Abstract

We propose and experimentally demonstrate a self-homodyne locking method for a silicon microring resonator (MRR). The device employs a self-homodyne detection structure and consists of a tunable MRR with two directional couplers along the ring for monitoring, two phase shifters to calibrate the phase difference between the two monitored optical signals, and a Y-branch to combine the two signals. A single photodetector is used to detect the output power of the Y-branch. If the MRR is on resonance, a destructive interference occurs in the Y-branch, therefore the monitored photocurrent is minimized. By using such a device structure and the homodyne detection scheme, the MRR with a Q factor of 1.9 × 104 can be accurately locked to the signal wavelength, and the locking process is insensitive to input power variation. The wavelength locking range is larger than one free spectral range (FSR) of 6 nm, and the locking errors are ≤0.015 nm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters

Hasitha Jayatilleka, Kyle Murray, Miguel Ángel Guillén-Torres, Michael Caverley, Ricky Hu, Nicolas A. F. Jaeger, Lukas Chrostowski, and Sudip Shekhar
Opt. Express 23(19) 25084-25097 (2015)

Bistability and self-pulsation phenomena in silicon microring resonators based on nonlinear optical effects

Shaowu Chen, Libin Zhang, Yonghao Fei, and Tongtong Cao
Opt. Express 20(7) 7454-7468 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. Dong, Y. K. Chen, G. H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4-5), 215–228 (2014).
    [Crossref]
  2. K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4-5), 269–281 (2014).
    [Crossref]
  3. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  4. Y. Zhang, R. Zhang, Q. Zhu, Y. Yuan, and Y. Su, “Architecture and devices for silicon photonic switching in wavelength, polarization and mode,” J. Lightwave Technol., accepted (2019).
  5. M. H. Idjadi and F. Aflatouni, “Integrated Pound–Drever–Hall laser stabilization system in silicon,” Nat. Commun. 8(1), 1209 (2017).
    [Crossref]
  6. J. Chambers, “High frequency Pound–Drever–Hall optical ring resonator sensing,” Master’s thesis, Texas A&M University (2007).
  7. E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
    [Crossref]
  8. L. P. Barry, R. O’Dowd, J. Debau, and R. Boittin, “Tunable transform-limited pulse generation using self-injection locking of an FP laser,” IEEE Photonics Technol. Lett. 5(10), 1132–1134 (1993).
    [Crossref]
  9. K. Hsu and S. Yamashita, “Single-polarization generation in fiber Fabry-Perot laser by self-injection locking in short feedback cavity,” J. Lightwave Technol. 19(4), 520–526 (2001).
    [Crossref]
  10. X. Zhu, K. Padmaraju, L. W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photonics Technol. Lett. 26(23), 2365–2368 (2014).
    [Crossref]
  11. X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J. H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
    [Crossref]
  12. H. Jayatilleka, H. Shoman, L. Chrostowski, and S. Shekhar, “Photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits,” Optica 6(1), 84–91 (2019).
    [Crossref]
  13. H. Jayatilleka, H. Shoman, R. Boeck, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Automatic configuration and wavelength locking of coupled silicon ring resonators,” J. Lightwave Technol. 36(2), 210–218 (2018).
    [Crossref]
  14. R. Gatdula, K. Kim, A. Melikyan, Y. K. Chen, and P. Dong, “Simultaneous four-channel thermal adaptation of polarization insensitive silicon photonics WDM receiver,” Opt. Express 25(22), 27119–27126 (2017).
    [Crossref]
  15. Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, X. Guo, Y. Zhang, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
    [Crossref]
  16. Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, Y. Li, X. Song, X. Guo, Y. Zhang, and C. Qiu, “Wide-range automated wavelength calibration over a full FSR in a dual-ring based silicon photonic switch,” in Opt. Fiber Commun. Conf.2018, paper Th3C.1.
  17. Q. Zhu, S. An, R. Cao, Y. Ling, and Y. Su, “Fast and wide-range wavelength locking based on a two-layer neural network in a silicon microring switch,” in Opt. Fiber Commun. Conf.2019, paper W1E.1.
  18. Q. Zhu, X. Jiang, R. Cao, H. Zhang, C. Qiu, and Y. Su, “Multi-stage wavelength locking in a 4 × 4 silicon electro-optic switch based on dual-ring resonators,” in Optoelectron. Commun. Conf. & Photon. Switching Comput.2019, paper TuF2.5.
  19. E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in Conf. Lasers Electro-Opt.2012, paper CM2M.1.
  20. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20(27), 27999–28008 (2012).
    [Crossref]
  21. Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23(1), 360–372 (2015).
    [Crossref]
  22. J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(9), 11279–11289 (2014).
    [Crossref]
  23. S. Lin, X. Zheng, P. Amberg, S. S. Djordjevic, J. H. Lee, I. Shubin, J. Yao, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Wavelength locked high-speed microring modulator using an integrated balanced homodyne CMOS control circuit,” in Opt. Fiber Commun. Conf.2016, paper Th3J.4.
  24. W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro 33(1), 42–52 (2013).
    [Crossref]
  25. C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conf. Lasers Electro-Opt.2010, paper CThJ.3.
  26. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
    [Crossref]
  27. F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, “Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect,” IEEE J. Sel. Top. Quantum Electron. 14(3), 706–712 (2008).
    [Crossref]
  28. Y. Su and Q. Chang, “Tunable photonic RF phase shifter using silicon microring resonator,” in Laser Resonators and Beam Control XII2010, paper 757912.
  29. Y. Xia, C. Qiu, X. Zhang, W. Gao, J. Shu, and Q. Xu, “Suspended Si ring resonator for mid-IR application,” Opt. Lett. 38(7), 1122–1124 (2013).
    [Crossref]
  30. Y. G. Han, J. H. Lee, S. B. Lee, L. Poti, and A. Bogoni, “Novel multiwavelength erbium-doped fiber and Raman fiber ring lasers with continuous wavelength spacing tunability at room temperature,” J. Lightwave Technol. 25(8), 2219–2225 (2007).
    [Crossref]
  31. K. Lee, S. Do Lim, C. H. Kim, J. H. Lee, Y. G. Han, and S. B. Lee, “Noise reduction in multiwavelength SOA-based ring laser by coupled dual cavities for WDM applications,” J. Lightwave Technol. 28(5), 739–745 (2010).
    [Crossref]
  32. M. C. Parker, A. D. Cohen, and R. J. Mears, “Dynamic holographic spectral equalization for WDM,” IEEE Photonics Technol. Lett. 9(4), 529–531 (1997).
    [Crossref]
  33. Y. H. Chen, C. Sun, and V. Stojanovic, “Scalable electrical-optical thermal simulator for multicores with optical interconnects,” in IEEE Opt. Interconnect Conf.2013, paper M3A.
  34. Y. Yu, H. Tang, W. Liu, X. Hu, Y. Zhang, X. Xiao, Y. Yu, and X. Zhang, “Frequency stabilization of the tunable optoelectronic oscillator based on an ultra-high-Q microring resonator,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–9 (2020).
    [Crossref]

