Abstract

We present a 1024-element near-infrared imaging array of superconducting nanowire single photon detectors (SNSPDs) using a 32×32 row-column multiplexing architecture. The array has an active area of 0.96 × 0.96 mm, making it the largest SNSPD array reported to date in terms of both active area and pixel count. Using a 64-channel time-tagging readout, we have characterized the array’s yield, efficiency, and timing resolution. Large arrays of SNSPDs are desirable for applications such as imaging, spectroscopy, or particle detection.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Orthogonal sequencing multiplexer for superconducting nanowire single-photon detectors with RSFQ electronics readout circuit

Matthias Hofherr, Olaf Wetzstein, Sonja Engert, Thomas Ortlepp, Benjamin Berg, Konstantin Ilin, Dagmar Henrich, Ronny Stolz, Hannes Toepfer, Hans-Georg Meyer, and Michael Siegel
Opt. Express 20(27) 28683-28697 (2012)

High-time-resolved 64-channel single-flux quantum-based address encoder integrated with a multi-pixel superconducting nanowire single-photon detector

Shigeyuki Miyajima, Masahiro Yabuno, Shigehito Miki, Taro Yamashita, and Hirotaka Terai
Opt. Express 26(22) 29045-29054 (2018)

Amplitude-multiplexed readout of single photon detectors based on superconducting nanowires

Alessandro Gaggero, Francesco Martini, Francesco Mattioli, Fabio Chiarello, Robert Cernansky, Alberto Politi, and Roberto Leoni
Optica 6(6) 823-828 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
    [Crossref]
  2. M. Shaw, F. Marsili, A. Beyer, R. Briggs, J. Allmaras, and W. H. Farr, “Superconducting nanowire single photon detectors for deep space optical communication,” Proc. SPIE 10096, 100960J (2017).
    [Crossref]
  3. A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.
  4. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007).
    [Crossref]
  5. J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
    [Crossref]
  6. C. Clausen, I. Usmani, F. Bussiéres, N. Sangouard, M. Afzelius, H. De Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
    [Crossref]
  7. M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express 18(2), 1430 (2010).
    [Crossref]
  8. F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
    [Crossref]
  9. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904 (2013).
    [Crossref]
  10. Y. Hochberg, I. Charaev, S.-W. Nam, V. Verma, M. Colangelo, and K. K. Berggren, “Detecting sub-GeV dark matter with superconducting nanowires,” Phys. Rev. Lett. 123(15), 151802 (2019).
    [Crossref]
  11. L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. M. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26(12), 14859 (2018).
    [Crossref]
  12. The OST mission concept study team, “The Origins Space Telescope (OST) mission concept study interim report,” https://arxiv.org/abs/1809.09702 (2018).
  13. S. Miki, T. Yamashita, Z. Wang, and H. Terai, “A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection,” Opt. Express 22(7), 7811 (2014).
    [Crossref]
  14. A. N. McCaughan, “Readout architectures for superconducting nanowire single photon detectors,” Supercond. Sci. Technol. 31(4), 040501 (2018).
    [Crossref]
  15. M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
    [Crossref]
  16. S. Miyajima, M. Yabuno, S. Miki, T. Yamashita, and H. Terai, “High-time-resolved 64-channel single-flux quantum-based address encoder integrated with a multi-pixel superconducting nanowire single-photon detector,” Opt. Express 26(22), 29045 (2018).
    [Crossref]
  17. Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
    [Crossref]
  18. A. Gaggero, F. Martini, F. Mattioli, F. Chiarello, R. Cernansky, A. Politi, and R. Leoni, “Amplitude-multiplexed readout of single photon detectors based on superconducting nanowires,” Optica 6(6), 823 (2019).
    [Crossref]
  19. S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111(3), 032603 (2017).
    [Crossref]
  20. A. K. Sinclair, E. Schroeder, D. Zhu, M. Colangelo, J. Glasby, P. D. Mauskopf, H. Mani, and K. K. Berggren, “Demonstration of microwave multiplexed readout of DC-biased superconducting nanowire detectors,” IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019).
    [Crossref]
  21. D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13(7), 596–601 (2018).
    [Crossref]
  22. Q. Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H. Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
    [Crossref]
  23. V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from wsi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
    [Crossref]
  24. See http://www.dotfast-consulting.at/ and https://uqdevices.com/ . The use of trade names is intended to allow the measurements to be appropriately interpreted and does not imply endorsement by the US government, nor does it imply these are necessarily the best available for the purpose used here.
  25. T. J. Paulus, “Timing electronics and fast timing methods with scintillation detectors,” IEEE Trans. Nucl. Sci. 32(3), 1242–1249 (1985).
    [Crossref]
  26. M. Itzler, G. Salzano, M. Entwistle, X. Jiang, M. Owens, B. Piccione, S. Wilton, K. Slomkowski, S. C. Roszko, and E. Wei, “Asynchronous Geiger-mode APD cameras with free-running InGaAsP pixels,” Proc. SPIE 10212, 102120K (2017).
    [Crossref]
  27. B. F. Aull, E. K. Duerr, J. P. Frechette, K. A. McIntosh, D. R. Schuette, and R. D. Younger, “Large-format Geiger-mode avalanche photodiode arrays and readout circuits,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–10 (2018).
    [Crossref]
  28. B. Buck, G. D. Allen, E. K. Duerr, K. A. McIntosh, S. Moynihan, V. N. Shukla, and J. D. Wang, “Photon counting camera for the NASA deep space optical communication demonstration on the PSYCHE mission,” Proc. SPIE 10978, 1097809 (2019).
    [Crossref]

