C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Loncar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref]
J. Schollhammer, M. A. Baghban, and K. Gallo, “Birefringence-Free Lithium Niobate Waveguides,” 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (Cleo/Europe-Eqec) (2017).
C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]
M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Ultra-High Bandwidth Integrated Lithium Niobate Modulators with Record-Low V-pi,” 2018 Optical Fiber Communications Conference and Exposition (Ofc) (2018).
C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Loncar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref]
C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]
M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Ultra-High Bandwidth Integrated Lithium Niobate Modulators with Record-Low V-pi,” 2018 Optical Fiber Communications Conference and Exposition (Ofc) (2018).
Q. Chen and L. Jin, “Polarization management in plasmonic waveguide devices,” in Frontiers in Optics (Optical Society of America, 2014), p. FTh4E. 6.
Y. Liu, Y. Xuan, X. X. Xue, P. H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1(3), 137–144 (2014).
[Crossref]
C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]
M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Ultra-High Bandwidth Integrated Lithium Niobate Modulators with Record-Low V-pi,” 2018 Optical Fiber Communications Conference and Exposition (Ofc) (2018).
A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
[Crossref]
S. Ramelow, A. Farsi, S. Clemmen, J. S. Levy, A. R. Johnson, Y. Okawachi, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Strong polarization mode coupling in microresonators,” Opt. Lett. 39(17), 5134–5137 (2014).
[Crossref]
S. Ramelow, A. Farsi, S. Clemmen, J. S. Levy, A. R. Johnson, Y. Okawachi, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Strong polarization mode coupling in microresonators,” Opt. Lett. 39(17), 5134–5137 (2014).
[Crossref]
A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. Desalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41(24), 5700–5703 (2016).
[Crossref]
A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
[Crossref]
S. Ramelow, A. Farsi, S. Clemmen, J. S. Levy, A. R. Johnson, Y. Okawachi, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Strong polarization mode coupling in microresonators,” Opt. Lett. 39(17), 5134–5137 (2014).
[Crossref]
J. Schollhammer, M. A. Baghban, and K. Gallo, “Birefringence-Free Lithium Niobate Waveguides,” 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (Cleo/Europe-Eqec) (2017).
Z. S. Gong, R. Yin, W. Ji, J. B. Wang, C. H. Wu, X. Li, and S. C. Zhang, “Optimal design of DC-based polarization beam splitter in lithium niobate on insulator,” Opt. Commun. 396, 23–27 (2017).
[Crossref]
J. S. Guo and Y. L. Zhao, “Analysis of Mode Hybridization in Tapered Waveguides,” IEEE Photonics Technol. Lett. 27(23), 2441–2444 (2015).
[Crossref]
Y. He, H. X. Liang, R. Luo, M. X. Li, and Q. Lin, “Dispersion engineered high quality lithium niobate microring resonators,” Opt. Express 26(13), 16315–16322 (2018).
[Crossref]
H. X. Liang, R. Luo, Y. He, H. W. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4(10), 1251–1258 (2017).
[Crossref]
C. Wang, M. Zhang, M. J. Yu, R. R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]
C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Loncar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref]
Z. S. Gong, R. Yin, W. Ji, J. B. Wang, C. H. Wu, X. Li, and S. C. Zhang, “Optimal design of DC-based polarization beam splitter in lithium niobate on insulator,” Opt. Commun. 396, 23–27 (2017).
[Crossref]
Q. Chen and L. Jin, “Polarization management in plasmonic waveguide devices,” in Frontiers in Optics (Optical Society of America, 2014), p. FTh4E. 6.
S. Ramelow, A. Farsi, S. Clemmen, J. S. Levy, A. R. Johnson, Y. Okawachi, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Strong polarization mode coupling in microresonators,” Opt. Lett. 39(17), 5134–5137 (2014).
[Crossref]
E. Saitoh, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “TE/TM-Pass Polarizer Based on Lithium Niobate on Insulator Ridge Waveguide,” IEEE Photonics J. 5(2), 6600610 (2013).
[Crossref]
E. Saitoh, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “TE/TM-Pass Polarizer Based on Lithium Niobate on Insulator Ridge Waveguide,” IEEE Photonics J. 5(2), 6600610 (2013).
[Crossref]
S. Ramelow, A. Farsi, S. Clemmen, J. S. Levy, A. R. Johnson, Y. Okawachi, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Strong polarization mode coupling in microresonators,” Opt. Lett. 39(17), 5134–5137 (2014).
