lightwave Technol. 33(2), 528–534 (2015).
[Crossref]

R. A. Pérez-Herrera, L. Rodríguez-Cobo, M. A. Quintela, J. M. L. Higuera, and M. López-Amo, “Single-longitudinal-mode dual wavelength-switchable fiber laser based on superposed fiber Bragg gratings,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]

2014 (8)

J. Zhou, X. Feng, Y. Wang, Z. Li, and B.-O. Guan, “Dual-wavelength single-frequency fiber laser based on FP-LD injection locking for millimeter-wave generation,” Opt. Laser Technol. 64, 328–332 (2014).
[Crossref]

H. Al-Taiy, N. Wenzel, S. Preußler, J. Klinger, and T. Schneider, “Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy,” Opt. Lett. 39(20), 5826–5829 (2014).
[Crossref]

B. Yin, S. Feng, Z. Liu, Y. Bai, and S. Jian, “Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter,” Opt. Express 22(19), 22528–22533 (2014).
[Crossref]

K. K. Qureshi, “Switchable dual-wavelength fiber ring laser featuring twin-core photonic crystal fiber-based filter,” Chin. Opt. Lett. 12(12), 020605 (2014).
[Crossref]

Z. Cao, Z. Zhang, T. Shui, X. Ji, R. Wang, C. Yin, and B. Yu, “Switchable dual-wavelength erbium-doped fiber ring laser with tunable wavelength spacing based on a compact fiber filter,” Opt. Laser Technol. 56, 137–141 (2014).
[Crossref]

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref]

S. Mo, Z. Li, X. Huang, S. Xu, Z. Feng, W. Zhang, C. Li, C. Yang, Q. Qian, and D. Chen, “820 Hz linewidth short-linear-cavity single-frequency fiber laser at 1.5 µm,” Laser Phys. Lett. 11(3), 035101 (2014).
[Crossref]

2013 (7)

C. Zhang, J. Sun, and S. Jian, “A new mechanism to suppress the homogeneous gain broadening for stable multi-wavelength erbium-doped fiber laser,” Opt. Commun. 288, 97–100 (2013).
[Crossref]

S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 µm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, S. Tan, and S. Feng, “1.94 µm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Appl. Opt. 52(19), 4601–4607 (2013).
[Crossref]

W. Zheng, S. Ruan, M. Zhang, W. Liu, Y. Zhang, and X. Yang, “Switchable multi-wavelength erbium-doped photonic crystal fiber laser based on nonlinear polarization rotation,” Opt. Laser Technol. 50, 145–149 (2013).
[Crossref]

T. Omiya, M. Yoshida, and M. Nakazawa, “400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using high-resolution FDE,” Opt. Express 21(3), 2632–2641 (2013).
[Crossref]

S. Rota-Rodrigo, I. Ibanez, and M. Lopez-Amo, “Multi-wavelength fiber laser in single-longitudinal mode operation using a photonic crystal fiber Sagnac interferometer,” Appl. Phys. B: Lasers Opt. 110(3), 303–308 (2013).
[Crossref]

2012 (1)

2011 (3)

Y. Liu, J. Liu, and W. Chen, “Eye-safe, single-frequency pulsed all-fiber laser for Doppler wind lidar,” Chin. Opt. Lett. 9(9), 090604 (2011).
[Crossref]

H. Katori, “Optical lattice clocks and quantum metrology,” Nat. Photonics 5(4), 203–210 (2011).
[Crossref]

X. He, D. N. Wang, and C. R. Liao, “Tunable and switchable dual-wavelength single-longitudinal-mode erbium-doped fiber lasers,” J. Lightwave Technol. 29(6), 123–127 (2011).
[Crossref]

2010 (3)

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329(5999), 1630–1633 (2010).
[Crossref]

B. Liu, C. Jia, H. Zhang, and J. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett. 52(1), 41–44 (2010).
[Crossref]

J. Tang and J. Sun, “Stable and widely tunable wavelength-spacing single longitudinal mode dual-wavelength erbium-doped fiber laser,” Opt. Fiber Technol. 16(5), 299–303 (2010).
[Crossref]

2009 (1)

2007 (1)

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

2005 (3)

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

V. Kaman, Z. Xuezhe, Y. Shifu, J. Klingshirn, C. Pusarla, R. J. Helkey, O. Jerphagnon, and J. E. Bowers, “A 32/spl times/10 Gb/s DWDM metropolitan network demonstration using wavelength-selective photonic cross-connects and narrow-band EDFAs,” IEEE Photonics Technol. Lett. 17(9), 1977–1979 (2005).
[Crossref]

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

1998 (1)

1994 (4)

T. Morioka, K. Mori, S. Kawanishi, and M. Saruwatari, “Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers,” IEEE Photonics Technol. Lett. 6(3), 365–368 (1994).
[Crossref]

J. Zhang and J. W. Y. Lit, “All-fiber compound ring resonator with a ring filter,” J. Lightwave Technol. 12(7), 1256–1262 (1994).
[Crossref]

V. J. Mazurczyk and J. L. Zyskind, “Polarization dependent gain in erbium doped-fiber amplifiers,” IEEE Photonics Technol. Lett. 6(5), 616–618 (1994).
[Crossref]

K. J. Weingarten, B. Braun, and U. Keller, “In situ small-signal gain of solid-state lasers determined from relaxation oscillation frequency measurements,” Opt. Lett. 19(15), 1140–1142 (1994).
[Crossref]

1991 (1)

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991).
[Crossref]

1980 (1)

H. C. Lefevre, “Single-mode fibre fractional wave devices and polarisation controllers,” Electron. Lett. 16(20), 778–780 (1980).
[Crossref]

Ahmad, H.

Al-Taiy, H.

Bai, Y.

B. Yin, S. Feng, Z. Liu, Y. Bai, and S. Jian, “Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter,” Opt. Express 22(19), 22528–22533 (2014).
[Crossref]

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

Bowers, J. E.

V. Kaman, Z. Xuezhe, Y. Shifu, J. Klingshirn, C. Pusarla, R. J. Helkey, O. Jerphagnon, and J. E. Bowers, “A 32/spl times/10 Gb/s DWDM metropolitan network demonstration using wavelength-selective photonic cross-connects and narrow-band EDFAs,” IEEE Photonics Technol. Lett. 17(9), 1977–1979 (2005).
[Crossref]

Braun, B.

Cao, Z.

Z. Cao, Z. Zhang, T. Shui, X. Ji, R. Wang, C. Yin, and B. Yu, “Switchable dual-wavelength erbium-doped fiber ring laser with tunable wavelength spacing based on a compact fiber filter,” Opt. Laser Technol. 56, 137–141 (2014).
[Crossref]

Chen, D.

S. Mo, Z. Li, X. Huang, S. Xu, Z. Feng, W. Zhang, C. Li, C. Yang, Q. Qian, and D. Chen, “820 Hz linewidth short-linear-cavity single-frequency fiber laser at 1.5 µm,” Laser Phys. Lett. 11(3), 035101 (2014).
[Crossref]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref]

Chen, W.

Chen, X.

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

Chen, Y.-K.

Chou, C. W.

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329(5999), 1630–1633 (2010).
[Crossref]

Chow, C.-W.

