Abstract

Multispectral and 3-D imaging are useful for a wide variety of applications, adding valuable spectral and depth information for image analysis. Single-photon avalanche diode (SPAD) based imaging systems provide photon time-of-arrival information, and can be used for imaging with time-correlated single photon counting techniques. Here we demonstrate an LED based synchronised illumination system, where temporally structured light can be used to relate time-of-arrival to specific wavelengths, thus recovering reflectance information. Cross-correlation of the received multi-peak histogram with a reference measurement yields a time delay, allowing depth information to be determined with cm-scale resolution despite the long sequence of relatively wide (∼10 ns) pulses. Using commercial LEDs and a SPAD imaging array, multispectral 3-D imaging is demonstrated across 9 visible wavelength bands.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR

Ximing Ren, Yoann Altmann, Rachael Tobin, Aongus Mccarthy, Stephen Mclaughlin, and Gerald S. Buller
Opt. Express 26(23) 30146-30161 (2018)

Three-dimensional imaging of stationary and moving targets in turbid underwater environments using a single-photon detector array

Aurora Maccarone, Francesco Mattioli Della Rocca, Aongus McCarthy, Robert Henderson, and Gerald S. Buller
Opt. Express 27(20) 28437-28456 (2019)

Enhanced single-photon time-of-flight 3D ranging

Rudi Lussana, Federica Villa, Alberto Dalla Mora, Davide Contini, Alberto Tosi, and Franco Zappa
Opt. Express 23(19) 24962-24973 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
    [Crossref]
  2. A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
    [Crossref]
  3. Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
    [Crossref]
  4. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
    [Crossref]
  5. J. Qin, K. Chao, M. S. Kim, R. Lu, and T. F. Burks, “Hyperspectral and multispectral imaging for evaluating food safety and quality,” J. Food Eng. 118(2), 157–171 (2013).
    [Crossref]
  6. D. H. Foster and K. Amano, “Hyperspectral imaging in color vision research: tutorial,” J. Opt. Soc. Am. A 36(4), 606 (2019).
    [Crossref]
  7. H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys. A 106(2), 309–323 (2012).
    [Crossref]
  8. M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active Spectral Imaging,” Lincoln Laboratory Journal 14, 131–144 (2003).
  9. M. Parmar, S. Lansel, and J. Farrell, “An LED-based lighting system for acquiring multispectral scenes,” Proc. SPIE 8299, 82990P (2012).
    [Crossref]
  10. H. N. Li, J. Feng, W. P. Yang, L. Wang, H. B. Xu, P. F. Cao, and J. J. Duan, “Multi-spectral imaging using LED illuminations,” 5th International Congress on Image and Signal Processing, CISP 20128299, 538–542 (2012).
  11. S. Kim, D. Cho, J. Kim, M. Kim, S. Youn, J. E. Jang, M. Je, D. H. Lee, B. Lee, D. L. Farkas, and J. Y. Hwang, “Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis,” Biomed. Opt. Express 7(12), 5294 (2016).
    [Crossref]
  12. J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128 (2011).
    [Crossref]
  13. A. Mansouri, A. Lathuilièere, F. S. Marzani, Y. Voisin, and P. Gouton, “Toward a 3D multispectral scanner: An application to multimedia,” IEEE Multimedia 14(1), 40–47 (2007).
    [Crossref]
  14. V. Paquit, K. Tobin, J. Price, and F. Meriaudeau, “3D and multispectral imaging for subcutaneous veins detection,” Opt. Express 17(14), 11360–11365 (2009).
    [Crossref]
  15. S. Heist, C. Zhang, K. Reichwald, P. Kühmstedt, G. Notni, and A. Tünnermann, “5D hyperspectral imaging: fast and accurate measurement of surface shape and spectral characteristics using structured light,” Opt. Express 26(18), 23366–23379 (2018).
    [Crossref]
  16. G. Nam and M. H. Kim, “Multispectral photometric stereo for acquiring high-fidelity surface normals,” IEEE Comput. Graph. Appl. 34(6), 57–68 (2014).
    [Crossref]
  17. R. Anderson, B. Stenger, and R. Cipolla, “Color photometric stereo for multicolored surfaces,” Proceedings of the IEEE International Conference on Computer Vision8299, 2182–2189 (2011).
  18. G. Fyffe, X. Yu, and P. Debevec, “Single-shot photometric stereo by spectral multiplexing,” 2011 IEEE International Conference on Computational Photography, ICCP 2011 8299, 1–6 (2011).
  19. A. M. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25(10), 11919 (2017).
    [Crossref]
  20. D. D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 - 32 0.13μm CMOS low dark-count single-photon avalanche diode array,” Opt. Express 18(10), 10257 (2010).
    [Crossref]
  21. D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
    [Crossref]
  22. T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20(7), 7119 (2012).
    [Crossref]
  23. X. Ren, Y. Altmann, R. Tobin, A. Mccarthy, S. Mclaughlin, and G. S. Buller, “Wavelength-time coding for multispectral 3D imaging using single-photon LiDAR,” Opt. Express 26(23), 30146 (2018).
    [Crossref]
  24. E. Charbon, “Single-Photon imaging in complementary metal oxide semiconductor processes,” Phil. Trans. R. Soc. A 372(2012), 20130100–31 (2014).
    [Crossref]
  25. R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 x 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
    [Crossref]
  26. H. Lee, Introduction to color imaging science (Cambridge University Press, Cambridge, 2005).
  27. A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 - 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–12 (2019).
    [Crossref]
  28. A. T. Erdogan, R. Walker, N. Finlayson, N. Krstaji, G. O. S. Williams, and R. K. Henderson, “A 16.5 Giga Events/s 1024 - 8 SPAD Line Sensor with per-pixel Zoomable 50ps-6.4ns/bin Histogramming TDC,” Symposium on VLSI Circuits8299, C292–C293 (2017).
  29. J. J. D. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses,” IEEE Photonics Technol. Lett. 21(12), 811–813 (2009).
    [Crossref]
  30. S. Pellegrini, B. Rae, A. Pingault, D. Golanski, S. Jouan, C. Lapeyre, and B. Mamdy, “Industrialised SPAD in 40 nm Technology,” IEEE International Electron Devices Meeting (IEDM), 16.5.1–16.5.4 (2017).