2020 (1)

Y. Yu, H. Tang, W. Liu, X. Hu, Y. Zhang, X. Xiao, Y. Yu, and X. Zhang, “Frequency stabilization of the tunable optoelectronic oscillator based on an ultra-high-Q microring resonator,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–9 (2020).
[Crossref]

2019 (1)

2018 (2)

H. Jayatilleka, H. Shoman, R. Boeck, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Automatic configuration and wavelength locking of coupled silicon ring resonators,” J. Lightwave Technol. 36(2), 210–218 (2018).
[Crossref]

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, X. Guo, Y. Zhang, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

2017 (2)

2015 (1)

2014 (5)

P. Dong, Y. K. Chen, G. H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4-5), 215–228 (2014).
[Crossref]

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4-5), 269–281 (2014).
[Crossref]

X. Zhu, K. Padmaraju, L. W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photonics Technol. Lett. 26(23), 2365–2368 (2014).
[Crossref]

J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(9), 11279–11289 (2014).
[Crossref]

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J. H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
[Crossref]

2013 (2)

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro 33(1), 42–52 (2013).
[Crossref]

Y. Xia, C. Qiu, X. Zhang, W. Gao, J. Shu, and Q. Xu, “Suspended Si ring resonator for mid-IR application,” Opt. Lett. 38(7), 1122–1124 (2013).
[Crossref]

2012 (2)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20(27), 27999–28008 (2012).
[Crossref]

2010 (1)

2008 (1)

F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, “Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect,” IEEE J. Sel. Top. Quantum Electron. 14(3), 706–712 (2008).
[Crossref]

2007 (1)

2002 (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

2001 (2)

1997 (1)

M. C. Parker, A. D. Cohen, and R. J. Mears, “Dynamic holographic spectral equalization for WDM,” IEEE Photonics Technol. Lett. 9(4), 529–531 (1997).
[Crossref]

1993 (1)

L. P. Barry, R. O’Dowd, J. Debau, and R. Boittin, “Tunable transform-limited pulse generation using self-injection locking of an FP laser,” IEEE Photonics Technol. Lett. 5(10), 1132–1134 (1993).
[Crossref]

Aflatouni, F.

M. H. Idjadi and F. Aflatouni, “Integrated Pound–Drever–Hall laser stabilization system in silicon,” Nat. Commun. 8(1), 1209 (2017).
[Crossref]

Amberg, P.

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J. H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
[Crossref]

S. Lin, X. Zheng, P. Amberg, S. S. Djordjevic, J. H. Lee, I. Shubin, J. Yao, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Wavelength locked high-speed microring modulator using an integrated balanced homodyne CMOS control circuit,” in Opt. Fiber Commun. Conf.2016, paper Th3J.4.

An, S.

Q. Zhu, S. An, R. Cao, Y. Ling, and Y. Su, “Fast and wide-range wavelength locking based on a two-layer neural network in a silicon microring switch,” in Opt. Fiber Commun. Conf.2019, paper W1E.1.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Barry, L. P.

L. P. Barry, R. O’Dowd, J. Debau, and R. Boittin, “Tunable transform-limited pulse generation using self-injection locking of an FP laser,” IEEE Photonics Technol. Lett. 5(10), 1132–1134 (1993).
[Crossref]

Bergman, K.