2019 (4)

Y. Hochberg, I. Charaev, S.-W. Nam, V. Verma, M. Colangelo, and K. K. Berggren, “Detecting sub-GeV dark matter with superconducting nanowires,” Phys. Rev. Lett. 123(15), 151802 (2019).
[Crossref]

A. K. Sinclair, E. Schroeder, D. Zhu, M. Colangelo, J. Glasby, P. D. Mauskopf, H. Mani, and K. K. Berggren, “Demonstration of microwave multiplexed readout of DC-biased superconducting nanowire detectors,” IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019).
[Crossref]

B. Buck, G. D. Allen, E. K. Duerr, K. A. McIntosh, S. Moynihan, V. N. Shukla, and J. D. Wang, “Photon counting camera for the NASA deep space optical communication demonstration on the PSYCHE mission,” Proc. SPIE 10978, 1097809 (2019).
[Crossref]

A. Gaggero, F. Martini, F. Mattioli, F. Chiarello, R. Cernansky, A. Politi, and R. Leoni, “Amplitude-multiplexed readout of single photon detectors based on superconducting nanowires,” Optica 6(6), 823 (2019).
[Crossref]

2018 (5)

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. M. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26(12), 14859 (2018).
[Crossref]

S. Miyajima, M. Yabuno, S. Miki, T. Yamashita, and H. Terai, “High-time-resolved 64-channel single-flux quantum-based address encoder integrated with a multi-pixel superconducting nanowire single-photon detector,” Opt. Express 26(22), 29045 (2018).
[Crossref]

B. F. Aull, E. K. Duerr, J. P. Frechette, K. A. McIntosh, D. R. Schuette, and R. D. Younger, “Large-format Geiger-mode avalanche photodiode arrays and readout circuits,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–10 (2018).
[Crossref]

A. N. McCaughan, “Readout architectures for superconducting nanowire single photon detectors,” Supercond. Sci. Technol. 31(4), 040501 (2018).
[Crossref]

D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13(7), 596–601 (2018).
[Crossref]

2017 (4)

Q. Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H. Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111(3), 032603 (2017).
[Crossref]