C.-H. Yeh, Y. Hsu, and C.-W. Chow, “Utilizing a silicon-photonic micro-ring-resonator and multi-ring scheme for wavelength-switchable erbium fiber laser in single-longitudinal-mode,” Laser Phys. Lett. 13(6), 065103 (2016).
[Crossref]

Deng, Z.

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

Dernaika, M.

Ding, D.

T. Feng, D. Ding, F. Yan, Z. Zhao, H. Su, and X. S. Yao, “Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method,” Opt. Express 24(17), 19760–19768 (2016).
[Crossref]

T. Feng, D. Ding, Z. Zhao, H. Su, F. Yan, and X. S. Yao, “Switchable 10 nm-spaced dual-wavelength SLM fiber laser with sub-kHz linewidth and high OSNR using a novel multiple-ring configuration,” Laser Phys. Lett. 13(10), 105104 (2016).
[Crossref]

Dong, X.

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

Fang, X.

Feng, S.

Feng, T.

T. Feng, M. Wang, X. Wang, F. Yan, Y. Suo, and X. S. Yao, “Switchable 0.612-nm-Spaced Dual-Wavelength Fiber Laser With Sub-kHz Linewidth, Ultra-High OSNR, Ultra-Low RIN, and Orthogonal Polarization Outputs,” J. Lightwave Technol. 37(13), 3173–3182 (2019).
[Crossref]

T. Feng, M. Jiang, Y. Ren, M. Wang, F. Yan, Y. Suo, and X. S. Yao, “High stability multiwavelength random erbium-doped fiber laser with a reflecting-filter of six-superimposed fiber-Bragg-gratings,” OSA Continuum 2(9), 2526–2538 (2019).
[Crossref]

T. Feng, M. Wang, M. Jiang, X. Wang, F. Yan, Y. Suo, and X. S. Yao, “C-band 41-wavelength-switchable single-longitudinal-mode fiber laser with sub-kHz linewidth and high stability using a wide-band chirped Moiré fiber Bragg grating,” Laser Phys. Lett. 16(2), 025106 (2019).
[Crossref]

T. Feng, D. Ding, Z. Zhao, H. Su, F. Yan, and X. S. Yao, “Switchable 10 nm-spaced dual-wavelength SLM fiber laser with sub-kHz linewidth and high OSNR using a novel multiple-ring configuration,” Laser Phys. Lett. 13(10), 105104 (2016).
[Crossref]

T. Feng, D. Ding, F. Yan, Z. Zhao, H. Su, and X. S. Yao, “Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method,” Opt. Express 24(17), 19760–19768 (2016).
[Crossref]

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 µm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, S. Tan, and S. Feng, “1.94 µm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Appl. Opt. 52(19), 4601–4607 (2013).
[Crossref]

Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref]

Feng, X.

J. Zhou, X. Feng, Y. Wang, Z. Li, and B.-O. Guan, “Dual-wavelength single-frequency fiber laser based on FP-LD injection locking for millimeter-wave generation,” Opt. Laser Technol. 64, 328–332 (2014).
[Crossref]

Feng, Z.

S. Mo, Z. Li, X. Huang, S. Xu, Z. Feng, W. Zhang, C. Li, C. Yang, Q. Qian, and D. Chen, “820 Hz linewidth short-linear-cavity single-frequency fiber laser at 1.5 µm,” Laser Phys. Lett. 11(3), 035101 (2014).
[Crossref]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref]

Geng, J.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Guan, B.-O.

J. Zhou, X. Feng, Y. Wang, Z. Li, and B.-O. Guan, “Dual-wavelength single-frequency fiber laser based on FP-LD injection locking for millimeter-wave generation,” Opt. Laser Technol. 64, 328–332 (2014).
[Crossref]

Guo, Y.

T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]

Harun, S. W.

He, W.

W. He and L. Zhu, “Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on a thin-core fiber comb filter and saturable absorber,” Microw. Opt. Technol. Lett. 57(2), 287–292 (2015).
[Crossref]

He, X.

X. He, D. N. Wang, and C. R. Liao, “Tunable and switchable dual-wavelength single-longitudinal-mode erbium-doped fiber lasers,” J. Lightwave Technol. 29(6), 123–127 (2011).
[Crossref]

X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, “A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity,” Opt. Express 17(24), 21773–21781 (2009).
[Crossref]

Helkey, R. J.

V. Kaman, Z. Xuezhe, Y. Shifu, J. Klingshirn, C. Pusarla, R. J. Helkey, O. Jerphagnon, and J. E. Bowers, “A 32/spl times/10 Gb/s DWDM metropolitan network demonstration using wavelength-selective photonic cross-connects and narrow-band EDFAs,” IEEE Photonics Technol. Lett. 17(9), 1977–1979 (2005).
[Crossref]

Higuera, J. M. L.

R. A. Pérez-Herrera, L. Rodríguez-Cobo, M. A. Quintela, J. M. L. Higuera, and M. López-Amo, “Single-longitudinal-mode dual wavelength-switchable fiber laser based on superposed fiber Bragg gratings,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

Hsu, Y.

C.-H. Yeh, Y. Hsu, and C.-W. Chow, “Utilizing a silicon-photonic micro-ring-resonator and multi-ring scheme for wavelength-switchable erbium fiber laser in single-longitudinal-mode,” Laser Phys. Lett. 13(6), 065103 (2016).
[Crossref]

Huang, X.

S. Mo, Z. Li, X. Huang, S. Xu, Z. Feng, W. Zhang, C. Li, C. Yang, Q. Qian, and D. Chen, “820 Hz linewidth short-linear-cavity single-frequency fiber laser at 1.5 µm,” Laser Phys. Lett. 11(3), 035101 (2014).
[Crossref]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref]

Hume, D. B.

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329(5999), 1630–1633 (2010).
[Crossref]

Huo, J.

T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]

Ibanez, I.

S. Rota-Rodrigo, I. Ibanez, and M. Lopez-Amo, “Multi-wavelength fiber laser in single-longitudinal mode operation using a photonic crystal fiber Sagnac interferometer,” Appl. Phys. B: Lasers Opt. 110(3), 303–308 (2013).
[Crossref]

Jasim, A. A.

Jerphagnon, O.

V. Kaman, Z. Xuezhe, Y. Shifu, J. Klingshirn, C. Pusarla, R. J. Helkey, O. Jerphagnon, and J. E. Bowers, “A 32/spl times/10 Gb/s DWDM metropolitan network demonstration using wavelength-selective photonic cross-connects and narrow-band EDFAs,” IEEE Photonics Technol. Lett. 17(9), 1977–1979 (2005).
[Crossref]

Ji, X.

Z. Cao, Z. Zhang, T. Shui, X. Ji, R. Wang, C. Yin, and B. Yu, “Switchable dual-wavelength erbium-doped fiber ring laser with tunable wavelength spacing based on a compact fiber filter,” Opt. Laser Technol. 56, 137–141 (2014).
[Crossref]

Jia, C.

B. Liu, C. Jia, H. Zhang, and J. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett. 52(1), 41–44 (2010).
[Crossref]

Jian, S.