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4-5), 269–281 (2014).
[Crossref]

X. Zhu, K. Padmaraju, L. W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photonics Technol. Lett. 26(23), 2365–2368 (2014).
[Crossref]

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20(27), 27999–28008 (2012).
[Crossref]

Biberman, A.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in Conf. Lasers Electro-Opt.2012, paper CM2M.1.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Black, E. D.

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Boeck, R.

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bogoni, A.

Boittin, R.

L. P. Barry, R. O’Dowd, J. Debau, and R. Boittin, “Tunable transform-limited pulse generation using self-injection locking of an FP laser,” IEEE Photonics Technol. Lett. 5(10), 1132–1134 (1993).
[Crossref]

Bovington, J.

S. Lin, X. Zheng, P. Amberg, S. S. Djordjevic, J. H. Lee, I. Shubin, J. Yao, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Wavelength locked high-speed microring modulator using an integrated balanced homodyne CMOS control circuit,” in Opt. Fiber Commun. Conf.2016, paper Th3J.4.

Cao, R.

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, X. Guo, Y. Zhang, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Q. Zhu, S. An, R. Cao, Y. Ling, and Y. Su, “Fast and wide-range wavelength locking based on a two-layer neural network in a silicon microring switch,” in Opt. Fiber Commun. Conf.2019, paper W1E.1.

Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, Y. Li, X. Song, X. Guo, Y. Zhang, and C. Qiu, “Wide-range automated wavelength calibration over a full FSR in a dual-ring based silicon photonic switch,” in Opt. Fiber Commun. Conf.2018, paper Th3C.1.

Q. Zhu, X. Jiang, R. Cao, H. Zhang, C. Qiu, and Y. Su, “Multi-stage wavelength locking in a 4 × 4 silicon electro-optic switch based on dual-ring resonators,” in Optoelectron. Commun. Conf. & Photon. Switching Comput.2019, paper TuF2.5.

Chambers, J.

J. Chambers, “High frequency Pound–Drever–Hall optical ring resonator sensing,” Master’s thesis, Texas A&M University (2007).

Chan, J.

Chang, E.

Chang, Q.

Y. Su and Q. Chang, “Tunable photonic RF phase shifter using silicon microring resonator,” in Laser Resonators and Beam Control XII2010, paper 757912.

Chen, L.

Chen, Y. H.

Y. H. Chen, C. Sun, and V. Stojanovic, “Scalable electrical-optical thermal simulator for multicores with optical interconnects,” in IEEE Opt. Interconnect Conf.2013, paper M3A.

Chen, Y. K.

Chrostowski, L.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Cohen, A. D.

M. C. Parker, A. D. Cohen, and R. J. Mears, “Dynamic holographic spectral equalization for WDM,” IEEE Photonics Technol. Lett. 9(4), 529–531 (1997).
[Crossref]

Cox, J. A.

Cunningham, J. E.

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J. H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
[Crossref]

S. Lin, X. Zheng, P. Amberg, S. S. Djordjevic, J. H. Lee, I. Shubin, J. Yao, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Wavelength locked high-speed microring modulator using an integrated balanced homodyne CMOS control circuit,” in Opt. Fiber Commun. Conf.2016, paper Th3J.4.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Debau, J.

L. P. Barry, R. O’Dowd, J. Debau, and R. Boittin, “Tunable transform-limited pulse generation using self-injection locking of an FP laser,” IEEE Photonics Technol. Lett. 5(10), 1132–1134 (1993).
[Crossref]

DeRose, C. T.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conf. Lasers Electro-Opt.2010, paper CThJ.3.

Djordjevic, S. S.

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J. H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
[Crossref]

S. Lin, X. Zheng, P. Amberg, S. S. Djordjevic, J. H. Lee, I. Shubin, J. Yao, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Wavelength locked high-speed microring modulator using an integrated balanced homodyne CMOS control circuit,” in Opt. Fiber Commun. Conf.2016, paper Th3J.4.

Do Lim, S.

Dong, P.

Duan, G. H.

P. Dong, Y. K. Chen, G. H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4-5), 215–228 (2014).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Dutt, R.

X. Zhu, K. Padmaraju, L. W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photonics Technol. Lett. 26(23), 2365–2368 (2014).
[Crossref]

Gao, W.

Gatdula, R.

Glick, M.

X. Zhu, K. Padmaraju, L. W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photonics Technol. Lett. 26(23), 2365–2368 (2014).
[Crossref]

Guo, X.

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, X. Guo, Y. Zhang, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, Y. Li, X. Song, X. Guo, Y. Zhang, and C. Qiu, “Wide-range automated wavelength calibration over a full FSR in a dual-ring based silicon photonic switch,” in Opt. Fiber Commun. Conf.2018, paper Th3C.1.

Han, Y. G.

Ho, R.

Hsu, K.

Hu, X.

Y. Yu, H. Tang, W. Liu, X. Hu, Y. Zhang, X. Xiao, Y. Yu, and X. Zhang, “Frequency stabilization of the tunable optoelectronic oscillator based on an ultra-high-Q microring resonator,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–9 (2020).
[Crossref]

Idjadi, M. H.