M. Shaw, F. Marsili, A. Beyer, R. Briggs, J. Allmaras, and W. H. Farr, “Superconducting nanowire single photon detectors for deep space optical communication,” Proc. SPIE 10096, 100960J (2017).
[Crossref]

M. Itzler, G. Salzano, M. Entwistle, X. Jiang, M. Owens, B. Piccione, S. Wilton, K. Slomkowski, S. C. Roszko, and E. Wei, “Asynchronous Geiger-mode APD cameras with free-running InGaAsP pixels,” Proc. SPIE 10212, 102120K (2017).
[Crossref]

2015 (1)

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

2014 (4)

V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from wsi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
[Crossref]

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

S. Miki, T. Yamashita, Z. Wang, and H. Terai, “A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection,” Opt. Express 22(7), 7811 (2014).
[Crossref]

2013 (2)

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904 (2013).
[Crossref]

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[Crossref]

2011 (1)

C. Clausen, I. Usmani, F. Bussiéres, N. Sangouard, M. Afzelius, H. De Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

2010 (1)

2008 (1)

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref]

2007 (1)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007).
[Crossref]

1985 (1)

T. J. Paulus, “Timing electronics and fast timing methods with scintillation detectors,” IEEE Trans. Nucl. Sci. 32(3), 1242–1249 (1985).
[Crossref]

Afzelius, M.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

C. Clausen, I. Usmani, F. Bussiéres, N. Sangouard, M. Afzelius, H. De Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

Alerstam, E.

A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.

Allen, G. D.

B. Buck, G. D. Allen, E. K. Duerr, K. A. McIntosh, S. Moynihan, V. N. Shukla, and J. D. Wang, “Photon counting camera for the NASA deep space optical communication demonstration on the PSYCHE mission,” Proc. SPIE 10978, 1097809 (2019).
[Crossref]

Allman, M. S.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Allmaras, J.

M. Shaw, F. Marsili, A. Beyer, R. Briggs, J. Allmaras, and W. H. Farr, “Superconducting nanowire single photon detectors for deep space optical communication,” Proc. SPIE 10096, 100960J (2017).
[Crossref]

Altepeter, J. B.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref]

Andrews, K.

A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.

Aull, B. F.

B. F. Aull, E. K. Duerr, J. P. Frechette, K. A. McIntosh, D. R. Schuette, and R. D. Younger, “Large-format Geiger-mode avalanche photodiode arrays and readout circuits,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–10 (2018).
[Crossref]

Baek, B.

Bellei, F.

Q. Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H. Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[Crossref]

Berggren, K. K.

Y. Hochberg, I. Charaev, S.-W. Nam, V. Verma, M. Colangelo, and K. K. Berggren, “Detecting sub-GeV dark matter with superconducting nanowires,” Phys. Rev. Lett. 123(15), 151802 (2019).
[Crossref]

A. K. Sinclair, E. Schroeder, D. Zhu, M. Colangelo, J. Glasby, P. D. Mauskopf, H. Mani, and K. K. Berggren, “Demonstration of microwave multiplexed readout of DC-biased superconducting nanowire detectors,” IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019).
[Crossref]

D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13(7), 596–601 (2018).
[Crossref]

Q. Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H. Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[Crossref]

M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express 18(2), 1430 (2010).
[Crossref]

Beyer, A.

M. Shaw, F. Marsili, A. Beyer, R. Briggs, J. Allmaras, and W. H. Farr, “Superconducting nanowire single photon detectors for deep space optical communication,” Proc. SPIE 10096, 100960J (2017).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Biswas, A.

A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.

Boes, F.

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111(3), 032603 (2017).
[Crossref]

Boroson, D. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Briggs, R.

M. Shaw, F. Marsili, A. Beyer, R. Briggs, J. Allmaras, and W. H. Farr, “Superconducting nanowire single photon detectors for deep space optical communication,” Proc. SPIE 10096, 100960J (2017).
[Crossref]

Buck, B.