Y. Qi, Z. Kang, J. Sun, L. Ma, W. Jin, Y. Lian, and S. Jian, “Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure,” Opt. Laser Technol. 81, 26–32 (2016).
[Crossref]

B. Yin, S. Feng, Z. Liu, Y. Bai, and S. Jian, “Tunable and switchable dual-wavelength single polarization narrow linewidth SLM erbium-doped fiber laser based on a PM-CMFBG filter,” Opt. Express 22(19), 22528–22533 (2014).
[Crossref]

C. Zhang, J. Sun, and S. Jian, “A new mechanism to suppress the homogeneous gain broadening for stable multi-wavelength erbium-doped fiber laser,” Opt. Commun. 288, 97–100 (2013).
[Crossref]

Jiang, M.

T. Feng, M. Wang, M. Jiang, X. Wang, F. Yan, Y. Suo, and X. S. Yao, “C-band 41-wavelength-switchable single-longitudinal-mode fiber laser with sub-kHz linewidth and high stability using a wide-band chirped Moiré fiber Bragg grating,” Laser Phys. Lett. 16(2), 025106 (2019).
[Crossref]

T. Feng, M. Jiang, Y. Ren, M. Wang, F. Yan, Y. Suo, and X. S. Yao, “High stability multiwavelength random erbium-doped fiber laser with a reflecting-filter of six-superimposed fiber-Bragg-gratings,” OSA Continuum 2(9), 2526–2538 (2019).
[Crossref]

Jiang, S.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Jin, W.

Y. Qi, Z. Kang, J. Sun, L. Ma, W. Jin, Y. Lian, and S. Jian, “Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure,” Opt. Laser Technol. 81, 26–32 (2016).
[Crossref]

Kaman, V.

V. Kaman, Z. Xuezhe, Y. Shifu, J. Klingshirn, C. Pusarla, R. J. Helkey, O. Jerphagnon, and J. E. Bowers, “A 32/spl times/10 Gb/s DWDM metropolitan network demonstration using wavelength-selective photonic cross-connects and narrow-band EDFAs,” IEEE Photonics Technol. Lett. 17(9), 1977–1979 (2005).
[Crossref]

Kang, Z.

Y. Qi, Z. Kang, J. Sun, L. Ma, W. Jin, Y. Lian, and S. Jian, “Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure,” Opt. Laser Technol. 81, 26–32 (2016).
[Crossref]

Katori, H.

H. Katori, “Optical lattice clocks and quantum metrology,” Nat. Photonics 5(4), 203–210 (2011).
[Crossref]

Kawanishi, S.

T. Morioka, K. Mori, S. Kawanishi, and M. Saruwatari, “Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers,” IEEE Photonics Technol. Lett. 6(3), 365–368 (1994).
[Crossref]

Keller, U.

Klinger, J.

Klingshirn, J.

V. Kaman, Z. Xuezhe, Y. Shifu, J. Klingshirn, C. Pusarla, R. J. Helkey, O. Jerphagnon, and J. E. Bowers, “A 32/spl times/10 Gb/s DWDM metropolitan network demonstration using wavelength-selective photonic cross-connects and narrow-band EDFAs,” IEEE Photonics Technol. Lett. 17(9), 1977–1979 (2005).
[Crossref]

Lee, C.-C.

Lefevre, H. C.

H. C. Lefevre, “Single-mode fibre fractional wave devices and polarisation controllers,” Electron. Lett. 16(20), 778–780 (1980).
[Crossref]

Li, C.

S. Mo, Z. Li, X. Huang, S. Xu, Z. Feng, W. Zhang, C. Li, C. Yang, Q. Qian, and D. Chen, “820 Hz linewidth short-linear-cavity single-frequency fiber laser at 1.5 µm,” Laser Phys. Lett. 11(3), 035101 (2014).
[Crossref]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref]

Li, Q.

Li, W.

S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]

Li, Z.

S. Mo, Z. Li, X. Huang, S. Xu, Z. Feng, W. Zhang, C. Li, C. Yang, Q. Qian, and D. Chen, “820 Hz linewidth short-linear-cavity single-frequency fiber laser at 1.5 µm,” Laser Phys. Lett. 11(3), 035101 (2014).
[Crossref]

J. Zhou, X. Feng, Y. Wang, Z. Li, and B.-O. Guan, “Dual-wavelength single-frequency fiber laser based on FP-LD injection locking for millimeter-wave generation,” Opt. Laser Technol. 64, 328–332 (2014).
[Crossref]

Lian, Y.

Y. Qi, Z. Kang, J. Sun, L. Ma, W. Jin, Y. Lian, and S. Jian, “Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure,” Opt. Laser Technol. 81, 26–32 (2016).
[Crossref]

Liao, C.

Liao, C. R.

X. He, D. N. Wang, and C. R. Liao, “Tunable and switchable dual-wavelength single-longitudinal-mode erbium-doped fiber lasers,” J. Lightwave Technol. 29(6), 123–127 (2011).
[Crossref]

Liaw, S.-K.

Lit, J. W. Y.

J. Zhang and J. W. Y. Lit, “All-fiber compound ring resonator with a ring filter,” J. Lightwave Technol. 12(7), 1256–1262 (1994).
[Crossref]

Liu, B.

B. Liu, C. Jia, H. Zhang, and J. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett. 52(1), 41–44 (2010).
[Crossref]

Liu, D.

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

Liu, J.

Liu, P.

Liu, S.

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 µm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, S. Tan, and S. Feng, “1.94 µm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Appl. Opt. 52(19), 4601–4607 (2013).
[Crossref]

Liu, W.

W. Zheng, S. Ruan, M. Zhang, W. Liu, Y. Zhang, and X. Yang, “Switchable multi-wavelength erbium-doped photonic crystal fiber laser based on nonlinear polarization rotation,” Opt. Laser Technol. 50, 145–149 (2013).
[Crossref]

Liu, Y.

Liu, Z.

Lopez-Amo, M.

S. Rota-Rodrigo, I. Ibanez, and M. Lopez-Amo, “Multi-wavelength fiber laser in single-longitudinal mode operation using a photonic crystal fiber Sagnac interferometer,” Appl. Phys. B: Lasers Opt. 110(3), 303–308 (2013).
[Crossref]

López-Amo, M.

R. A. Pérez-Herrera, L. Rodríguez-Cobo, M. A. Quintela, J. M. L. Higuera, and M. López-Amo, “Single-longitudinal-mode dual wavelength-switchable fiber laser based on superposed fiber Bragg gratings,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

Luo, J.

B. Liu, C. Jia, H. Zhang, and J. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett. 52(1), 41–44 (2010).
[Crossref]

Ma, L.

Y. Qi, Z. Kang, J. Sun, L. Ma, W. Jin, Y. Lian, and S. Jian, “Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure,” Opt. Laser Technol. 81, 26–32 (2016).
[Crossref]

Ma, Y.

S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]

Mao, Q.

S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]

Mazurczyk, V. J.

V. J. Mazurczyk and J. L. Zyskind, “Polarization dependent gain in erbium doped-fiber amplifiers,” IEEE Photonics Technol. Lett. 6(5), 616–618 (1994).
[Crossref]

Mercer, L. B.

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991).
[Crossref]

Mo, S.

