Abstract

The high performance of thin film lithium niobate on insulator (LNOI) platform shows potential for electro-optical signal processing and nonlinear optics systems. To realize precise polarization management for sub-wavelength devices, we theoretically and experimentally investigate fundamental transverse electric (TE) and transverse magnetic (TM) mode hybridization in an x-cut LNOI ridge waveguide. Sudden jumps in the free-spectrum-range (FSR) of these modes in a fabricated microring resonator demonstrate the mode hybridization. The measured Q-factor of the lithium niobate (LN) microring is 1.78 million near the critical coupling condition. The hybridization wavelength was designed at 1562 nm and observed at 1537 nm. Potential applications include fundamental mode conversion, polarization rotation, polarization splitter, and polarization insensitive waveguides in optical receiver module.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Waveguides in single-crystal lithium niobate thin film by proton exchange

Lutong Cai, Shuang Li Huangpu Han, and Hui Hu
Opt. Express 23(2) 1240-1248 (2015)

Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe

Shuang Li, Lutong Cai, Yiwen Wang, Yunpeng Jiang, and Hui Hu
Opt. Express 23(19) 24212-24219 (2015)

A design method of lithium niobate on insulator ridge waveguides without leakage loss

Emi Saitoh, Yuki Kawaguchi, Kunimasa Saitoh, and Masanori Koshiba
Opt. Express 19(17) 15833-15842 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Weber, Handbook of optical materials (CRC, 2018).
  2. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
    [Crossref]
  3. C. Wang, M. Zhang, M. J. Yu, R. R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
    [Crossref]
  4. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
    [Crossref]
  5. M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Ultra-High Bandwidth Integrated Lithium Niobate Modulators with Record-Low V-pi,” 2018 Optical Fiber Communications Conference and Exposition (Ofc) (2018).
  6. A. J. Mercante, P. Yao, S. Y. Shi, G. Schneider, J. Murakowski, and D. W. Prather, “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express 24(14), 15590–15595 (2016).
    [Crossref]
  7. Y. He, H. X. Liang, R. Luo, M. X. Li, and Q. Lin, “Dispersion engineered high quality lithium niobate microring resonators,” Opt. Express 26(13), 16315–16322 (2018).
    [Crossref]
  8. B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Loncar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 380–384 (2019).
    [Crossref]
  9. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Loncar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
    [Crossref]
  10. I. Krasnokutska, R. J. Chapman, J. L. J. Tambasco, and A. Peruzzo, “High coupling efficiency grating couplers on lithium niobate on insulator,” Opt. Express 27(13), 17681–17685 (2019).
    [Crossref]
  11. A. Kar, M. Bahadori, S. B. Gong, and L. L. Goddard, “Realization of alignment-tolerant grating couplers for z-cut thin-film lithium niobate,” Opt. Express 27(11), 15856–15867 (2019).
    [Crossref]
  12. C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
    [Crossref]
  13. A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. Desalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41(24), 5700–5703 (2016).
    [Crossref]
  14. A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
    [Crossref]
  15. H. X. Liang, R. Luo, Y. He, H. W. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4(10), 1251–1258 (2017).
    [Crossref]
  16. D. X. Dai and M. Zhang, “Mode hybridization and conversion in silicon-on-insulator nanowires with angled sidewalls,” Opt. Express 23(25), 32452–32464 (2015).
    [Crossref]
  17. D. X. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [Crossref]
  18. A. B. Xie, L. J. Zhou, J. P. Chen, and X. W. Li, “Efficient silicon polarization rotator based on mode-hybridization in a double-stair waveguide,” Opt. Express 23(4), 3960–3970 (2015).
    [Crossref]
  19. J. S. Guo and Y. L. Zhao, “Analysis of Mode Hybridization in Tapered Waveguides,” IEEE Photonics Technol. Lett. 27(23), 2441–2444 (2015).
    [Crossref]
  20. P. H. Chang, C. Lin, and A. S. Helmy, “Polarization Engineering in Nanoscale Waveguides Using Lossless Media,” J. Lightwave Technol. 34(3), 952–960 (2016).
    [Crossref]
  21. Q. Chen and L. Jin, “Polarization management in plasmonic waveguide devices,” in Frontiers in Optics (Optical Society of America, 2014), p. FTh4E. 6.
  22. D. G. Chen, X. Xiao, L. Wang, W. Liu, Q. Yang, and S. H. Yu, “Highly efficient silicon optical polarization rotators based on mode order conversions,” Opt. Lett. 41(5), 1070–1073 (2016).
    [Crossref]
  23. Z. S. Gong, R. Yin, W. Ji, J. B. Wang, C. H. Wu, X. Li, and S. C. Zhang, “Optimal design of DC-based polarization beam splitter in lithium niobate on insulator,” Opt. Commun. 396, 23–27 (2017).
    [Crossref]
  24. E. Saitoh, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “TE/TM-Pass Polarizer Based on Lithium Niobate on Insulator Ridge Waveguide,” IEEE Photonics J. 5(2), 6600610 (2013).
    [Crossref]
  25. J. Schollhammer, M. A. Baghban, and K. Gallo, “Birefringence-Free Lithium Niobate Waveguides,” 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (Cleo/Europe-Eqec) (2017).
  26. W. W. Lui, T. Hirono, K. Yokoyama, and W. P. Huang, “Polarization rotation in semiconductor bending waveguides: A coupled-mode theory formulation,” J. Lightwave Technol. 16(5), 929–936 (1998).
    [Crossref]
  27. A. Melloni, F. Morichetti, and M. Martinelli, “Polarization conversion in ring resonator phase shifters,” Opt. Lett. 29(23), 2785–2787 (2004).
    [Crossref]
  28. S. Ramelow, A. Farsi, S. Clemmen, J. S. Levy, A. R. Johnson, Y. Okawachi, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Strong polarization mode coupling in microresonators,” Opt. Lett. 39(17), 5134–5137 (2014).
    [Crossref]
  29. Y. Liu, Y. Xuan, X. X. Xue, P. H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1(3), 137–144 (2014).
    [Crossref]
  30. M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
    [Crossref]