M. H. Idjadi and F. Aflatouni, “Integrated Pound–Drever–Hall laser stabilization system in silicon,” Nat. Commun. 8(1), 1209 (2017).
[Crossref]

Jaeger, N. A. F.

Jayatilleka, H.

Jiang, X.

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, X. Guo, Y. Zhang, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, Y. Li, X. Song, X. Guo, Y. Zhang, and C. Qiu, “Wide-range automated wavelength calibration over a full FSR in a dual-ring based silicon photonic switch,” in Opt. Fiber Commun. Conf.2018, paper Th3C.1.

Q. Zhu, X. Jiang, R. Cao, H. Zhang, C. Qiu, and Y. Su, “Multi-stage wavelength locking in a 4 × 4 silicon electro-optic switch based on dual-ring resonators,” in Optoelectron. Commun. Conf. & Photon. Switching Comput.2019, paper TuF2.5.

Kim, C. H.

Kim, K.

Krishnamoorthy, A. V.

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J. H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
[Crossref]

S. Lin, X. Zheng, P. Amberg, S. S. Djordjevic, J. H. Lee, I. Shubin, J. Yao, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Wavelength locked high-speed microring modulator using an integrated balanced homodyne CMOS control circuit,” in Opt. Fiber Commun. Conf.2016, paper Th3J.4.

Lee, D. Y.

S. Lin, X. Zheng, P. Amberg, S. S. Djordjevic, J. H. Lee, I. Shubin, J. Yao, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Wavelength locked high-speed microring modulator using an integrated balanced homodyne CMOS control circuit,” in Opt. Fiber Commun. Conf.2016, paper Th3J.4.

Lee, J. H.

Lee, K.

Lee, S. B.

Lentine, A. L.

J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(9), 11279–11289 (2014).
[Crossref]

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro 33(1), 42–52 (2013).
[Crossref]

Lexau, J.

Li, D.

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, X. Guo, Y. Zhang, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, Y. Li, X. Song, X. Guo, Y. Zhang, and C. Qiu, “Wide-range automated wavelength calibration over a full FSR in a dual-ring based silicon photonic switch,” in Opt. Fiber Commun. Conf.2018, paper Th3C.1.

Li, Q.

F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, “Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect,” IEEE J. Sel. Top. Quantum Electron. 14(3), 706–712 (2008).
[Crossref]

Li, Y.

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, X. Guo, Y. Zhang, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Y. Li and A. W. Poon, “Active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption-based photodetector,” Opt. Express 23(1), 360–372 (2015).
[Crossref]

Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, Y. Li, X. Song, X. Guo, Y. Zhang, and C. Qiu, “Wide-range automated wavelength calibration over a full FSR in a dual-ring based silicon photonic switch,” in Opt. Fiber Commun. Conf.2018, paper Th3C.1.

Lin, S.

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J. H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
[Crossref]

S. Lin, X. Zheng, P. Amberg, S. S. Djordjevic, J. H. Lee, I. Shubin, J. Yao, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Wavelength locked high-speed microring modulator using an integrated balanced homodyne CMOS control circuit,” in Opt. Fiber Commun. Conf.2016, paper Th3J.4.

Ling, Y.

Q. Zhu, S. An, R. Cao, Y. Ling, and Y. Su, “Fast and wide-range wavelength locking based on a two-layer neural network in a silicon microring switch,” in Opt. Fiber Commun. Conf.2019, paper W1E.1.

Lipson, M.

X. Zhu, K. Padmaraju, L. W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photonics Technol. Lett. 26(23), 2365–2368 (2014).
[Crossref]

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20(27), 27999–28008 (2012).
[Crossref]

Liu, F.

Liu, W.

Y. Yu, H. Tang, W. Liu, X. Hu, Y. Zhang, X. Xiao, Y. Yu, and X. Zhang, “Frequency stabilization of the tunable optoelectronic oscillator based on an ultra-high-Q microring resonator,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–9 (2020).
[Crossref]

Luck, D. L.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conf. Lasers Electro-Opt.2010, paper CThJ.3.

Luo, L. W.

X. Zhu, K. Padmaraju, L. W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photonics Technol. Lett. 26(23), 2365–2368 (2014).
[Crossref]

Luo, Y.

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J. H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
[Crossref]

S. Lin, X. Zheng, P. Amberg, S. S. Djordjevic, J. H. Lee, I. Shubin, J. Yao, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Wavelength locked high-speed microring modulator using an integrated balanced homodyne CMOS control circuit,” in Opt. Fiber Commun. Conf.2016, paper Th3J.4.

Mears, R. J.

M. C. Parker, A. D. Cohen, and R. J. Mears, “Dynamic holographic spectral equalization for WDM,” IEEE Photonics Technol. Lett. 9(4), 529–531 (1997).
[Crossref]

Melikyan, A.

Moresco, M.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in Conf. Lasers Electro-Opt.2012, paper CM2M.1.

Neilson, D. T.

P. Dong, Y. K. Chen, G. H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4-5), 215–228 (2014).
[Crossref]

Nielson, G. N.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conf. Lasers Electro-Opt.2010, paper CThJ.3.