2019 (3)

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 x 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 - 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–12 (2019).
[Crossref]

D. H. Foster and K. Amano, “Hyperspectral imaging in color vision research: tutorial,” J. Opt. Soc. Am. A 36(4), 606 (2019).
[Crossref]

2018 (2)

2017 (1)

2016 (1)

2014 (3)

G. Nam and M. H. Kim, “Multispectral photometric stereo for acquiring high-fidelity surface normals,” IEEE Comput. Graph. Appl. 34(6), 57–68 (2014).
[Crossref]

E. Charbon, “Single-Photon imaging in complementary metal oxide semiconductor processes,” Phil. Trans. R. Soc. A 372(2012), 20130100–31 (2014).
[Crossref]

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref]

2013 (3)

J. Qin, K. Chao, M. S. Kim, R. Lu, and T. F. Burks, “Hyperspectral and multispectral imaging for evaluating food safety and quality,” J. Food Eng. 118(2), 157–171 (2013).
[Crossref]

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref]

2012 (3)

M. Parmar, S. Lansel, and J. Farrell, “An LED-based lighting system for acquiring multispectral scenes,” Proc. SPIE 8299, 82990P (2012).
[Crossref]

H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys. A 106(2), 309–323 (2012).
[Crossref]

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20(7), 7119 (2012).
[Crossref]

2011 (2)

J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128 (2011).
[Crossref]

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
[Crossref]

2010 (1)

2009 (2)

J. J. D. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses,” IEEE Photonics Technol. Lett. 21(12), 811–813 (2009).
[Crossref]

V. Paquit, K. Tobin, J. Price, and F. Meriaudeau, “3D and multispectral imaging for subcutaneous veins detection,” Opt. Express 17(14), 11360–11365 (2009).
[Crossref]

2007 (1)

A. Mansouri, A. Lathuilièere, F. S. Marzani, Y. Voisin, and P. Gouton, “Toward a 3D multispectral scanner: An application to multimedia,” IEEE Multimedia 14(1), 40–47 (2007).
[Crossref]

2003 (1)

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active Spectral Imaging,” Lincoln Laboratory Journal 14, 131–144 (2003).