[Crossref]
Y. Liu, Y. Xuan, X. X. Xue, P. H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1(3), 137–144 (2014).
[Crossref]
S. Ramelow, A. Farsi, S. Clemmen, J. S. Levy, A. R. Johnson, Y. Okawachi, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Strong polarization mode coupling in microresonators,” Opt. Lett. 39(17), 5134–5137 (2014).
[Crossref]
Z. S. Gong, R. Yin, W. Ji, J. B. Wang, C. H. Wu, X. Li, and S. C. Zhang, “Optimal design of DC-based polarization beam splitter in lithium niobate on insulator,” Opt. Commun. 396, 23–27 (2017).
[Crossref]
Y. He, H. X. Liang, R. Luo, M. X. Li, and Q. Lin, “Dispersion engineered high quality lithium niobate microring resonators,” Opt. Express 26(13), 16315–16322 (2018).
[Crossref]
H. X. Liang, R. Luo, Y. He, H. W. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4(10), 1251–1258 (2017).
[Crossref]
Y. He, H. X. Liang, R. Luo, M. X. Li, and Q. Lin, “Dispersion engineered high quality lithium niobate microring resonators,” Opt. Express 26(13), 16315–16322 (2018).
[Crossref]
H. X. Liang, R. Luo, Y. He, H. W. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4(10), 1251–1258 (2017).
[Crossref]
C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Loncar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref]
C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]
S. Ramelow, A. Farsi, S. Clemmen, J. S. Levy, A. R. Johnson, Y. Okawachi, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Strong polarization mode coupling in microresonators,” Opt. Lett. 39(17), 5134–5137 (2014).
[Crossref]
Y. Liu, Y. Xuan, X. X. Xue, P. H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1(3), 137–144 (2014).
[Crossref]
C. Wang, M. Zhang, M. J. Yu, R. R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]
B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Loncar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 380–384 (2019).
[Crossref]
C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]
C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]
M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
[Crossref]
C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Loncar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref]
M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Ultra-High Bandwidth Integrated Lithium Niobate Modulators with Record-Low V-pi,” 2018 Optical Fiber Communications Conference and Exposition (Ofc) (2018).
Y. He, H. X. Liang, R. Luo, M. X. Li, and Q. Lin, “Dispersion engineered high quality lithium niobate microring resonators,” Opt. Express 26(13), 16315–16322 (2018).
[Crossref]
H. X. Liang, R. Luo, Y. He, H. W. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4(10), 1251–1258 (2017).
[Crossref]
A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
[Crossref]
Y. Liu, Y. Xuan, X. X. Xue, P. H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1(3), 137–144 (2014).
[Crossref]
M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]
A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
[Crossref]
S. Ramelow, A. Farsi, S. Clemmen, J. S. Levy, A. R. Johnson, Y. Okawachi, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Strong polarization mode coupling in microresonators,” Opt. Lett. 39(17), 5134–5137 (2014).
[Crossref]
M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]
A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. Desalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41(24), 5700–5703 (2016).
[Crossref]
A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
[Crossref]
Y. Liu, Y. Xuan, X. X. Xue, P. H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1(3), 137–144 (2014).
[Crossref]
A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. Desalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41(24), 5700–5703 (2016).
[Crossref]
A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
[Crossref]
S. Ramelow, A. Farsi, S. Clemmen, J. S. Levy, A. R. Johnson, Y. Okawachi, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Strong polarization mode coupling in microresonators,” Opt. Lett. 39(17), 5134–5137 (2014).
[Crossref]
A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. Desalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41(24), 5700–5703 (2016).
[Crossref]
A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
[Crossref]
A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
[Crossref]
E. Saitoh, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “TE/TM-Pass Polarizer Based on Lithium Niobate on Insulator Ridge Waveguide,” IEEE Photonics J. 5(2), 6600610 (2013).
[Crossref]
E. Saitoh, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “TE/TM-Pass Polarizer Based on Lithium Niobate on Insulator Ridge Waveguide,” IEEE Photonics J. 5(2), 6600610 (2013).
[Crossref]
J. Schollhammer, M. A. Baghban, and K. Gallo, “Birefringence-Free Lithium Niobate Waveguides,” 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (Cleo/Europe-Eqec) (2017).
B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Loncar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 380–384 (2019).