O’Dowd, R.

L. P. Barry, R. O’Dowd, J. Debau, and R. Boittin, “Tunable transform-limited pulse generation using self-injection locking of an FP laser,” IEEE Photonics Technol. Lett. 5(10), 1132–1134 (1993).
[Crossref]

Padmaraju, K.

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4-5), 269–281 (2014).
[Crossref]

X. Zhu, K. Padmaraju, L. W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photonics Technol. Lett. 26(23), 2365–2368 (2014).
[Crossref]

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20(27), 27999–28008 (2012).
[Crossref]

Parker, M. C.

M. C. Parker, A. D. Cohen, and R. J. Mears, “Dynamic holographic spectral equalization for WDM,” IEEE Photonics Technol. Lett. 9(4), 529–531 (1997).
[Crossref]

Poon, A. W.

Poti, L.

Qiu, C.

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, X. Guo, Y. Zhang, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Y. Xia, C. Qiu, X. Zhang, W. Gao, J. Shu, and Q. Xu, “Suspended Si ring resonator for mid-IR application,” Opt. Lett. 38(7), 1122–1124 (2013).
[Crossref]

Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, Y. Li, X. Song, X. Guo, Y. Zhang, and C. Qiu, “Wide-range automated wavelength calibration over a full FSR in a dual-ring based silicon photonic switch,” in Opt. Fiber Commun. Conf.2018, paper Th3C.1.

Q. Zhu, X. Jiang, R. Cao, H. Zhang, C. Qiu, and Y. Su, “Multi-stage wavelength locking in a 4 × 4 silicon electro-optic switch based on dual-ring resonators,” in Optoelectron. Commun. Conf. & Photon. Switching Comput.2019, paper TuF2.5.

Qiu, M.

F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, “Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect,” IEEE J. Sel. Top. Quantum Electron. 14(3), 706–712 (2008).
[Crossref]

Raj, K.

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J. H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
[Crossref]

S. Lin, X. Zheng, P. Amberg, S. S. Djordjevic, J. H. Lee, I. Shubin, J. Yao, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Wavelength locked high-speed microring modulator using an integrated balanced homodyne CMOS control circuit,” in Opt. Fiber Commun. Conf.2016, paper Th3J.4.

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Shekhar, S.

Shoman, H.

Shu, J.

Shubin, I.

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J. H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
[Crossref]

S. Lin, X. Zheng, P. Amberg, S. S. Djordjevic, J. H. Lee, I. Shubin, J. Yao, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Wavelength locked high-speed microring modulator using an integrated balanced homodyne CMOS control circuit,” in Opt. Fiber Commun. Conf.2016, paper Th3J.4.

Song, X.

Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, Y. Li, X. Song, X. Guo, Y. Zhang, and C. Qiu, “Wide-range automated wavelength calibration over a full FSR in a dual-ring based silicon photonic switch,” in Opt. Fiber Commun. Conf.2018, paper Th3C.1.

Starbuck, A. L.

Stojanovic, V.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in Conf. Lasers Electro-Opt.2012, paper CM2M.1.

Y. H. Chen, C. Sun, and V. Stojanovic, “Scalable electrical-optical thermal simulator for multicores with optical interconnects,” in IEEE Opt. Interconnect Conf.2013, paper M3A.

Su, Y.

F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, “Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect,” IEEE J. Sel. Top. Quantum Electron. 14(3), 706–712 (2008).
[Crossref]

Y. Su and Q. Chang, “Tunable photonic RF phase shifter using silicon microring resonator,” in Laser Resonators and Beam Control XII2010, paper 757912.

Q. Zhu, X. Jiang, R. Cao, H. Zhang, C. Qiu, and Y. Su, “Multi-stage wavelength locking in a 4 × 4 silicon electro-optic switch based on dual-ring resonators,” in Optoelectron. Commun. Conf. & Photon. Switching Comput.2019, paper TuF2.5.

Q. Zhu, S. An, R. Cao, Y. Ling, and Y. Su, “Fast and wide-range wavelength locking based on a two-layer neural network in a silicon microring switch,” in Opt. Fiber Commun. Conf.2019, paper W1E.1.

Y. Zhang, R. Zhang, Q. Zhu, Y. Yuan, and Y. Su, “Architecture and devices for silicon photonic switching in wavelength, polarization and mode,” J. Lightwave Technol., accepted (2019).

Sun, C.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in Conf. Lasers Electro-Opt.2012, paper CM2M.1.

Y. H. Chen, C. Sun, and V. Stojanovic, “Scalable electrical-optical thermal simulator for multicores with optical interconnects,” in IEEE Opt. Interconnect Conf.2013, paper M3A.

Tang, H.

Y. Yu, H. Tang, W. Liu, X. Hu, Y. Zhang, X. Xiao, Y. Yu, and X. Zhang, “Frequency stabilization of the tunable optoelectronic oscillator based on an ultra-high-Q microring resonator,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–9 (2020).
[Crossref]

Thacker, H.

Thacker, H. D.