1985 (1)

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
[Crossref]

Altmann, Y.

Amano, K.

Anderson, R.

R. Anderson, B. Stenger, and R. Cipolla, “Color photometric stereo for multicolored surfaces,” Proceedings of the IEEE International Conference on Computer Vision8299, 2182–2189 (2011).

Ankri, R.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 - 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–12 (2019).
[Crossref]

Antolovic, I. M.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 - 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–12 (2019).
[Crossref]

Arlt, J.

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
[Crossref]

D. D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 - 32 0.13μm CMOS low dark-count single-photon avalanche diode array,” Opt. Express 18(10), 10257 (2010).
[Crossref]

Birch, D. J. S.

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 x 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

Bruschini, C.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 - 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–12 (2019).
[Crossref]

Buller, G. S.

Burks, T. F.

J. Qin, K. Chao, M. S. Kim, R. Lu, and T. F. Burks, “Hyperspectral and multispectral imaging for evaluating food safety and quality,” J. Food Eng. 118(2), 157–171 (2013).
[Crossref]

Buts, A.

Cao, P. F.

H. N. Li, J. Feng, W. P. Yang, L. Wang, H. B. Xu, P. F. Cao, and J. J. Duan, “Multi-spectral imaging using LED illuminations,” 5th International Congress on Image and Signal Processing, CISP 20128299, 538–542 (2012).

Chao, K.

J. Qin, K. Chao, M. S. Kim, R. Lu, and T. F. Burks, “Hyperspectral and multispectral imaging for evaluating food safety and quality,” J. Food Eng. 118(2), 157–171 (2013).
[Crossref]

Charbon, E.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 - 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–12 (2019).
[Crossref]

E. Charbon, “Single-Photon imaging in complementary metal oxide semiconductor processes,” Phil. Trans. R. Soc. A 372(2012), 20130100–31 (2014).
[Crossref]

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
[Crossref]

D. D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 - 32 0.13μm CMOS low dark-count single-photon avalanche diode array,” Opt. Express 18(10), 10257 (2010).
[Crossref]

Chen, H.

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 x 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

Chen, Y.

Cho, D.

Cipolla, R.

R. Anderson, B. Stenger, and R. Cipolla, “Color photometric stereo for multicolored surfaces,” Proceedings of the IEEE International Conference on Computer Vision8299, 2182–2189 (2011).

Dawson, M. D.

J. J. D. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses,” IEEE Photonics Technol. Lett. 21(12), 811–813 (2009).
[Crossref]

Day-Uei Li, D.

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 x 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

Debevec, P.

G. Fyffe, X. Yu, and P. Debevec, “Single-shot photometric stereo by spectral multiplexing,” 2011 IEEE International Conference on Computational Photography, ICCP 2011 8299, 1–6 (2011).

Duan, J. J.

H. N. Li, J. Feng, W. P. Yang, L. Wang, H. B. Xu, P. F. Cao, and J. J. Duan, “Multi-spectral imaging using LED illuminations,” 5th International Congress on Image and Signal Processing, CISP 20128299, 538–542 (2012).

Erdogan, A. T.

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstaji, G. O. S. Williams, and R. K. Henderson, “A 16.5 Giga Events/s 1024 - 8 SPAD Line Sensor with per-pixel Zoomable 50ps-6.4ns/bin Histogramming TDC,” Symposium on VLSI Circuits8299, C292–C293 (2017).

Farkas, D. L.

Farrell, J.