B. Buck, G. D. Allen, E. K. Duerr, K. A. McIntosh, S. Moynihan, V. N. Shukla, and J. D. Wang, “Photon counting camera for the NASA deep space optical communication demonstration on the PSYCHE mission,” Proc. SPIE 10978, 1097809 (2019).
[Crossref]

Buller, G. S.

Burianek, D. A.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Bussiéres, F.

C. Clausen, I. Usmani, F. Bussiéres, N. Sangouard, M. Afzelius, H. De Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

Bussières, F.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Calandri, N.

Q. Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H. Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

Cernansky, R.

Charaev, I.

Y. Hochberg, I. Charaev, S.-W. Nam, V. Verma, M. Colangelo, and K. K. Berggren, “Detecting sub-GeV dark matter with superconducting nanowires,” Phys. Rev. Lett. 123(15), 151802 (2019).
[Crossref]

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111(3), 032603 (2017).
[Crossref]

Chen, J.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref]

Chen, L.

Chiarello, F.

Choi, H.

D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13(7), 596–601 (2018).
[Crossref]

Clausen, C.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

C. Clausen, I. Usmani, F. Bussiéres, N. Sangouard, M. Afzelius, H. De Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

Colangelo, M.

A. K. Sinclair, E. Schroeder, D. Zhu, M. Colangelo, J. Glasby, P. D. Mauskopf, H. Mani, and K. K. Berggren, “Demonstration of microwave multiplexed readout of DC-biased superconducting nanowire detectors,” IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019).
[Crossref]

Y. Hochberg, I. Charaev, S.-W. Nam, V. Verma, M. Colangelo, and K. K. Berggren, “Detecting sub-GeV dark matter with superconducting nanowires,” Phys. Rev. Lett. 123(15), 151802 (2019).
[Crossref]

Cornwell, D. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Dane, A.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[Crossref]

Dane, A. E.

D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13(7), 596–601 (2018).
[Crossref]

Q. Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H. Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

Dauler, E. A.

De Fazio, D.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[Crossref]

De Riedmatten, H.

C. Clausen, I. Usmani, F. Bussiéres, N. Sangouard, M. Afzelius, H. De Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

Doerner, S.

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111(3), 032603 (2017).
[Crossref]

Dorenbos, S. N.

Duerr, E. K.

B. Buck, G. D. Allen, E. K. Duerr, K. A. McIntosh, S. Moynihan, V. N. Shukla, and J. D. Wang, “Photon counting camera for the NASA deep space optical communication demonstration on the PSYCHE mission,” Proc. SPIE 10978, 1097809 (2019).
[Crossref]

B. F. Aull, E. K. Duerr, J. P. Frechette, K. A. McIntosh, D. R. Schuette, and R. D. Younger, “Large-format Geiger-mode avalanche photodiode arrays and readout circuits,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–10 (2018).
[Crossref]

Englund, D.

D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13(7), 596–601 (2018).
[Crossref]

Entwistle, M.

M. Itzler, G. Salzano, M. Entwistle, X. Jiang, M. Owens, B. Piccione, S. Wilton, K. Slomkowski, S. C. Roszko, and E. Wei, “Asynchronous Geiger-mode APD cameras with free-running InGaAsP pixels,” Proc. SPIE 10212, 102120K (2017).
[Crossref]

Farr, W. H.

M. Shaw, F. Marsili, A. Beyer, R. Briggs, J. Allmaras, and W. H. Farr, “Superconducting nanowire single photon detectors for deep space optical communication,” Proc. SPIE 10096, 100960J (2017).
[Crossref]

Ferrier, A.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Frechette, J. P.

B. F. Aull, E. K. Duerr, J. P. Frechette, K. A. McIntosh, D. R. Schuette, and R. D. Younger, “Large-format Geiger-mode avalanche photodiode arrays and readout circuits,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–10 (2018).
[Crossref]

Gaggero, A.