S. Lin, X. Zheng, P. Amberg, S. S. Djordjevic, J. H. Lee, I. Shubin, J. Yao, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Wavelength locked high-speed microring modulator using an integrated balanced homodyne CMOS control circuit,” in Opt. Fiber Commun. Conf.2016, paper Th3J.4.

Timurdogan, E.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in Conf. Lasers Electro-Opt.2012, paper CM2M.1.

Trotter, D. C.

J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(9), 11279–11289 (2014).
[Crossref]

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro 33(1), 42–52 (2013).
[Crossref]

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conf. Lasers Electro-Opt.2010, paper CThJ.3.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in Conf. Lasers Electro-Opt.2012, paper CM2M.1.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Watts, M. R.

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro 33(1), 42–52 (2013).
[Crossref]

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conf. Lasers Electro-Opt.2010, paper CThJ.3.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in Conf. Lasers Electro-Opt.2012, paper CM2M.1.

Xia, Y.

Xiao, X.

Y. Yu, H. Tang, W. Liu, X. Hu, Y. Zhang, X. Xiao, Y. Yu, and X. Zhang, “Frequency stabilization of the tunable optoelectronic oscillator based on an ultra-high-Q microring resonator,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–9 (2020).
[Crossref]

Xu, Q.

Yamashita, S.

Yang, S.

X. Zhu, K. Padmaraju, L. W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photonics Technol. Lett. 26(23), 2365–2368 (2014).
[Crossref]

Yao, J.

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J. H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
[Crossref]

S. Lin, X. Zheng, P. Amberg, S. S. Djordjevic, J. H. Lee, I. Shubin, J. Yao, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Wavelength locked high-speed microring modulator using an integrated balanced homodyne CMOS control circuit,” in Opt. Fiber Commun. Conf.2016, paper Th3J.4.

Yariv, A.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

Young, R. W.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conf. Lasers Electro-Opt.2010, paper CThJ.3.

Yu, Y.

Y. Yu, H. Tang, W. Liu, X. Hu, Y. Zhang, X. Xiao, Y. Yu, and X. Zhang, “Frequency stabilization of the tunable optoelectronic oscillator based on an ultra-high-Q microring resonator,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–9 (2020).
[Crossref]

Y. Yu, H. Tang, W. Liu, X. Hu, Y. Zhang, X. Xiao, Y. Yu, and X. Zhang, “Frequency stabilization of the tunable optoelectronic oscillator based on an ultra-high-Q microring resonator,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–9 (2020).
[Crossref]

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, X. Guo, Y. Zhang, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Yuan, Y.

Y. Zhang, R. Zhang, Q. Zhu, Y. Yuan, and Y. Su, “Architecture and devices for silicon photonic switching in wavelength, polarization and mode,” J. Lightwave Technol., accepted (2019).

Zeng, L.

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, X. Guo, Y. Zhang, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Zhang, H.

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, X. Guo, Y. Zhang, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, Y. Li, X. Song, X. Guo, Y. Zhang, and C. Qiu, “Wide-range automated wavelength calibration over a full FSR in a dual-ring based silicon photonic switch,” in Opt. Fiber Commun. Conf.2018, paper Th3C.1.

Q. Zhu, X. Jiang, R. Cao, H. Zhang, C. Qiu, and Y. Su, “Multi-stage wavelength locking in a 4 × 4 silicon electro-optic switch based on dual-ring resonators,” in Optoelectron. Commun. Conf. & Photon. Switching Comput.2019, paper TuF2.5.

Zhang, R.

Y. Zhang, R. Zhang, Q. Zhu, Y. Yuan, and Y. Su, “Architecture and devices for silicon photonic switching in wavelength, polarization and mode,” J. Lightwave Technol., accepted (2019).

Zhang, X.

Y. Yu, H. Tang, W. Liu, X. Hu, Y. Zhang, X. Xiao, Y. Yu, and X. Zhang, “Frequency stabilization of the tunable optoelectronic oscillator based on an ultra-high-Q microring resonator,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–9 (2020).
[Crossref]

Y. Xia, C. Qiu, X. Zhang, W. Gao, J. Shu, and Q. Xu, “Suspended Si ring resonator for mid-IR application,” Opt. Lett. 38(7), 1122–1124 (2013).
[Crossref]

Zhang, Y.

Y. Yu, H. Tang, W. Liu, X. Hu, Y. Zhang, X. Xiao, Y. Yu, and X. Zhang, “Frequency stabilization of the tunable optoelectronic oscillator based on an ultra-high-Q microring resonator,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–9 (2020).
[Crossref]

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, X. Guo, Y. Zhang, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, Y. Li, X. Song, X. Guo, Y. Zhang, and C. Qiu, “Wide-range automated wavelength calibration over a full FSR in a dual-ring based silicon photonic switch,” in Opt. Fiber Commun. Conf.2018, paper Th3C.1.

Y. Zhang, R. Zhang, Q. Zhu, Y. Yuan, and Y. Su, “Architecture and devices for silicon photonic switching in wavelength, polarization and mode,” J. Lightwave Technol., accepted (2019).

Zhang, Z.

F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, “Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect,” IEEE J. Sel. Top. Quantum Electron. 14(3), 706–712 (2008).
[Crossref]

Zhao, N.

Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, Y. Li, X. Song, X. Guo, Y. Zhang, and C. Qiu, “Wide-range automated wavelength calibration over a full FSR in a dual-ring based silicon photonic switch,” in Opt. Fiber Commun. Conf.2018, paper Th3C.1.

Zheng, X.

X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J. H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
[Crossref]

S. Lin, X. Zheng, P. Amberg, S. S. Djordjevic, J. H. Lee, I. Shubin, J. Yao, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Wavelength locked high-speed microring modulator using an integrated balanced homodyne CMOS control circuit,” in Opt. Fiber Commun. Conf.2016, paper Th3J.4.

Zhu, Q.

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, X. Guo, Y. Zhang, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, Y. Li, X. Song, X. Guo, Y. Zhang, and C. Qiu, “Wide-range automated wavelength calibration over a full FSR in a dual-ring based silicon photonic switch,” in Opt. Fiber Commun. Conf.2018, paper Th3C.1.

Q. Zhu, S. An, R. Cao, Y. Ling, and Y. Su, “Fast and wide-range wavelength locking based on a two-layer neural network in a silicon microring switch,” in Opt. Fiber Commun. Conf.2019, paper W1E.1.

Q. Zhu, X. Jiang, R. Cao, H. Zhang, C. Qiu, and Y. Su, “Multi-stage wavelength locking in a 4 × 4 silicon electro-optic switch based on dual-ring resonators,” in Optoelectron. Commun. Conf. & Photon. Switching Comput.2019, paper TuF2.5.

Y. Zhang, R. Zhang, Q. Zhu, Y. Yuan, and Y. Su, “Architecture and devices for silicon photonic switching in wavelength, polarization and mode,” J. Lightwave Technol., accepted (2019).

Zhu, X.

X. Zhu, K. Padmaraju, L. W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photonics Technol. Lett. 26(23), 2365–2368 (2014).
[Crossref]

Zortman, W. A.

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro 33(1), 42–52 (2013).
[Crossref]

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

F. Liu, Q. Li, Z. Zhang, M. Qiu, and Y. Su, “Optically tunable delay line in silicon microring resonator based on thermal nonlinear effect,” IEEE J. Sel. Top. Quantum Electron. 14(3), 706–712 (2008).
[Crossref]

Y. Yu, H. Tang, W. Liu, X. Hu, Y. Zhang, X. Xiao, Y. Yu, and X. Zhang, “Frequency stabilization of the tunable optoelectronic oscillator based on an ultra-high-Q microring resonator,” IEEE J. Sel. Top. Quantum Electron. 26(2), 1–9 (2020).
[Crossref]

IEEE Micro (1)

W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Bit-error-rate monitoring for active wavelength control of resonant modulators,” IEEE Micro 33(1), 42–52 (2013).
[Crossref]

IEEE Photonics J. (1)

Q. Zhu, X. Jiang, Y. Yu, R. Cao, H. Zhang, D. Li, Y. Li, L. Zeng, X. Guo, Y. Zhang, and C. Qiu, “Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators,” IEEE Photonics J. 10(1), 1–11 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (4)

X. Zhu, K. Padmaraju, L. W. Luo, S. Yang, M. Glick, R. Dutt, M. Lipson, and K. Bergman, “Fast wavelength locking of a microring resonator,” IEEE Photonics Technol. Lett. 26(23), 2365–2368 (2014).
[Crossref]

L. P. Barry, R. O’Dowd, J. Debau, and R. Boittin, “Tunable transform-limited pulse generation using self-injection locking of an FP laser,” IEEE Photonics Technol. Lett. 5(10), 1132–1134 (1993).
[Crossref]

M. C. Parker, A. D. Cohen, and R. J. Mears, “Dynamic holographic spectral equalization for WDM,” IEEE Photonics Technol. Lett. 9(4), 529–531 (1997).
[Crossref]

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photonics Technol. Lett. 14(4), 483–485 (2002).
[Crossref]

J. Lightwave Technol. (4)

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Nanophotonics (2)

P. Dong, Y. K. Chen, G. H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4-5), 215–228 (2014).
[Crossref]

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4-5), 269–281 (2014).
[Crossref]

Nat. Commun. (1)

M. H. Idjadi and F. Aflatouni, “Integrated Pound–Drever–Hall laser stabilization system in silicon,” Nat. Commun. 8(1), 1209 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Optica (1)

Other (10)

Q. Zhu, H. Zhang, R. Cao, N. Zhao, X. Jiang, D. Li, Y. Li, X. Song, X. Guo, Y. Zhang, and C. Qiu, “Wide-range automated wavelength calibration over a full FSR in a dual-ring based silicon photonic switch,” in Opt. Fiber Commun. Conf.2018, paper Th3C.1.

Q. Zhu, S. An, R. Cao, Y. Ling, and Y. Su, “Fast and wide-range wavelength locking based on a two-layer neural network in a silicon microring switch,” in Opt. Fiber Commun. Conf.2019, paper W1E.1.