M. Parmar, S. Lansel, and J. Farrell, “An LED-based lighting system for acquiring multispectral scenes,” Proc. SPIE 8299, 82990P (2012).
[Crossref]

Fei, B.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref]

Feng, J.

H. N. Li, J. Feng, W. P. Yang, L. Wang, H. B. Xu, P. F. Cao, and J. J. Duan, “Multi-spectral imaging using LED illuminations,” 5th International Congress on Image and Signal Processing, CISP 20128299, 538–542 (2012).

Finlayson, N.

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstaji, G. O. S. Williams, and R. K. Henderson, “A 16.5 Giga Events/s 1024 - 8 SPAD Line Sensor with per-pixel Zoomable 50ps-6.4ns/bin Histogramming TDC,” Symposium on VLSI Circuits8299, C292–C293 (2017).

Foster, D. H.

Fyffe, G.

G. Fyffe, X. Yu, and P. Debevec, “Single-shot photometric stereo by spectral multiplexing,” 2011 IEEE International Conference on Computational Photography, ICCP 2011 8299, 1–6 (2011).

Geng, J.

J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128 (2011).
[Crossref]

Goetz, A. F.

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
[Crossref]

Golanski, D.

S. Pellegrini, B. Rae, A. Pingault, D. Golanski, S. Jouan, C. Lapeyre, and B. Mamdy, “Industrialised SPAD in 40 nm Technology,” IEEE International Electron Devices Meeting (IEDM), 16.5.1–16.5.4 (2017).

Gong, Z.

J. J. D. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses,” IEEE Photonics Technol. Lett. 21(12), 811–813 (2009).
[Crossref]

Gouton, P.

A. Mansouri, A. Lathuilièere, F. S. Marzani, Y. Voisin, and P. Gouton, “Toward a 3D multispectral scanner: An application to multimedia,” IEEE Multimedia 14(1), 40–47 (2007).
[Crossref]

Gu, E.

J. J. D. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses,” IEEE Photonics Technol. Lett. 21(12), 811–813 (2009).
[Crossref]

Guilhabert, B.

J. J. D. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses,” IEEE Photonics Technol. Lett. 21(12), 811–813 (2009).
[Crossref]

Guo, F.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref]

Hagen, N.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Hakala, T.

Halimi, A.

He, X.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref]

Heist, S.

Henderson, R.

Henderson, R. K.

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 x 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
[Crossref]

J. J. D. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses,” IEEE Photonics Technol. Lett. 21(12), 811–813 (2009).
[Crossref]

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstaji, G. O. S. Williams, and R. K. Henderson, “A 16.5 Giga Events/s 1024 - 8 SPAD Line Sensor with per-pixel Zoomable 50ps-6.4ns/bin Histogramming TDC,” Symposium on VLSI Circuits8299, C292–C293 (2017).

Hirsch, R.

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 x 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

Hungerford, G.

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 x 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

Hwang, J. Y.

Jang, J. E.

Je, M.

Johnston, N.

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 x 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

Joseph, R. M.

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active Spectral Imaging,” Lincoln Laboratory Journal 14, 131–144 (2003).

Jouan, S.

S. Pellegrini, B. Rae, A. Pingault, D. Golanski, S. Jouan, C. Lapeyre, and B. Mamdy, “Industrialised SPAD in 40 nm Technology,” IEEE International Electron Devices Meeting (IEDM), 16.5.1–16.5.4 (2017).

Kaasalainen, S.

Kerekes, J. P.

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active Spectral Imaging,” Lincoln Laboratory Journal 14, 131–144 (2003).

Kim, J.

Kim, M.

Kim, M. H.

G. Nam and M. H. Kim, “Multispectral photometric stereo for acquiring high-fidelity surface normals,” IEEE Comput. Graph. Appl. 34(6), 57–68 (2014).
[Crossref]

Kim, M. S.

J. Qin, K. Chao, M. S. Kim, R. Lu, and T. F. Burks, “Hyperspectral and multispectral imaging for evaluating food safety and quality,” J. Food Eng. 118(2), 157–171 (2013).
[Crossref]

Kim, S.