S. Mo, Z. Li, X. Huang, S. Xu, Z. Feng, W. Zhang, C. Li, C. Yang, Q. Qian, and D. Chen, “820 Hz linewidth short-linear-cavity single-frequency fiber laser at 1.5 µm,” Laser Phys. Lett. 11(3), 035101 (2014).
[Crossref]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref]

Mori, K.

T. Morioka, K. Mori, S. Kawanishi, and M. Saruwatari, “Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers,” IEEE Photonics Technol. Lett. 6(3), 365–368 (1994).
[Crossref]

Morioka, T.

T. Morioka, K. Mori, S. Kawanishi, and M. Saruwatari, “Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers,” IEEE Photonics Technol. Lett. 6(3), 365–368 (1994).
[Crossref]

Nakazawa, M.

Ngo, N. Q.

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

Omiya, T.

Pang, F.

A. Yang, T. Wang, J. Zheng, X. Zeng, F. Pang, and T. Wang, “A single-longitudinal-mode narrow-linewidth dual-wavelength fiber laser using a microfiber knot resonator,” Laser Phys. Lett. 16(2), 025104 (2019).
[Crossref]

Peng, W.

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 µm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, S. Tan, and S. Feng, “1.94 µm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Appl. Opt. 52(19), 4601–4607 (2013).
[Crossref]

Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref]

Pérez-Herrera, R. A.

R. A. Pérez-Herrera, L. Rodríguez-Cobo, M. A. Quintela, J. M. L. Higuera, and M. López-Amo, “Single-longitudinal-mode dual wavelength-switchable fiber laser based on superposed fiber Bragg gratings,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

Preußler, S.

Pusarla, C.

V. Kaman, Z. Xuezhe, Y. Shifu, J. Klingshirn, C. Pusarla, R. J. Helkey, O. Jerphagnon, and J. E. Bowers, “A 32/spl times/10 Gb/s DWDM metropolitan network demonstration using wavelength-selective photonic cross-connects and narrow-band EDFAs,” IEEE Photonics Technol. Lett. 17(9), 1977–1979 (2005).
[Crossref]

Qi, Y.

Y. Qi, Z. Kang, J. Sun, L. Ma, W. Jin, Y. Lian, and S. Jian, “Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure,” Opt. Laser Technol. 81, 26–32 (2016).
[Crossref]

Qian, Q.

S. Mo, Z. Li, X. Huang, S. Xu, Z. Feng, W. Zhang, C. Li, C. Yang, Q. Qian, and D. Chen, “820 Hz linewidth short-linear-cavity single-frequency fiber laser at 1.5 µm,” Laser Phys. Lett. 11(3), 035101 (2014).
[Crossref]

Quintela, M. A.

R. A. Pérez-Herrera, L. Rodríguez-Cobo, M. A. Quintela, J. M. L. Higuera, and M. López-Amo, “Single-longitudinal-mode dual wavelength-switchable fiber laser based on superposed fiber Bragg gratings,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

Qureshi, K. K.

Ren, W.

Ren, Y.

Rodríguez-Cobo, L.

R. A. Pérez-Herrera, L. Rodríguez-Cobo, M. A. Quintela, J. M. L. Higuera, and M. López-Amo, “Single-longitudinal-mode dual wavelength-switchable fiber laser based on superposed fiber Bragg gratings,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

Rosenband, T.

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329(5999), 1630–1633 (2010).
[Crossref]

Rota-Rodrigo, S.

S. Rota-Rodrigo, I. Ibanez, and M. Lopez-Amo, “Multi-wavelength fiber laser in single-longitudinal mode operation using a photonic crystal fiber Sagnac interferometer,” Appl. Phys. B: Lasers Opt. 110(3), 303–308 (2013).
[Crossref]

Ruan, S.

W. Zheng, S. Ruan, M. Zhang, W. Liu, Y. Zhang, and X. Yang, “Switchable multi-wavelength erbium-doped photonic crystal fiber laser based on nonlinear polarization rotation,” Opt. Laser Technol. 50, 145–149 (2013).
[Crossref]

Saruwatari, M.

T. Morioka, K. Mori, S. Kawanishi, and M. Saruwatari, “Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers,” IEEE Photonics Technol. Lett. 6(3), 365–368 (1994).
[Crossref]

Schneider, T.

Shifu, Y.

V. Kaman, Z. Xuezhe, Y. Shifu, J. Klingshirn, C. Pusarla, R. J. Helkey, O. Jerphagnon, and J. E. Bowers, “A 32/spl times/10 Gb/s DWDM metropolitan network demonstration using wavelength-selective photonic cross-connects and narrow-band EDFAs,” IEEE Photonics Technol. Lett. 17(9), 1977–1979 (2005).
[Crossref]

Shui, T.

Z. Cao, Z. Zhang, T. Shui, X. Ji, R. Wang, C. Yin, and B. Yu, “Switchable dual-wavelength erbium-doped fiber ring laser with tunable wavelength spacing based on a compact fiber filter,” Opt. Laser Technol. 56, 137–141 (2014).
[Crossref]

Spiegelberg, C.

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

Su, H.

T. Feng, D. Ding, Z. Zhao, H. Su, F. Yan, and X. S. Yao, “Switchable 10 nm-spaced dual-wavelength SLM fiber laser with sub-kHz linewidth and high OSNR using a novel multiple-ring configuration,” Laser Phys. Lett. 13(10), 105104 (2016).
[Crossref]

T. Feng, D. Ding, F. Yan, Z. Zhao, H. Su, and X. S. Yao, “Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method,” Opt. Express 24(17), 19760–19768 (2016).
[Crossref]

Sun, J.

Y. Qi, Z. Kang, J. Sun, L. Ma, W. Jin, Y. Lian, and S. Jian, “Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure,” Opt. Laser Technol. 81, 26–32 (2016).
[Crossref]

C. Zhang, J. Sun, and S. Jian, “A new mechanism to suppress the homogeneous gain broadening for stable multi-wavelength erbium-doped fiber laser,” Opt. Commun. 288, 97–100 (2013).
[Crossref]

J. Tang and J. Sun, “Stable and widely tunable wavelength-spacing single longitudinal mode dual-wavelength erbium-doped fiber laser,” Opt. Fiber Technol. 16(5), 299–303 (2010).
[Crossref]

X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, “A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity,” Opt. Express 17(24), 21773–21781 (2009).
[Crossref]

Sun, T.

T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]

Suo, Y.

Tan, S.

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 µm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, S. Tan, and S. Feng, “1.94 µm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Appl. Opt. 52(19), 4601–4607 (2013).
[Crossref]

Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref]

Tang, J.

J. Tang and J. Sun, “Stable and widely tunable wavelength-spacing single longitudinal mode dual-wavelength erbium-doped fiber laser,” Opt. Fiber Technol. 16(5), 299–303 (2010).
[Crossref]

Tian, Y.

S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]

Tjin, S. C.

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

Wang, D. N.

X. He, D. N. Wang, and C. R. Liao, “Tunable and switchable dual-wavelength single-longitudinal-mode erbium-doped fiber lasers,” J. Lightwave Technol. 29(6), 123–127 (2011).
[Crossref]

X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, “A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity,” Opt. Express 17(24), 21773–21781 (2009).
[Crossref]

Wang, M.

Wang, R.