Gemmell, N. R.

Gerrits, T.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Gisin, N.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

C. Clausen, I. Usmani, F. Bussiéres, N. Sangouard, M. Afzelius, H. De Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

Glasby, J.

A. K. Sinclair, E. Schroeder, D. Zhu, M. Colangelo, J. Glasby, P. D. Mauskopf, H. Mani, and K. K. Berggren, “Demonstration of microwave multiplexed readout of DC-biased superconducting nanowire detectors,” IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019).
[Crossref]

Gokden, B.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref]

Goldner, P.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Hadfield, R. H.

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904 (2013).
[Crossref]

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007).
[Crossref]

Hamilton, S. A.

Herrmann, H.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Hochberg, Y.

Y. Hochberg, I. Charaev, S.-W. Nam, V. Verma, M. Colangelo, and K. K. Berggren, “Detecting sub-GeV dark matter with superconducting nanowires,” Phys. Rev. Lett. 123(15), 151802 (2019).
[Crossref]

Honjo, T.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007).
[Crossref]

Horansky, R.

V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from wsi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
[Crossref]

Horansky, R. D.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Itzler, M.

M. Itzler, G. Salzano, M. Entwistle, X. Jiang, M. Owens, B. Piccione, S. Wilton, K. Slomkowski, S. C. Roszko, and E. Wei, “Asynchronous Geiger-mode APD cameras with free-running InGaAsP pixels,” Proc. SPIE 10212, 102120K (2017).
[Crossref]

Ivry, Y.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[Crossref]

Jiang, X.

M. Itzler, G. Salzano, M. Entwistle, X. Jiang, M. Owens, B. Piccione, S. Wilton, K. Slomkowski, S. C. Roszko, and E. Wei, “Asynchronous Geiger-mode APD cameras with free-running InGaAsP pixels,” Proc. SPIE 10212, 102120K (2017).
[Crossref]

Kerman, A. J.

Khatri, F.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Klipstein, W.

A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.

Korzh, B.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Kovalik, J.

A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.

Kovalik, J. M.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Krichel, N. J.

Kumar, P.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref]

Kumor, D.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Kuzmin, A.

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111(3), 032603 (2017).
[Crossref]

Lau, J. A.

Lee, K. F.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref]

Leoni, R.

Lita, A. E.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from wsi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
[Crossref]

Liu, J.

A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.

Lu, T. J.

D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13(7), 596–601 (2018).
[Crossref]

Mani, H.

A. K. Sinclair, E. Schroeder, D. Zhu, M. Colangelo, J. Glasby, P. D. Mauskopf, H. Mani, and K. K. Berggren, “Demonstration of microwave multiplexed readout of DC-biased superconducting nanowire detectors,” IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019).
[Crossref]

Marsili, F.

M. Shaw, F. Marsili, A. Beyer, R. Briggs, J. Allmaras, and W. H. Farr, “Superconducting nanowire single photon detectors for deep space optical communication,” Proc. SPIE 10096, 100960J (2017).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from wsi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
[Crossref]

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Marsili, F. M.

Martini, F.

Mattioli, F.

Mauskopf, P. D.

A. K. Sinclair, E. Schroeder, D. Zhu, M. Colangelo, J. Glasby, P. D. Mauskopf, H. Mani, and K. K. Berggren, “Demonstration of microwave multiplexed readout of DC-biased superconducting nanowire detectors,” IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019).
[Crossref]

McCarthy, A.

McCaughan, A.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[Crossref]

McCaughan, A. N.

A. N. McCaughan, “Readout architectures for superconducting nanowire single photon detectors,” Supercond. Sci. Technol. 31(4), 040501 (2018).
[Crossref]

Q. Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H. Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

McIntosh, K. A.