Krstaji, N.

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstaji, G. O. S. Williams, and R. K. Henderson, “A 16.5 Giga Events/s 1024 - 8 SPAD Line Sensor with per-pixel Zoomable 50ps-6.4ns/bin Histogramming TDC,” Symposium on VLSI Circuits8299, C292–C293 (2017).

Kudenov, M. W.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Kühmstedt, P.

Kuo, Y.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 - 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–12 (2019).
[Crossref]

Lamb, R. A.

Lansel, S.

M. Parmar, S. Lansel, and J. Farrell, “An LED-based lighting system for acquiring multispectral scenes,” Proc. SPIE 8299, 82990P (2012).
[Crossref]

Lapeyre, C.

S. Pellegrini, B. Rae, A. Pingault, D. Golanski, S. Jouan, C. Lapeyre, and B. Mamdy, “Industrialised SPAD in 40 nm Technology,” IEEE International Electron Devices Meeting (IEDM), 16.5.1–16.5.4 (2017).

Lathuilièere, A.

A. Mansouri, A. Lathuilièere, F. S. Marzani, Y. Voisin, and P. Gouton, “Toward a 3D multispectral scanner: An application to multimedia,” IEEE Multimedia 14(1), 40–47 (2007).
[Crossref]

Lee, B.

Lee, D. H.

Lee, H.

H. Lee, Introduction to color imaging science (Cambridge University Press, Cambridge, 2005).

Li, D. D.-U.

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
[Crossref]

D. D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 - 32 0.13μm CMOS low dark-count single-photon avalanche diode array,” Opt. Express 18(10), 10257 (2010).
[Crossref]

Li, H. N.

H. N. Li, J. Feng, W. P. Yang, L. Wang, H. B. Xu, P. F. Cao, and J. J. Duan, “Multi-spectral imaging using LED illuminations,” 5th International Congress on Image and Signal Processing, CISP 20128299, 538–542 (2012).

Li, Q.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref]

Liang, H.

H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys. A 106(2), 309–323 (2012).
[Crossref]

Libby, J. C.

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active Spectral Imaging,” Lincoln Laboratory Journal 14, 131–144 (2003).

Liu, H.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref]

Lu, G.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref]

Lu, R.

J. Qin, K. Chao, M. S. Kim, R. Lu, and T. F. Burks, “Hyperspectral and multispectral imaging for evaluating food safety and quality,” J. Food Eng. 118(2), 157–171 (2013).
[Crossref]

Mamdy, B.

S. Pellegrini, B. Rae, A. Pingault, D. Golanski, S. Jouan, C. Lapeyre, and B. Mamdy, “Industrialised SPAD in 40 nm Technology,” IEEE International Electron Devices Meeting (IEDM), 16.5.1–16.5.4 (2017).

Mansouri, A.

A. Mansouri, A. Lathuilièere, F. S. Marzani, Y. Voisin, and P. Gouton, “Toward a 3D multispectral scanner: An application to multimedia,” IEEE Multimedia 14(1), 40–47 (2007).
[Crossref]

Marzani, F. S.

A. Mansouri, A. Lathuilièere, F. S. Marzani, Y. Voisin, and P. Gouton, “Toward a 3D multispectral scanner: An application to multimedia,” IEEE Multimedia 14(1), 40–47 (2007).
[Crossref]

Massoubre, D.

J. J. D. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses,” IEEE Photonics Technol. Lett. 21(12), 811–813 (2009).
[Crossref]

Mattioli Della Rocca, F.

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 x 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

Mccarthy, A.

McKendry, J. J. D.

J. J. D. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses,” IEEE Photonics Technol. Lett. 21(12), 811–813 (2009).
[Crossref]

Mclaughlin, S.

McLoskey, D.

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 x 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

Meriaudeau, F.

Michalet, X.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 - 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–12 (2019).
[Crossref]

Muir, K. R.