Z. Cao, Z. Zhang, T. Shui, X. Ji, R. Wang, C. Yin, and B. Yu, “Switchable dual-wavelength erbium-doped fiber ring laser with tunable wavelength spacing based on a compact fiber filter,” Opt. Laser Technol. 56, 137–141 (2014).
[Crossref]

Wang, T.

A. Yang, T. Wang, J. Zheng, X. Zeng, F. Pang, and T. Wang, “A single-longitudinal-mode narrow-linewidth dual-wavelength fiber laser using a microfiber knot resonator,” Laser Phys. Lett. 16(2), 025104 (2019).
[Crossref]

A. Yang, T. Wang, J. Zheng, X. Zeng, F. Pang, and T. Wang, “A single-longitudinal-mode narrow-linewidth dual-wavelength fiber laser using a microfiber knot resonator,” Laser Phys. Lett. 16(2), 025104 (2019).
[Crossref]

T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]

Wang, X.

T. Feng, M. Wang, M. Jiang, X. Wang, F. Yan, Y. Suo, and X. S. Yao, “C-band 41-wavelength-switchable single-longitudinal-mode fiber laser with sub-kHz linewidth and high stability using a wide-band chirped Moiré fiber Bragg grating,” Laser Phys. Lett. 16(2), 025106 (2019).
[Crossref]

T. Feng, M. Wang, X. Wang, F. Yan, Y. Suo, and X. S. Yao, “Switchable 0.612-nm-Spaced Dual-Wavelength Fiber Laser With Sub-kHz Linewidth, Ultra-High OSNR, Ultra-Low RIN, and Orthogonal Polarization Outputs,” J. Lightwave Technol. 37(13), 3173–3182 (2019).
[Crossref]

Wang, Y.

J. Zhou, X. Feng, Y. Wang, Z. Li, and B.-O. Guan, “Dual-wavelength single-frequency fiber laser based on FP-LD injection locking for millimeter-wave generation,” Opt. Laser Technol. 64, 328–332 (2014).
[Crossref]

Wei, L.

S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]

Weingarten, K. J.

Wenzel, N.

Wineland, D. J.

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329(5999), 1630–1633 (2010).
[Crossref]

Xu, S.

S. Mo, Z. Li, X. Huang, S. Xu, Z. Feng, W. Zhang, C. Li, C. Yang, Q. Qian, and D. Chen, “820 Hz linewidth short-linear-cavity single-frequency fiber laser at 1.5 µm,” Laser Phys. Lett. 11(3), 035101 (2014).
[Crossref]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref]

Xuezhe, Z.

V. Kaman, Z. Xuezhe, Y. Shifu, J. Klingshirn, C. Pusarla, R. J. Helkey, O. Jerphagnon, and J. E. Bowers, “A 32/spl times/10 Gb/s DWDM metropolitan network demonstration using wavelength-selective photonic cross-connects and narrow-band EDFAs,” IEEE Photonics Technol. Lett. 17(9), 1977–1979 (2005).
[Crossref]

Yan, F.

T. Feng, M. Wang, M. Jiang, X. Wang, F. Yan, Y. Suo, and X. S. Yao, “C-band 41-wavelength-switchable single-longitudinal-mode fiber laser with sub-kHz linewidth and high stability using a wide-band chirped Moiré fiber Bragg grating,” Laser Phys. Lett. 16(2), 025106 (2019).
[Crossref]

T. Feng, M. Wang, X. Wang, F. Yan, Y. Suo, and X. S. Yao, “Switchable 0.612-nm-Spaced Dual-Wavelength Fiber Laser With Sub-kHz Linewidth, Ultra-High OSNR, Ultra-Low RIN, and Orthogonal Polarization Outputs,” J. Lightwave Technol. 37(13), 3173–3182 (2019).
[Crossref]

T. Feng, M. Jiang, Y. Ren, M. Wang, F. Yan, Y. Suo, and X. S. Yao, “High stability multiwavelength random erbium-doped fiber laser with a reflecting-filter of six-superimposed fiber-Bragg-gratings,” OSA Continuum 2(9), 2526–2538 (2019).
[Crossref]

T. Feng, D. Ding, F. Yan, Z. Zhao, H. Su, and X. S. Yao, “Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method,” Opt. Express 24(17), 19760–19768 (2016).
[Crossref]

T. Feng, D. Ding, Z. Zhao, H. Su, F. Yan, and X. S. Yao, “Switchable 10 nm-spaced dual-wavelength SLM fiber laser with sub-kHz linewidth and high OSNR using a novel multiple-ring configuration,” Laser Phys. Lett. 13(10), 105104 (2016).
[Crossref]

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 µm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, S. Tan, and S. Feng, “1.94 µm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Appl. Opt. 52(19), 4601–4607 (2013).
[Crossref]

Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref]

Yang, A.

A. Yang, T. Wang, J. Zheng, X. Zeng, F. Pang, and T. Wang, “A single-longitudinal-mode narrow-linewidth dual-wavelength fiber laser using a microfiber knot resonator,” Laser Phys. Lett. 16(2), 025104 (2019).
[Crossref]

Yang, C.

S. Mo, Z. Li, X. Huang, S. Xu, Z. Feng, W. Zhang, C. Li, C. Yang, Q. Qian, and D. Chen, “820 Hz linewidth short-linear-cavity single-frequency fiber laser at 1.5 µm,” Laser Phys. Lett. 11(3), 035101 (2014).
[Crossref]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref]

Yang, X.

W. Zheng, S. Ruan, M. Zhang, W. Liu, Y. Zhang, and X. Yang, “Switchable multi-wavelength erbium-doped photonic crystal fiber laser based on nonlinear polarization rotation,” Opt. Laser Technol. 50, 145–149 (2013).
[Crossref]

Yang, Z.

Yao, J.

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

Yao, X. S.

Yeh, C.-H.

C.-H. Yeh, Y. Hsu, and C.-W. Chow, “Utilizing a silicon-photonic micro-ring-resonator and multi-ring scheme for wavelength-switchable erbium fiber laser in single-longitudinal-mode,” Laser Phys. Lett. 13(6), 065103 (2016).
[Crossref]

Yin, B.

Yin, C.

Z. Cao, Z. Zhang, T. Shui, X. Ji, R. Wang, C. Yin, and B. Yu, “Switchable dual-wavelength erbium-doped fiber ring laser with tunable wavelength spacing based on a compact fiber filter,” Opt. Laser Technol. 56, 137–141 (2014).
[Crossref]

Yoshida, M.

Yu, B.

Z. Cao, Z. Zhang, T. Shui, X. Ji, R. Wang, C. Yin, and B. Yu, “Switchable dual-wavelength erbium-doped fiber ring laser with tunable wavelength spacing based on a compact fiber filter,” Opt. Laser Technol. 56, 137–141 (2014).
[Crossref]

Zeng, F.

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

Zeng, X.

A. Yang, T. Wang, J. Zheng, X. Zeng, F. Pang, and T. Wang, “A single-longitudinal-mode narrow-linewidth dual-wavelength fiber laser using a microfiber knot resonator,” Laser Phys. Lett. 16(2), 025104 (2019).
[Crossref]

Zhang, C.