2019 (4)

2018 (3)

2017 (4)

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Z. S. Gong, R. Yin, W. Ji, J. B. Wang, C. H. Wu, X. Li, and S. C. Zhang, “Optimal design of DC-based polarization beam splitter in lithium niobate on insulator,” Opt. Commun. 396, 23–27 (2017).
[Crossref]

H. X. Liang, R. Luo, Y. He, H. W. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4(10), 1251–1258 (2017).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
[Crossref]

2016 (4)

2015 (4)

2014 (3)

2013 (1)

E. Saitoh, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “TE/TM-Pass Polarizer Based on Lithium Niobate on Insulator Ridge Waveguide,” IEEE Photonics J. 5(2), 6600610 (2013).
[Crossref]

2011 (1)

2004 (1)

1998 (1)

Atikian, H. A.

Baghban, M. A.

J. Schollhammer, M. A. Baghban, and K. Gallo, “Birefringence-Free Lithium Niobate Waveguides,” 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (Cleo/Europe-Eqec) (2017).

Bahadori, M.

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Ultra-High Bandwidth Integrated Lithium Niobate Modulators with Record-Low V-pi,” 2018 Optical Fiber Communications Conference and Exposition (Ofc) (2018).

Bowers, J. E.

Burek, M. J.

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Ultra-High Bandwidth Integrated Lithium Niobate Modulators with Record-Low V-pi,” 2018 Optical Fiber Communications Conference and Exposition (Ofc) (2018).

Chang, P. H.

Chapman, R. J.

Chen, D. G.

Chen, J. P.

Chen, Q.

Q. Chen and L. Jin, “Polarization management in plasmonic waveguide devices,” in Frontiers in Optics (Optical Society of America, 2014), p. FTh4E. 6.

Chen, S.

Chen, X.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Ultra-High Bandwidth Integrated Lithium Niobate Modulators with Record-Low V-pi,” 2018 Optical Fiber Communications Conference and Exposition (Ofc) (2018).

Cheng, R.

Chiles, J.

Clemmen, S.

Dai, D. X.

Desalvo, R.

Desiatov, B.

Farsi, A.

Fathpour, S.

Gaeta, A. L.

Gallo, K.

J. Schollhammer, M. A. Baghban, and K. Gallo, “Birefringence-Free Lithium Niobate Waveguides,” 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (Cleo/Europe-Eqec) (2017).

Goddard, L. L.

Gong, S. B.

Gong, Z. S.

Z. S. Gong, R. Yin, W. Ji, J. B. Wang, C. H. Wu, X. Li, and S. C. Zhang, “Optimal design of DC-based polarization beam splitter in lithium niobate on insulator,” Opt. Commun. 396, 23–27 (2017).
[Crossref]

Guo, J. S.