J. J. D. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses,” IEEE Photonics Technol. Lett. 21(12), 811–813 (2009).
[Crossref]

Nam, G.

G. Nam and M. H. Kim, “Multispectral photometric stereo for acquiring high-fidelity surface normals,” IEEE Comput. Graph. Appl. 34(6), 57–68 (2014).
[Crossref]

Nischan, M. L.

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active Spectral Imaging,” Lincoln Laboratory Journal 14, 131–144 (2003).

Notni, G.

Paquit, V.

Parmar, M.

M. Parmar, S. Lansel, and J. Farrell, “An LED-based lighting system for acquiring multispectral scenes,” Proc. SPIE 8299, 82990P (2012).
[Crossref]

Pawlikowska, A. M.

Pellegrini, S.

S. Pellegrini, B. Rae, A. Pingault, D. Golanski, S. Jouan, C. Lapeyre, and B. Mamdy, “Industrialised SPAD in 40 nm Technology,” IEEE International Electron Devices Meeting (IEDM), 16.5.1–16.5.4 (2017).

Pingault, A.

S. Pellegrini, B. Rae, A. Pingault, D. Golanski, S. Jouan, C. Lapeyre, and B. Mamdy, “Industrialised SPAD in 40 nm Technology,” IEEE International Electron Devices Meeting (IEDM), 16.5.1–16.5.4 (2017).

Price, J.

Qin, J.

J. Qin, K. Chao, M. S. Kim, R. Lu, and T. F. Burks, “Hyperspectral and multispectral imaging for evaluating food safety and quality,” J. Food Eng. 118(2), 157–171 (2013).
[Crossref]

Rae, B.

S. Pellegrini, B. Rae, A. Pingault, D. Golanski, S. Jouan, C. Lapeyre, and B. Mamdy, “Industrialised SPAD in 40 nm Technology,” IEEE International Electron Devices Meeting (IEDM), 16.5.1–16.5.4 (2017).

Rae, B. R.

J. J. D. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses,” IEEE Photonics Technol. Lett. 21(12), 811–813 (2009).
[Crossref]

Reichwald, K.

Ren, X.

Renshaw, D.

J. J. D. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses,” IEEE Photonics Technol. Lett. 21(12), 811–813 (2009).
[Crossref]

Richardson, J.

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
[Crossref]

D. D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 - 32 0.13μm CMOS low dark-count single-photon avalanche diode array,” Opt. Express 18(10), 10257 (2010).
[Crossref]

Rock, B. N.

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
[Crossref]

Solomon, J. E.

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
[Crossref]

Stenger, B.

R. Anderson, B. Stenger, and R. Cipolla, “Color photometric stereo for multicolored surfaces,” Proceedings of the IEEE International Conference on Computer Vision8299, 2182–2189 (2011).

Stoppa, D.

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
[Crossref]

D. D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 - 32 0.13μm CMOS low dark-count single-photon avalanche diode array,” Opt. Express 18(10), 10257 (2010).
[Crossref]

Suomalainen, J.

Tobin, K.

Tobin, R.

Tünnermann, A.

Tyndall, D.

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
[Crossref]

Ulku, A. C.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 - 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–12 (2019).
[Crossref]

Vane, G.

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
[Crossref]

Voisin, Y.

A. Mansouri, A. Lathuilièere, F. S. Marzani, Y. Voisin, and P. Gouton, “Toward a 3D multispectral scanner: An application to multimedia,” IEEE Multimedia 14(1), 40–47 (2007).
[Crossref]

Walker, R.

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
[Crossref]

D. D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 - 32 0.13μm CMOS low dark-count single-photon avalanche diode array,” Opt. Express 18(10), 10257 (2010).
[Crossref]

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstaji, G. O. S. Williams, and R. K. Henderson, “A 16.5 Giga Events/s 1024 - 8 SPAD Line Sensor with per-pixel Zoomable 50ps-6.4ns/bin Histogramming TDC,” Symposium on VLSI Circuits8299, C292–C293 (2017).