C. Zhang, J. Sun, and S. Jian, “A new mechanism to suppress the homogeneous gain broadening for stable multi-wavelength erbium-doped fiber laser,” Opt. Commun. 288, 97–100 (2013).
[Crossref]

Zhang, H.

B. Liu, C. Jia, H. Zhang, and J. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett. 52(1), 41–44 (2010).
[Crossref]

Zhang, J.

J. Zhang and J. W. Y. Lit, “All-fiber compound ring resonator with a ring filter,” J. Lightwave Technol. 12(7), 1256–1262 (1994).
[Crossref]

Zhang, L.

T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]

Zhang, M.

W. Zheng, S. Ruan, M. Zhang, W. Liu, Y. Zhang, and X. Yang, “Switchable multi-wavelength erbium-doped photonic crystal fiber laser based on nonlinear polarization rotation,” Opt. Laser Technol. 50, 145–149 (2013).
[Crossref]

Zhang, W.

S. Mo, Z. Li, X. Huang, S. Xu, Z. Feng, W. Zhang, C. Li, C. Yang, Q. Qian, and D. Chen, “820 Hz linewidth short-linear-cavity single-frequency fiber laser at 1.5 µm,” Laser Phys. Lett. 11(3), 035101 (2014).
[Crossref]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref]

Zhang, Y.

W. Zheng, S. Ruan, M. Zhang, W. Liu, Y. Zhang, and X. Yang, “Switchable multi-wavelength erbium-doped photonic crystal fiber laser based on nonlinear polarization rotation,” Opt. Laser Technol. 50, 145–149 (2013).
[Crossref]

Zhang, Z.

Z. Cao, Z. Zhang, T. Shui, X. Ji, R. Wang, C. Yin, and B. Yu, “Switchable dual-wavelength erbium-doped fiber ring laser with tunable wavelength spacing based on a compact fiber filter,” Opt. Laser Technol. 56, 137–141 (2014).
[Crossref]

Zhao, Z.

T. Feng, D. Ding, Z. Zhao, H. Su, F. Yan, and X. S. Yao, “Switchable 10 nm-spaced dual-wavelength SLM fiber laser with sub-kHz linewidth and high OSNR using a novel multiple-ring configuration,” Laser Phys. Lett. 13(10), 105104 (2016).
[Crossref]

T. Feng, D. Ding, F. Yan, Z. Zhao, H. Su, and X. S. Yao, “Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method,” Opt. Express 24(17), 19760–19768 (2016).
[Crossref]

Zheng, J.

A. Yang, T. Wang, J. Zheng, X. Zeng, F. Pang, and T. Wang, “A single-longitudinal-mode narrow-linewidth dual-wavelength fiber laser using a microfiber knot resonator,” Laser Phys. Lett. 16(2), 025104 (2019).
[Crossref]

Zheng, W.

W. Zheng, S. Ruan, M. Zhang, W. Liu, Y. Zhang, and X. Yang, “Switchable multi-wavelength erbium-doped photonic crystal fiber laser based on nonlinear polarization rotation,” Opt. Laser Technol. 50, 145–149 (2013).
[Crossref]

Zhou, J.

J. Zhou, X. Feng, Y. Wang, Z. Li, and B.-O. Guan, “Dual-wavelength single-frequency fiber laser based on FP-LD injection locking for millimeter-wave generation,” Opt. Laser Technol. 64, 328–332 (2014).
[Crossref]

Zhu, L.

W. He and L. Zhu, “Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on a thin-core fiber comb filter and saturable absorber,” Microw. Opt. Technol. Lett. 57(2), 287–292 (2015).
[Crossref]

Zyskind, J. L.

V. J. Mazurczyk and J. L. Zyskind, “Polarization dependent gain in erbium doped-fiber amplifiers,” IEEE Photonics Technol. Lett. 6(5), 616–618 (1994).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

S. Rota-Rodrigo, I. Ibanez, and M. Lopez-Amo, “Multi-wavelength fiber laser in single-longitudinal mode operation using a photonic crystal fiber Sagnac interferometer,” Appl. Phys. B: Lasers Opt. 110(3), 303–308 (2013).
[Crossref]

Chin. Opt. Lett. (2)

Electron. Lett. (1)

H. C. Lefevre, “Single-mode fibre fractional wave devices and polarisation controllers,” Electron. Lett. 16(20), 778–780 (1980).
[Crossref]

IEEE Photonics J. (1)

R. A. Pérez-Herrera, L. Rodríguez-Cobo, M. A. Quintela, J. M. L. Higuera, and M. López-Amo, “Single-longitudinal-mode dual wavelength-switchable fiber laser based on superposed fiber Bragg gratings,” IEEE Photonics J. 7(2), 1–7 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (7)

V. Kaman, Z. Xuezhe, Y. Shifu, J. Klingshirn, C. Pusarla, R. J. Helkey, O. Jerphagnon, and J. E. Bowers, “A 32/spl times/10 Gb/s DWDM metropolitan network demonstration using wavelength-selective photonic cross-connects and narrow-band EDFAs,” IEEE Photonics Technol. Lett. 17(9), 1977–1979 (2005).
[Crossref]

T. Morioka, K. Mori, S. Kawanishi, and M. Saruwatari, “Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers,” IEEE Photonics Technol. Lett. 6(3), 365–368 (1994).
[Crossref]

J. Geng, C. Spiegelberg, and S. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]

D. Liu, N. Q. Ngo, S. C. Tjin, and X. Dong, “A dual-wavelength fiber laser sensor system for measurement of temperature and strain,” IEEE Photonics Technol. Lett. 19(15), 1148–1150 (2007).
[Crossref]

X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]

S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]

V. J. Mazurczyk and J. L. Zyskind, “Polarization dependent gain in erbium doped-fiber amplifiers,” IEEE Photonics Technol. Lett. 6(5), 616–618 (1994).
[Crossref]

J. Lightwave Technol. (5)

J. Zhang and J. W. Y. Lit, “All-fiber compound ring resonator with a ring filter,” J. Lightwave Technol. 12(7), 1256–1262 (1994).
[Crossref]

L. B. Mercer, “1/f frequency noise effects on self-heterodyne linewidth measurements,” J. Lightwave Technol. 9(4), 485–493 (1991).
[Crossref]

X. He, D. N. Wang, and C. R. Liao, “Tunable and switchable dual-wavelength single-longitudinal-mode erbium-doped fiber lasers,” J. Lightwave Technol. 29(6), 123–127 (2011).
[Crossref]

T. Feng, M. Wang, X. Wang, F. Yan, Y. Suo, and X. S. Yao, “Switchable 0.612-nm-Spaced Dual-Wavelength Fiber Laser With Sub-kHz Linewidth, Ultra-High OSNR, Ultra-Low RIN, and Orthogonal Polarization Outputs,” J. Lightwave Technol. 37(13), 3173–3182 (2019).
[Crossref]

A. A. Jasim, M. Dernaika, S. W. Harun, and H. Ahmad, “A switchable figure eight erbium-doped fiber laser based on inter-modal beating by means of non-adiabatic microfiber,” J. Lightwave Technol. 33(2), 528–534 (2015).
[Crossref]

Laser Phys. Lett. (7)