J. S. Guo and Y. L. Zhao, “Analysis of Mode Hybridization in Tapered Waveguides,” IEEE Photonics Technol. Lett. 27(23), 2441–2444 (2015).
[Crossref]

He, Y.

Helmy, A. S.

Hirono, T.

Honardoost, A.

Hu, H.

C. Wang, M. Zhang, M. J. Yu, R. R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]

Huang, I. C.

Huang, W. P.

Ji, W.

Z. S. Gong, R. Yin, W. Ji, J. B. Wang, C. H. Wu, X. Li, and S. C. Zhang, “Optimal design of DC-based polarization beam splitter in lithium niobate on insulator,” Opt. Commun. 396, 23–27 (2017).
[Crossref]

Jiang, H. W.

Jin, L.

Q. Chen and L. Jin, “Polarization management in plasmonic waveguide devices,” in Frontiers in Optics (Optical Society of America, 2014), p. FTh4E. 6.

Johnson, A. R.

Kar, A.

Kawaguchi, Y.

E. Saitoh, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “TE/TM-Pass Polarizer Based on Lithium Niobate on Insulator Ridge Waveguide,” IEEE Photonics J. 5(2), 6600610 (2013).
[Crossref]

Koshiba, M.

E. Saitoh, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “TE/TM-Pass Polarizer Based on Lithium Niobate on Insulator Ridge Waveguide,” IEEE Photonics J. 5(2), 6600610 (2013).
[Crossref]

Krasnokutska, I.

Lamont, M. R. E.

Leaird, D. E.

Levy, J. S.

Li, M. X.

Li, X.

Z. S. Gong, R. Yin, W. Ji, J. B. Wang, C. H. Wu, X. Li, and S. C. Zhang, “Optimal design of DC-based polarization beam splitter in lithium niobate on insulator,” Opt. Commun. 396, 23–27 (2017).
[Crossref]

Li, X. W.

Liang, H. X.

Lin, C.

Lin, Q.

Lin, Z.

Lipson, M.

Liu, W.

Liu, Y.

Loncar, M.

C. Wang, M. Zhang, M. J. Yu, R. R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]

B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Loncar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 380–384 (2019).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
[Crossref]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Loncar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref]

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Ultra-High Bandwidth Integrated Lithium Niobate Modulators with Record-Low V-pi,” 2018 Optical Fiber Communications Conference and Exposition (Ofc) (2018).

Lui, W. W.

Luo, R.

Malinowski, M.

Martinelli, M.

Melloni, A.

Mercante, A. J.

Metcalf, A. J.

Morichetti, F.

Murakowski, J.

Nisar, M. S.

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Novak, S.

Okawachi, Y.

Pan, A.

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Paolella, A.

Patil, A.

Peruzzo, A.

Prather, D. W.

Qi, M. H.

Rabiei, P.

Ramelow, S.

Rao, A.

Richardson, K.

Saitoh, E.

E. Saitoh, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “TE/TM-Pass Polarizer Based on Lithium Niobate on Insulator Ridge Waveguide,” IEEE Photonics J. 5(2), 6600610 (2013).
[Crossref]

Saitoh, K.

E. Saitoh, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “TE/TM-Pass Polarizer Based on Lithium Niobate on Insulator Ridge Waveguide,” IEEE Photonics J. 5(2), 6600610 (2013).
[Crossref]

Schneider, G.

Schollhammer, J.

J. Schollhammer, M. A. Baghban, and K. Gallo, “Birefringence-Free Lithium Niobate Waveguides,” 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (Cleo/Europe-Eqec) (2017).

Shams-Ansari, A.

B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Loncar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 380–384 (2019).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
[Crossref]

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Ultra-High Bandwidth Integrated Lithium Niobate Modulators with Record-Low V-pi,” 2018 Optical Fiber Communications Conference and Exposition (Ofc) (2018).

Shi, S. Y.

Stark, P.

Stern, B.

Tambasco, J. L. J.

Venkataraman, V.

Wang, C.

B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Loncar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 380–384 (2019).
[Crossref]

C. Wang, M. Zhang, M. J. Yu, R. R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
[Crossref]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Loncar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref]

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Ultra-High Bandwidth Integrated Lithium Niobate Modulators with Record-Low V-pi,” 2018 Optical Fiber Communications Conference and Exposition (Ofc) (2018).