Wang, L.

H. N. Li, J. Feng, W. P. Yang, L. Wang, H. B. Xu, P. F. Cao, and J. J. Duan, “Multi-spectral imaging using LED illuminations,” 5th International Congress on Image and Signal Processing, CISP 20128299, 538–542 (2012).

Wang, Y.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref]

Weiss, S.

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 - 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–12 (2019).
[Crossref]

Williams, G. O. S.

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstaji, G. O. S. Williams, and R. K. Henderson, “A 16.5 Giga Events/s 1024 - 8 SPAD Line Sensor with per-pixel Zoomable 50ps-6.4ns/bin Histogramming TDC,” Symposium on VLSI Circuits8299, C292–C293 (2017).

Xu, D.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref]

Xu, H. B.

H. N. Li, J. Feng, W. P. Yang, L. Wang, H. B. Xu, P. F. Cao, and J. J. Duan, “Multi-spectral imaging using LED illuminations,” 5th International Congress on Image and Signal Processing, CISP 20128299, 538–542 (2012).

Yang, W. P.

H. N. Li, J. Feng, W. P. Yang, L. Wang, H. B. Xu, P. F. Cao, and J. J. Duan, “Multi-spectral imaging using LED illuminations,” 5th International Congress on Image and Signal Processing, CISP 20128299, 538–542 (2012).

Yip, P.

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 x 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

Youn, S.

Yu, X.

G. Fyffe, X. Yu, and P. Debevec, “Single-shot photometric stereo by spectral multiplexing,” 2011 IEEE International Conference on Computational Photography, ICCP 2011 8299, 1–6 (2011).

Zhang, C.

Adv. Opt. Photonics (1)

J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photonics 3(2), 128 (2011).
[Crossref]

Appl. Phys. A (1)

H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys. A 106(2), 309–323 (2012).
[Crossref]

Biomed. Opt. Express (1)

IEEE Comput. Graph. Appl. (1)

G. Nam and M. H. Kim, “Multispectral photometric stereo for acquiring high-fidelity surface normals,” IEEE Comput. Graph. Appl. 34(6), 57–68 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. C. Ulku, C. Bruschini, I. M. Antolovic, Y. Kuo, R. Ankri, S. Weiss, X. Michalet, and E. Charbon, “A 512 - 512 SPAD image sensor with integrated gating for widefield FLIM,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–12 (2019).
[Crossref]

IEEE J. Solid-State Circuits (1)

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 x 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

IEEE Multimedia (1)

A. Mansouri, A. Lathuilièere, F. S. Marzani, Y. Voisin, and P. Gouton, “Toward a 3D multispectral scanner: An application to multimedia,” IEEE Multimedia 14(1), 40–47 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. J. D. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses,” IEEE Photonics Technol. Lett. 21(12), 811–813 (2009).
[Crossref]

J. Biomed. Opt. (3)

D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, and R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011).
[Crossref]

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref]

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref]

J. Food Eng. (1)

J. Qin, K. Chao, M. S. Kim, R. Lu, and T. F. Burks, “Hyperspectral and multispectral imaging for evaluating food safety and quality,” J. Food Eng. 118(2), 157–171 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

Lincoln Laboratory Journal (1)

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active Spectral Imaging,” Lincoln Laboratory Journal 14, 131–144 (2003).

Opt. Eng. (1)

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Opt. Express (6)

Phil. Trans. R. Soc. A (1)

E. Charbon, “Single-Photon imaging in complementary metal oxide semiconductor processes,” Phil. Trans. R. Soc. A 372(2012), 20130100–31 (2014).
[Crossref]

Proc. SPIE (1)

M. Parmar, S. Lansel, and J. Farrell, “An LED-based lighting system for acquiring multispectral scenes,” Proc. SPIE 8299, 82990P (2012).
[Crossref]

Science (1)

A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
[Crossref]

Other (6)

R. Anderson, B. Stenger, and R. Cipolla, “Color photometric stereo for multicolored surfaces,” Proceedings of the IEEE International Conference on Computer Vision8299, 2182–2189 (2011).