Q. Zhu, X. Jiang, R. Cao, H. Zhang, C. Qiu, and Y. Su, “Multi-stage wavelength locking in a 4 × 4 silicon electro-optic switch based on dual-ring resonators,” in Optoelectron. Commun. Conf. & Photon. Switching Comput.2019, paper TuF2.5.

E. Timurdogan, A. Biberman, D. C. Trotter, C. Sun, M. Moresco, V. Stojanovic, and M. R. Watts, “Automated wavelength recovery for microring resonators,” in Conf. Lasers Electro-Opt.2012, paper CM2M.1.

J. Chambers, “High frequency Pound–Drever–Hall optical ring resonator sensing,” Master’s thesis, Texas A&M University (2007).

Y. Zhang, R. Zhang, Q. Zhu, Y. Yuan, and Y. Su, “Architecture and devices for silicon photonic switching in wavelength, polarization and mode,” J. Lightwave Technol., accepted (2019).

Y. H. Chen, C. Sun, and V. Stojanovic, “Scalable electrical-optical thermal simulator for multicores with optical interconnects,” in IEEE Opt. Interconnect Conf.2013, paper M3A.

S. Lin, X. Zheng, P. Amberg, S. S. Djordjevic, J. H. Lee, I. Shubin, J. Yao, Y. Luo, J. Bovington, D. Y. Lee, H. D. Thacker, J. E. Cunningham, K. Raj, and A. V. Krishnamoorthy, “Wavelength locked high-speed microring modulator using an integrated balanced homodyne CMOS control circuit,” in Opt. Fiber Commun. Conf.2016, paper Th3J.4.

C. T. DeRose, M. R. Watts, D. C. Trotter, D. L. Luck, G. N. Nielson, and R. W. Young, “Silicon microring modulator with integrated heater and temperature sensor for thermal control,” in Conf. Lasers Electro-Opt.2010, paper CThJ.3.

Y. Su and Q. Chang, “Tunable photonic RF phase shifter using silicon microring resonator,” in Laser Resonators and Beam Control XII2010, paper 757912.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic diagram of the SHL method. MRR: microring resonator. PS: phase shifter. PD: photodetector.
Fig. 2.
Fig. 2. Simulated transmission spectra at the through and monitoring ports. Δλ is the wavelength misalignment. Tmonitorλ) is the power transmission function from the input port to the monitoring port.
Fig. 3.
Fig. 3. (a) Schematic diagram of the control subsystem. (b) Flow chart of the control algorithm.
Fig. 4.
Fig. 4. (a) Device layout. (b) Micrograph of the device. (c) Detailed control circuitry of the subsystem. (d) Photograph of the control and coupling subsystems.
Fig. 5.
Fig. 5. Experimental setup for wide-range wavelength locking. PC: polarization controller. VOA: variable optical attenuator. DUT: device under test.
Fig. 6.
Fig. 6. (a) Heating powers and monitored signal during the locking process. Signal wavelength is 1545 nm. The inset shows the variation of PMRR in the local minimum searching sub-process. (b) Measured transmission spectra at the initial state and after locking. PMRR and PPS are set to be 0 mW at the initial state.
Fig. 7.
Fig. 7. Measured transmissions of the device after self-homodyne locking for six other signal wavelengths within one FSR (a) versus wavelength λ; (b) versus wavelength detuning λ - λ0. λ0 is the signal wavelength during the locking process for each measurement.
Fig. 8.
Fig. 8. (a) Experimental setup for input-optical-power insensitive wavelength locking. MZM: Mach-Zehnder modulator. AWG: arbitrary waveform generator. DSO: digital storage oscilloscope. (b) Captured signal waveform by the DSO. (c) Heating powers and monitored signal during the locking process. Signal wavelength is 1550 nm. (d) Measured transmission spectrum after locking.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

[ E M2 E M1 ]  =  [ i k 2 / t 2 0 0 i k 2 ] [ a r i n g 1 / 4 0 0 a r i n g 1 / 4 ] 1 i k 1 [ t 1 1 1 t 1 ] [ E i n E t h r u ] ,
E M2 = t 2 a r i n g 1 / 2 E M1 ,
a r i n g =  exp( α L r i n g j β L r i n g ) =  exp( α L r i n g j  2 m π j  2 π n g L r i n g Δ λ  /  λ 2 ),
E M 1 = k 1 k 2 a r i n g 1 / 4 1 t 1 t 2 2 a r i n g E i n ,
E M2 = t 2 exp( α L r i n g /2) exp( j β L r i n g /2)  E M1 E M1 exp ( j m π j π n g L r i n g Δ λ  /  λ 2 ) .
E m o n i t o r = 1 2 ( a Y1  E M 1 + a Y2  E M 2 ) 1 2 a Y1  E M 1 ( 1 + exp ( j m π j π n g L r i n g Δ λ  /  λ 2 ) ) .
| E m o n i t o r | 2 = T m o n i t o r ( Δ λ ) | E i n | 2 1 2 k 2 k 2 | a Y1  a r i n g 1 / 4 1 t 1 t 2 2 a r i n g | 2 | 1 exp ( j π n g L r i n g Δ λ  /  λ 2 ) | 2 | E i n | 2 .
P P S = k P M R R + P 0 ,