Wang, J.

Wang, J. B.

Z. S. Gong, R. Yin, W. Ji, J. B. Wang, C. H. Wu, X. Li, and S. C. Zhang, “Optimal design of DC-based polarization beam splitter in lithium niobate on insulator,” Opt. Commun. 396, 23–27 (2017).
[Crossref]

Wang, L.

Wang, P. H.

Weber, M. J.

M. J. Weber, Handbook of optical materials (CRC, 2018).

Weiner, A. M.

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Ultra-High Bandwidth Integrated Lithium Niobate Modulators with Record-Low V-pi,” 2018 Optical Fiber Communications Conference and Exposition (Ofc) (2018).

Wu, C. H.

Z. S. Gong, R. Yin, W. Ji, J. B. Wang, C. H. Wu, X. Li, and S. C. Zhang, “Optimal design of DC-based polarization beam splitter in lithium niobate on insulator,” Opt. Commun. 396, 23–27 (2017).
[Crossref]

Xia, J.

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Xiao, X.

Xie, A. B.

Xuan, Y.

Xue, X. X.

Yang, Q.

Yao, P.

Yin, R.

Z. S. Gong, R. Yin, W. Ji, J. B. Wang, C. H. Wu, X. Li, and S. C. Zhang, “Optimal design of DC-based polarization beam splitter in lithium niobate on insulator,” Opt. Commun. 396, 23–27 (2017).
[Crossref]

Yokoyama, K.

Yu, M. J.

C. Wang, M. Zhang, M. J. Yu, R. R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]

Yu, S. H.

Yuan, S.

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Zhang, M.

C. Wang, M. Zhang, M. J. Yu, R. R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]

B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Loncar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 380–384 (2019).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
[Crossref]

D. X. Dai and M. Zhang, “Mode hybridization and conversion in silicon-on-insulator nanowires with angled sidewalls,” Opt. Express 23(25), 32452–32464 (2015).
[Crossref]

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Ultra-High Bandwidth Integrated Lithium Niobate Modulators with Record-Low V-pi,” 2018 Optical Fiber Communications Conference and Exposition (Ofc) (2018).

Zhang, S. C.

Z. S. Gong, R. Yin, W. Ji, J. B. Wang, C. H. Wu, X. Li, and S. C. Zhang, “Optimal design of DC-based polarization beam splitter in lithium niobate on insulator,” Opt. Commun. 396, 23–27 (2017).
[Crossref]

Zhao, X.

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Zhao, Y. L.

J. S. Guo and Y. L. Zhao, “Analysis of Mode Hybridization in Tapered Waveguides,” IEEE Photonics Technol. Lett. 27(23), 2441–2444 (2015).
[Crossref]

Zhou, L. J.

Zhu, R. R.

C. Wang, M. Zhang, M. J. Yu, R. R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]

IEEE Photonics J. (2)

E. Saitoh, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “TE/TM-Pass Polarizer Based on Lithium Niobate on Insulator Ridge Waveguide,” IEEE Photonics J. 5(2), 6600610 (2013).
[Crossref]

M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. S. Guo and Y. L. Zhao, “Analysis of Mode Hybridization in Tapered Waveguides,” IEEE Photonics Technol. Lett. 27(23), 2441–2444 (2015).
[Crossref]

J. Lightwave Technol. (2)

Nat. Commun. (1)

C. Wang, M. Zhang, M. J. Yu, R. R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]

Nature (1)

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Opt. Commun. (1)

Z. S. Gong, R. Yin, W. Ji, J. B. Wang, C. H. Wu, X. Li, and S. C. Zhang, “Optimal design of DC-based polarization beam splitter in lithium niobate on insulator,” Opt. Commun. 396, 23–27 (2017).
[Crossref]

Opt. Express (10)

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Loncar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref]

I. Krasnokutska, R. J. Chapman, J. L. J. Tambasco, and A. Peruzzo, “High coupling efficiency grating couplers on lithium niobate on insulator,” Opt. Express 27(13), 17681–17685 (2019).
[Crossref]

A. Kar, M. Bahadori, S. B. Gong, and L. L. Goddard, “Realization of alignment-tolerant grating couplers for z-cut thin-film lithium niobate,” Opt. Express 27(11), 15856–15867 (2019).
[Crossref]

C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]

D. X. Dai and M. Zhang, “Mode hybridization and conversion in silicon-on-insulator nanowires with angled sidewalls,” Opt. Express 23(25), 32452–32464 (2015).
[Crossref]