T. Feng, M. Wang, M. Jiang, X. Wang, F. Yan, Y. Suo, and X. S. Yao, “C-band 41-wavelength-switchable single-longitudinal-mode fiber laser with sub-kHz linewidth and high stability using a wide-band chirped Moiré fiber Bragg grating,” Laser Phys. Lett. 16(2), 025106 (2019).
[Crossref]

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 µm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

T. Feng, D. Ding, Z. Zhao, H. Su, F. Yan, and X. S. Yao, “Switchable 10 nm-spaced dual-wavelength SLM fiber laser with sub-kHz linewidth and high OSNR using a novel multiple-ring configuration,” Laser Phys. Lett. 13(10), 105104 (2016).
[Crossref]

T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]

C.-H. Yeh, Y. Hsu, and C.-W. Chow, “Utilizing a silicon-photonic micro-ring-resonator and multi-ring scheme for wavelength-switchable erbium fiber laser in single-longitudinal-mode,” Laser Phys. Lett. 13(6), 065103 (2016).
[Crossref]

S. Mo, Z. Li, X. Huang, S. Xu, Z. Feng, W. Zhang, C. Li, C. Yang, Q. Qian, and D. Chen, “820 Hz linewidth short-linear-cavity single-frequency fiber laser at 1.5 µm,” Laser Phys. Lett. 11(3), 035101 (2014).
[Crossref]

A. Yang, T. Wang, J. Zheng, X. Zeng, F. Pang, and T. Wang, “A single-longitudinal-mode narrow-linewidth dual-wavelength fiber laser using a microfiber knot resonator,” Laser Phys. Lett. 16(2), 025104 (2019).
[Crossref]

Microw. Opt. Technol. Lett. (2)

W. He and L. Zhu, “Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser based on a thin-core fiber comb filter and saturable absorber,” Microw. Opt. Technol. Lett. 57(2), 287–292 (2015).
[Crossref]

B. Liu, C. Jia, H. Zhang, and J. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett. 52(1), 41–44 (2010).
[Crossref]

Nat. Photonics (1)

H. Katori, “Optical lattice clocks and quantum metrology,” Nat. Photonics 5(4), 203–210 (2011).
[Crossref]

Opt. Commun. (1)

C. Zhang, J. Sun, and S. Jian, “A new mechanism to suppress the homogeneous gain broadening for stable multi-wavelength erbium-doped fiber laser,” Opt. Commun. 288, 97–100 (2013).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

J. Tang and J. Sun, “Stable and widely tunable wavelength-spacing single longitudinal mode dual-wavelength erbium-doped fiber laser,” Opt. Fiber Technol. 16(5), 299–303 (2010).
[Crossref]

Opt. Laser Technol. (5)

T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]

J. Zhou, X. Feng, Y. Wang, Z. Li, and B.-O. Guan, “Dual-wavelength single-frequency fiber laser based on FP-LD injection locking for millimeter-wave generation,” Opt. Laser Technol. 64, 328–332 (2014).
[Crossref]

Z. Cao, Z. Zhang, T. Shui, X. Ji, R. Wang, C. Yin, and B. Yu, “Switchable dual-wavelength erbium-doped fiber ring laser with tunable wavelength spacing based on a compact fiber filter,” Opt. Laser Technol. 56, 137–141 (2014).
[Crossref]

W. Zheng, S. Ruan, M. Zhang, W. Liu, Y. Zhang, and X. Yang, “Switchable multi-wavelength erbium-doped photonic crystal fiber laser based on nonlinear polarization rotation,” Opt. Laser Technol. 50, 145–149 (2013).
[Crossref]

Y. Qi, Z. Kang, J. Sun, L. Ma, W. Jin, Y. Lian, and S. Jian, “Wavelength-switchable fiber laser based on few-mode fiber filter with core-offset structure,” Opt. Laser Technol. 81, 26–32 (2016).
[Crossref]

Opt. Lett. (4)

OSA Continuum (1)

Science (1)