G. Fyffe, X. Yu, and P. Debevec, “Single-shot photometric stereo by spectral multiplexing,” 2011 IEEE International Conference on Computational Photography, ICCP 2011 8299, 1–6 (2011).

H. N. Li, J. Feng, W. P. Yang, L. Wang, H. B. Xu, P. F. Cao, and J. J. Duan, “Multi-spectral imaging using LED illuminations,” 5th International Congress on Image and Signal Processing, CISP 20128299, 538–542 (2012).

H. Lee, Introduction to color imaging science (Cambridge University Press, Cambridge, 2005).

S. Pellegrini, B. Rae, A. Pingault, D. Golanski, S. Jouan, C. Lapeyre, and B. Mamdy, “Industrialised SPAD in 40 nm Technology,” IEEE International Electron Devices Meeting (IEDM), 16.5.1–16.5.4 (2017).

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstaji, G. O. S. Williams, and R. K. Henderson, “A 16.5 Giga Events/s 1024 - 8 SPAD Line Sensor with per-pixel Zoomable 50ps-6.4ns/bin Histogramming TDC,” Symposium on VLSI Circuits8299, C292–C293 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. (a) Top-down schematic of the experimental setup. (b) Image of the target scene taken with a conventional camera. (c) Photograph of the LED board and camera system. The LEDs are distributed in a 1 cm diameter ring.
Fig. 2.
Fig. 2. (a) Example received reference and image histograms for a single pixel of the SPAD camera. The image histogram has been vertically offset for clarity. (b) Cross correlation of the histograms in (a), with the middle peak centroid indicated. Note that the centroid value is determined with a higher precision than the bin width of the histogram. The time lag corresponds to a depth measurement.
Fig. 3.
Fig. 3. Example histogram with wavelength-assigned time bins indicated. Representative sums of counts within a time bin region are indicated above the histogram.
Fig. 4.
Fig. 4. Multispectral imaging of the scene in Fig. 1(b). (a) - (i) Relative reflectance images for each (respectively labelled) wavelength channel. (j) RGB approximation constructed from the 623, 525 and 445 nm channels with hot pixels replaced by interpolation. (k) Reflectance spectra for selected areas in the image, as identified by the labels inset.
Fig. 5.
Fig. 5. Coarse spectral data for various example areas within the image. (a) Red brick, (b) green brick, (c) blue brick, (d) purple brick, (e) horse, (f) saddle. A measurement with a spectrometer is included for comparison.
Fig. 6.
Fig. 6. (a) Depth map of the target scene. (b) Horizontal slices of the depth map. The standard deviation across row 139 is 3.41 cm
Fig. 7.
Fig. 7. Depth map performance at experimental distances of (a) 0.5, (b) 1.0 and (c) 1.5 m. Horizontal profiles through the depth maps are shown in (d), along with ground truth measurements.
Fig. 8.
Fig. 8. Variation in image quality with (a) 10, (b) 100, (c) 1000, and (d) 10000 TCSPC frames for the 445 nm channel.
Fig. 9.
Fig. 9. Potential precision of the depth ranging when not limited by timing bin width.
Fig. 10.
Fig. 10. Emission spectra of the LEDs used. Normalised (upper) and Received power relative to the maximum output of the violet LED (lower).
Fig. 11.
Fig. 11. Optical pulses from the LED array, measured with an APD. The response has been normalised for clarity, pulse intensity varies from one LED to another.
Fig. 12.
Fig. 12. Correction of the received counts from a known reflectance target.

Tables (1)

Tables Icon

Table 1. Summary of LED characteristics. Peak wavelength ($\lambda$), average power ($P$), full width at half maximum (FWHM) pulse width ($t$) and delay time ($d$).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R λ = α λ b = l λ r λ h b .
R λ = α λ b = l λ d r λ d h b .
α λ = R λ , r e f R λ , m e a n .