D. X. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[Crossref]

A. B. Xie, L. J. Zhou, J. P. Chen, and X. W. Li, “Efficient silicon polarization rotator based on mode-hybridization in a double-stair waveguide,” Opt. Express 23(4), 3960–3970 (2015).
[Crossref]

A. J. Mercante, P. Yao, S. Y. Shi, G. Schneider, J. Murakowski, and D. W. Prather, “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express 24(14), 15590–15595 (2016).
[Crossref]

Y. He, H. X. Liang, R. Luo, M. X. Li, and Q. Lin, “Dispersion engineered high quality lithium niobate microring resonators,” Opt. Express 26(13), 16315–16322 (2018).
[Crossref]

A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
[Crossref]

Opt. Lett. (4)

Optica (4)

Other (4)

Q. Chen and L. Jin, “Polarization management in plasmonic waveguide devices,” in Frontiers in Optics (Optical Society of America, 2014), p. FTh4E. 6.

M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Ultra-High Bandwidth Integrated Lithium Niobate Modulators with Record-Low V-pi,” 2018 Optical Fiber Communications Conference and Exposition (Ofc) (2018).

M. J. Weber, Handbook of optical materials (CRC, 2018).

J. Schollhammer, M. A. Baghban, and K. Gallo, “Birefringence-Free Lithium Niobate Waveguides,” 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (Cleo/Europe-Eqec) (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic drawing of an x-cut lithium niobate on insulator (LNOI) ridge waveguide when the waveguide is oriented along the y-axis of the lithium niobate (LN). Blue arrows shows the optical axis of LN and red arrows shows the electric polarization direction of the transverse electric (TE) and transverse magnetic (TM) modes. (b) Cross-section drawing of LNOI waveguide. (c) Material refractive index of LN with different optical axes.
Fig. 2.
Fig. 2. (a-e) Calculated mode effective refractive indices with different film thickness, Hf, and etching depth, He, varied by waveguide width, Wt; The wavelength of the light is 1565 nm. Orientation of waveguides are all in y-axis of LN. (a) Hf=400 nm, He=200 nm. (b) Hf=500 nm, He=250 nm. (c) Hf=600 nm, He=300 nm. (d) Hf=700 nm, He=400 nm (e) Hf=700nm, He=400 nm, and the waveguide has a bending radius of 100 µm. (f) Calculated Ex and EZ profiles of mode 1 (blue line in [e]). From top to bottom: Wt=0.6 µm, 1.4 µm, 2.1 µm. (g) Calculated gap of the anti-crossing for TE0 and TM0 modes (${\Delta }{\textrm{n}_{\textrm{eff}}} = {\textrm{n}_{\textrm{TE}}} - {\textrm{n}_{\textrm{TM}}}$) in Fig. 2(e) with changed bending radius.
Fig. 3.
Fig. 3. (a) Schematic drawing of the designed microring resonator and the eigenmodes in location A and B. (b) Effective refractive indices of fundamental modes in cross-section A and B. (c) Group refractive indices of fundamental modes in cross-section A and B. (d) Electric vectorial overlap coefficient of u and v. (e) Calculated FSR of fundamental modes in the microring. The cross wavelength is 1562 nm.
Fig. 4.
Fig. 4. (a-c) Scanning Electron Microscope (SEM) images of the devices and waveguides of the microring resonator. (a) Grating coupler. (b) Coupling region of microring. (c) Cross-section of waveguide. (d) Schematic drawing of the structure of the designed microring resonator.
Fig. 5.
Fig. 5. (a-d) Transmission spectrum of the microring resonator with different wavelength range. (e) Measured FSRs of TE0 and TM0 modes in the microring in 1520-1580 nm. (f) Lorentz fitting of the resonance peak at 1572.6 nm, the Q-factor is 1.78 million.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n g = n e f f λ n e f f λ
F S R = c n g L
β = 1 2 ( β A + β B )
n g = 1 2 ( n g , A + n g , B )
n ¯ g ( m o d e 1 ) = 1 2 [ n g ( A , m o d e 1 ) + u n g ( B , T E 0 ) + ( 1 u ) n g ( B , T M 0 ) ]
n ¯ g ( m o d e 2 ) = 1 2 [ n g ( A , m o d e 2 ) + v n g ( B , T E 0 ) + ( 1 v ) n g ( B , T M 0 ) ]