[Crossref]
C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]
M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
[Crossref]
M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Ultra-High Bandwidth Integrated Lithium Niobate Modulators with Record-Low V-pi,” 2018 Optical Fiber Communications Conference and Exposition (Ofc) (2018).
C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Loncar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref]
C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Loncar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref]
B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Loncar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 380–384 (2019).
[Crossref]
C. Wang, M. Zhang, M. J. Yu, R. R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]
C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]
C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]
M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
[Crossref]
C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Loncar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref]
M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Ultra-High Bandwidth Integrated Lithium Niobate Modulators with Record-Low V-pi,” 2018 Optical Fiber Communications Conference and Exposition (Ofc) (2018).
Y. Liu, Y. Xuan, X. X. Xue, P. H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1(3), 137–144 (2014).
[Crossref]
Z. S. Gong, R. Yin, W. Ji, J. B. Wang, C. H. Wu, X. Li, and S. C. Zhang, “Optimal design of DC-based polarization beam splitter in lithium niobate on insulator,” Opt. Commun. 396, 23–27 (2017).
[Crossref]
Y. Liu, Y. Xuan, X. X. Xue, P. H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1(3), 137–144 (2014).
[Crossref]
M. J. Weber, Handbook of optical materials (CRC, 2018).
Y. Liu, Y. Xuan, X. X. Xue, P. H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1(3), 137–144 (2014).
[Crossref]
C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]
M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Ultra-High Bandwidth Integrated Lithium Niobate Modulators with Record-Low V-pi,” 2018 Optical Fiber Communications Conference and Exposition (Ofc) (2018).
Z. S. Gong, R. Yin, W. Ji, J. B. Wang, C. H. Wu, X. Li, and S. C. Zhang, “Optimal design of DC-based polarization beam splitter in lithium niobate on insulator,” Opt. Commun. 396, 23–27 (2017).
[Crossref]
M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]
Y. Liu, Y. Xuan, X. X. Xue, P. H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1(3), 137–144 (2014).
[Crossref]
Y. Liu, Y. Xuan, X. X. Xue, P. H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1(3), 137–144 (2014).
[Crossref]
Z. S. Gong, R. Yin, W. Ji, J. B. Wang, C. H. Wu, X. Li, and S. C. Zhang, “Optimal design of DC-based polarization beam splitter in lithium niobate on insulator,” Opt. Commun. 396, 23–27 (2017).
[Crossref]
C. Wang, M. Zhang, M. J. Yu, R. R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]
M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]
C. Wang, M. Zhang, M. J. Yu, R. R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]
B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Loncar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 380–384 (2019).
[Crossref]
C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]
C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]
M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
[Crossref]
D. X. Dai and M. Zhang, “Mode hybridization and conversion in silicon-on-insulator nanowires with angled sidewalls,” Opt. Express 23(25), 32452–32464 (2015).
[Crossref]
M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Ultra-High Bandwidth Integrated Lithium Niobate Modulators with Record-Low V-pi,” 2018 Optical Fiber Communications Conference and Exposition (Ofc) (2018).
Z. S. Gong, R. Yin, W. Ji, J. B. Wang, C. H. Wu, X. Li, and S. C. Zhang, “Optimal design of DC-based polarization beam splitter in lithium niobate on insulator,” Opt. Commun. 396, 23–27 (2017).
[Crossref]
M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]
J. S. Guo and Y. L. Zhao, “Analysis of Mode Hybridization in Tapered Waveguides,” IEEE Photonics Technol. Lett. 27(23), 2441–2444 (2015).
[Crossref]
C. Wang, M. Zhang, M. J. Yu, R. R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]
E. Saitoh, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “TE/TM-Pass Polarizer Based on Lithium Niobate on Insulator Ridge Waveguide,” IEEE Photonics J. 5(2), 6600610 (2013).
[Crossref]
M. S. Nisar, X. Zhao, A. Pan, S. Yuan, and J. Xia, “Grating Coupler for an On-Chip Lithium Niobate Ridge Waveguide,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]
J. S. Guo and Y. L. Zhao, “Analysis of Mode Hybridization in Tapered Waveguides,” IEEE Photonics Technol. Lett. 27(23), 2441–2444 (2015).
[Crossref]
P. H. Chang, C. Lin, and A. S. Helmy, “Polarization Engineering in Nanoscale Waveguides Using Lossless Media,” J. Lightwave Technol. 34(3), 952–960 (2016).