C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, “Optical clocks and relativity,” Science 329(5999), 1630–1633 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Schematic of proposed four-wavelength-switchable erbium-doped fiber laser (4WS-EDFL). LD: laser diode; WDM: wavelength division multiplexer; EDF: erbium-doped fiber; TL-PC: three-loop polarization controller; OC: optical coupler; DI-PC: drop-in polarization controller; SI-HBFBG: superimposed high-birefringence fiber Bragg grating; DCR: dual-coupler ring; DCR-CC: dual-coupler ring based compound-cavity. The TL-PC is made with a length of 2.9 m EDF pigtailed by single-mode fibers (SMF-28) at both sides, and the SI-HBFBG, combining with the gain EDF coiled inside the TL-PC, introduces the enhanced polarization hole burning effect to mitigate the strong wavelength competition. The DCR-CC filter selects one single mode from dense lasing longitudinal-modes. Note that a FC/APC connecter behind the SI-HBFBG is used to avoid the unnecessary reflections.
Fig. 2.
Fig. 2. (a) Measured pure optical spectrum of SI-HBFBG in normalized linear scale and corresponding measurement system in inset; (i) measurement of output spectrum of EDFA; (ii) measurement of output spectrum of EDFA involving loss spectrum of port 1 to port 2 of circulator; (iii) measurement of output spectrum of EDFA involving loss spectrum of port 2 to port 3 of circulator; (iv) measurement of reflecting spectrum of SI-HBFBG involving loss spectra of port 1 to port 2 and port 2 to port 3 of circulator both and effect of output spectrum of EDFA. (b) Schematic of the proposed DCR-CC filter; $L1$$L5$ denote lengths of fibers; 1∼15 denote port numbers of optical couplers (OCs).
Fig. 3.
Fig. 3. (a) Demonstration of FWHM variation of DCR-1 with the changing of coupling ratio $\alpha $ of two OCs used. (b) Transmission spectrum of DCR-CC filter when the coupling ratio $\alpha $ of four OCs used is 0.2; (c) Transmission spectrum of DCR-CC filter when the coupling ratio $\alpha $ of four OCs used is 0.4; (d) Transmission spectrum of DCR-CC filter when the coupling ratio $\alpha $ of four OCs used is 0.5. (e) Variations of FWHM, transmittance and suppression ratio (SR) of DCR-CC filter with changing of coupling ratio $\alpha $ of four OCs used. (f) Transmission spectrum of DCR-CC filter when the coupling ratio $\alpha $ of four OCs used is 0.1. Above, the cavity lengths of DCR-1 and DCR-2 are constant as $C1 = 60$ cm and $C2 = 62$ cm respectively.
Fig. 4.
Fig. 4. (a) Simulated spectrum of DCR-CC and measured reflecting spectrum of SI-HBFBG; (b) Spectrum obtained by multiplying two spectra in (a); inset showing enlarged spectrum of the third passband.
Fig. 5.
Fig. 5. (a) Measured transmission spectra of DCR-1 and DCR-2. (b) Simulated transmission spectra of DCR-1 and DCR-2 using measured parameters of $\alpha $, ${\gamma _i}{\kern 1pt} {\kern 1pt} ({i = 1,2,3,4} )$, and $\delta $. (c) Measured transmission spectrum of DCR-CC and reflecting spectrum of SI-HBFBG. (d) Simulated transmission spectrum of DCR-CC using same parameters with experiment and measured reflecting spectrum of SI-HBFBG. (e) Spectrum obtained by multiplying two spectra in (c); inset showing enlarged spectrum of the third passband. (f) Spectrum obtained by multiplying two spectra in (d).
Fig. 6.
Fig. 6. Spectra of single-wavelength switchable operations lasing at (a) $\lambda 1$, (b) $\lambda 2$, (c) $\lambda 3$ and (d) $\lambda 4$ respectively measured in a time span of ∼150 min. ${f_{\lambda i}}{\kern 1pt} {\kern 1pt} {\kern 1pt} (i = 1,2,3,4)$: fluctuation of lasing wavelength at $\lambda i$; ${f_{Pi}}{\kern 1pt} ({\kern 1pt} i{\kern 1pt} = 1,2,3,4)$: fluctuation of power lasing at $\lambda i$. OSNR: optical signal to noise ratio. Note that in each figure 15 repeated spectra measured by OSA with an interval of ∼ 10 min.
Fig. 7.
Fig. 7. Longitudinal-mode characteristics, measured by a scanning Fabry–Pérot interferometer, in single-wavelength operation of the 4WS-EDFL lasing at (a) $\lambda 1$, (b) $\lambda 2$, (c) $\lambda 3$ and (d) $\lambda 4$ respectively.
Fig. 8.
Fig. 8. RF spectra measured by ESA for each single-wavelength operation of the 4WS-EDFL. (a) Self-homodyne RF spectra measured in a range of 0∼400 MHz using maximum-hold (MH) mode of ESA in ∼10 min with resolution bandwidth (RBW) of 51 kHz. (b) Self-homodyne RF spectra measured in a range of 0∼400 MHz in single-scan-mode of ESA with RBW of 51 kHz when DCR-CC replaced by SMF. Delayed self-heterodyne RF spectra measured in ranges of (c) 0∼250 MHz using MH mode of ESA in ∼30 min with RBW of 51 kHz and (d) 175∼225 MHz using MH mode of ESA in ∼30 min with RBW of 30 kHz. AOM: acoustic optical modulator.
Fig. 9.
Fig. 9. Measurements of laser linewidths for each single-wavelength operation of the 4WS-EDFL using the DSHMS. Delayed self-heterodyne RF beating spectra of output lasing at (a) $\lambda 1$, (b) $\lambda 2$, (c) $\lambda 3$ and (d) $\lambda 4$ respectively in 199.950∼200.050 MHz using average mode of ESA with 100 Hz RBW.
Fig. 10.
Fig. 10. Output power stabilities of four switchable single-wavelength operations of the 4WS-EDFL measured by a laser power meter using a data sampling rate of 1 Hz. ${f_{o\_\lambda i}}{\kern 1pt} {\kern 1pt} {\kern 1pt} (i = 1,2,3,4)$: fluctuation of output power lasing at $\lambda i$. Additionally, the average output powers also given for all of the laser operations.
Fig. 11.
Fig. 11. RIN spectra of 4WS-EDFL lasing at (a) $\lambda 1$, (b) $\lambda 2$, (c) $\lambda 3$ and (d) $\lambda 4$ respectively in 0∼5 MHz with 10 kHz RBW of ESA; for comparison, in each figure, RIN spectrum of a commercial low-noise DFB laser also plotted; insets showing the same measurements in 0∼500 kHz with 100 Hz RBW of ESA.
Fig. 12.
Fig. 12. SOP measurements of 4WS-EDFL lasing at (a) $\lambda 1$, (b) $\lambda 2$, (c) $\lambda 3$ and (d) $\lambda 4$ respectively. As can be seen, SOPs of lasers $\lambda 1$ and $\lambda 2$/lasers $\lambda 3$ and $\lambda 4$ are orthogonal respectively while SOPs of lasers $\lambda 1$ and $\lambda 3$/lasers $\lambda 2$ and $\lambda 4$ are parallel respectively.
Fig. 13.
Fig. 13. Spectra of dual-wavelength switchable operations lasing at (a) $\lambda 1$&$\lambda 2$, (b) $\lambda 1$&$\lambda 3$, (c) $\lambda 1$&$\lambda 4$, (d) $\lambda 2$&$\lambda 3$, (e) $\lambda 2$&$\lambda 4$, and (f) $\lambda 3$&$\lambda 4$ respectively measured in a time span of ∼150 min. The definitions of ${f_{\lambda i}}{\kern 1pt} {\kern 1pt} {\kern 1pt} (i = 1,2,3,4)$, ${f_{Pi}}{\kern 1pt} ({\kern 1pt} i{\kern 1pt} = 1,2,3,4)$ and OSNR are same with them in Fig. 7. Note that in each figure 15 repeated spectra measured by OSA with an interval of ∼ 10 min.
Fig. 14.
Fig. 14. Spectra of three-wavelength and four-wavelength switchable operations of the proposed 4WS-EDFL.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

[ E 3 E 4 ] = 1 γ 1 [ i α 1 1 α 1 1 α 1 i α 1 ] [ E 1 E 2 ] ,
[ E 7 E 8 ] = 1 γ 2 [ i α 2 1 α 2 1 α 2 i α 2 ] [ E 5 E 6 ] ,
and E 6 = 1 δ e ( β + i k n e f f ) L 1 E 3 .
[ E 7 E 8 ] = { 1 γ 1 1 γ 2 1 δ [ i α 2 1 α 1 e ( β + i k n e f f ) L 1 1 α 1 1 α 2 e ( β + i k n e f f ) L 1 α 1 α 2 e ( β + i k n e f f ) L 1 i α 1 1 α 2 e ( β + i k n e f f ) L 1 ] } [ E 1 E 2 ] , = M [ E 1 E 2 ]
E 8 ( 1 ) = M ( 2 , 1 ) E 1 ,
E 8 ( 2 ) = n = 1 E 1 M ( 1 , 1 ) M ( 2 , 2 ) e ( β + i k n e f f ) L 2 [ M ( 1 , 2 ) e ( β + i k n e f f ) L 2 ] n 1
E 8 E 1 = E 8 ( 1 ) + E 8 ( 2 ) = M ( 2 , 1 ) + M ( 1 , 1 ) M ( 2 , 2 ) e ( β + i k n e f f ) L 2 1 M ( 1 , 2 ) e ( β + i k n e f f ) L 2 . = 1 γ 1 1 γ 2 1 δ α 1 α 2 e ( β + i k n e f f ) L 1 1 1 γ 1 1 γ 2 1 α 1 1 α 2 ( 1 δ ) e ( β + i k n e f f ) ( L 1 + L 2 )
E 15 E 9 = 1 γ 3 1 γ 4 1 δ α 3 α 4 e ( β + i k n e f f ) L 3 1 1 γ 3 1 γ 4 1 α 3 1 α 4 ( 1 δ ) e ( β + i k n e f f ) ( L 3 + L 4 ) .
E 9 = 1 δ e ( β + i k n e f f ) L 5 E 8 .
T = I o u t p u t I i n p u t = [ 1 δ e ( β + i k n e f f ) L 5 E 8 E 1 E 15 E 9 ] [ 1 δ e ( β + i k n e f f ) L 5 E 8 E 1 E 15 E 9 ] .
F S R = c n e f f Δ l ,