[Crossref]
W. W. Lui, T. Hirono, K. Yokoyama, and W. P. Huang, “Polarization rotation in semiconductor bending waveguides: A coupled-mode theory formulation,” J. Lightwave Technol. 16(5), 929–936 (1998).
[Crossref]
C. Wang, M. Zhang, M. J. Yu, R. R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun. 10(1), 978 (2019).
[Crossref]
C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]
Z. S. Gong, R. Yin, W. Ji, J. B. Wang, C. H. Wu, X. Li, and S. C. Zhang, “Optimal design of DC-based polarization beam splitter in lithium niobate on insulator,” Opt. Commun. 396, 23–27 (2017).
[Crossref]
C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Loncar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22(25), 30924–30933 (2014).
[Crossref]
I. Krasnokutska, R. J. Chapman, J. L. J. Tambasco, and A. Peruzzo, “High coupling efficiency grating couplers on lithium niobate on insulator,” Opt. Express 27(13), 17681–17685 (2019).
[Crossref]
A. Kar, M. Bahadori, S. B. Gong, and L. L. Goddard, “Realization of alignment-tolerant grating couplers for z-cut thin-film lithium niobate,” Opt. Express 27(11), 15856–15867 (2019).
[Crossref]
C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express 26(2), 1547–1555 (2018).
[Crossref]
D. X. Dai and M. Zhang, “Mode hybridization and conversion in silicon-on-insulator nanowires with angled sidewalls,” Opt. Express 23(25), 32452–32464 (2015).
[Crossref]
D. X. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[Crossref]
A. B. Xie, L. J. Zhou, J. P. Chen, and X. W. Li, “Efficient silicon polarization rotator based on mode-hybridization in a double-stair waveguide,” Opt. Express 23(4), 3960–3970 (2015).
[Crossref]
A. J. Mercante, P. Yao, S. Y. Shi, G. Schneider, J. Murakowski, and D. W. Prather, “110 GHz CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express 24(14), 15590–15595 (2016).
[Crossref]
Y. He, H. X. Liang, R. Luo, M. X. Li, and Q. Lin, “Dispersion engineered high quality lithium niobate microring resonators,” Opt. Express 26(13), 16315–16322 (2018).
[Crossref]
A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fathpour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon,” Opt. Express 23(17), 22746–22752 (2015).
[Crossref]
A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. Desalvo, A. Paolella, and S. Fathpour, “High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz,” Opt. Lett. 41(24), 5700–5703 (2016).
[Crossref]
D. G. Chen, X. Xiao, L. Wang, W. Liu, Q. Yang, and S. H. Yu, “Highly efficient silicon optical polarization rotators based on mode order conversions,” Opt. Lett. 41(5), 1070–1073 (2016).
[Crossref]
A. Melloni, F. Morichetti, and M. Martinelli, “Polarization conversion in ring resonator phase shifters,” Opt. Lett. 29(23), 2785–2787 (2004).
[Crossref]
S. Ramelow, A. Farsi, S. Clemmen, J. S. Levy, A. R. Johnson, Y. Okawachi, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Strong polarization mode coupling in microresonators,” Opt. Lett. 39(17), 5134–5137 (2014).
[Crossref]
Y. Liu, Y. Xuan, X. X. Xue, P. H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. H. Qi, and A. M. Weiner, “Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation,” Optica 1(3), 137–144 (2014).
[Crossref]
M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4(12), 1536–1537 (2017).
[Crossref]
H. X. Liang, R. Luo, Y. He, H. W. Jiang, and Q. Lin, “High-quality lithium niobate photonic crystal nanocavities,” Optica 4(10), 1251–1258 (2017).
[Crossref]
B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Loncar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” Optica 6(3), 380–384 (2019).
[Crossref]
Q. Chen and L. Jin, “Polarization management in plasmonic waveguide devices,” in Frontiers in Optics (Optical Society of America, 2014), p. FTh4E. 6.
M. Zhang, C. Wang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Ultra-High Bandwidth Integrated Lithium Niobate Modulators with Record-Low V-pi,” 2018 Optical Fiber Communications Conference and Exposition (Ofc) (2018).
M. J. Weber, Handbook of optical materials (CRC, 2018).
J. Schollhammer, M. A. Baghban, and K. Gallo, “Birefringence-Free Lithium Niobate Waveguides,” 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (Cleo/Europe-Eqec) (2017).