B. Buck, G. D. Allen, E. K. Duerr, K. A. McIntosh, S. Moynihan, V. N. Shukla, and J. D. Wang, “Photon counting camera for the NASA deep space optical communication demonstration on the PSYCHE mission,” Proc. SPIE 10978, 1097809 (2019).
[Crossref]

B. F. Aull, E. K. Duerr, J. P. Frechette, K. A. McIntosh, D. R. Schuette, and R. D. Younger, “Large-format Geiger-mode avalanche photodiode arrays and readout circuits,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–10 (2018).
[Crossref]

Medic, M.

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref]

Miki, S.

Mirin, R.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Mirin, R. P.

Miyajima, S.

Molnar, R. J.

Moynihan, S.

B. Buck, G. D. Allen, E. K. Duerr, K. A. McIntosh, S. Moynihan, V. N. Shukla, and J. D. Wang, “Photon counting camera for the NASA deep space optical communication demonstration on the PSYCHE mission,” Proc. SPIE 10978, 1097809 (2019).
[Crossref]

Murphy, D. V.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Najafi, F.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[Crossref]

Nam, S. W.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. M. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26(12), 14859 (2018).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from wsi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
[Crossref]

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

M. J. Stevens, B. Baek, E. A. Dauler, A. J. Kerman, R. J. Molnar, S. A. Hamilton, K. K. Berggren, R. P. Mirin, and S. W. Nam, “High-order temporal coherences of chaotic and laser light,” Opt. Express 18(2), 1430 (2010).
[Crossref]

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007).
[Crossref]

Nam, S.-W.

Y. Hochberg, I. Charaev, S.-W. Nam, V. Verma, M. Colangelo, and K. K. Berggren, “Detecting sub-GeV dark matter with superconducting nanowires,” Phys. Rev. Lett. 123(15), 151802 (2019).
[Crossref]

Na-Nakornpanom, A.

A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.

Okino, C.

A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.

Orozco, D.

A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.

Ortiz, G.

A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.

Owens, M.

M. Itzler, G. Salzano, M. Entwistle, X. Jiang, M. Owens, B. Piccione, S. Wilton, K. Slomkowski, S. C. Roszko, and E. Wei, “Asynchronous Geiger-mode APD cameras with free-running InGaAsP pixels,” Proc. SPIE 10212, 102120K (2017).
[Crossref]

Paulus, T. J.

T. J. Paulus, “Timing electronics and fast timing methods with scintillation detectors,” IEEE Trans. Nucl. Sci. 32(3), 1242–1249 (1985).
[Crossref]

Peng, M.

A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.

Piazzolla, S.

A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.

Piccione, B.

M. Itzler, G. Salzano, M. Entwistle, X. Jiang, M. Owens, B. Piccione, S. Wilton, K. Slomkowski, S. C. Roszko, and E. Wei, “Asynchronous Geiger-mode APD cameras with free-running InGaAsP pixels,” Proc. SPIE 10212, 102120K (2017).
[Crossref]

Politi, A.

Ren, X.

Roberts, W. T.

A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.

Robinson, B. S.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Rogalin, R.

A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.

Roszko, S. C.

M. Itzler, G. Salzano, M. Entwistle, X. Jiang, M. Owens, B. Piccione, S. Wilton, K. Slomkowski, S. C. Roszko, and E. Wei, “Asynchronous Geiger-mode APD cameras with free-running InGaAsP pixels,” Proc. SPIE 10212, 102120K (2017).
[Crossref]

Salzano, G.

M. Itzler, G. Salzano, M. Entwistle, X. Jiang, M. Owens, B. Piccione, S. Wilton, K. Slomkowski, S. C. Roszko, and E. Wei, “Asynchronous Geiger-mode APD cameras with free-running InGaAsP pixels,” Proc. SPIE 10212, 102120K (2017).
[Crossref]

Sangouard, N.

C. Clausen, I. Usmani, F. Bussiéres, N. Sangouard, M. Afzelius, H. De Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

Santavicca, D. F.

Q. Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H. Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

Schratz, B.

A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.

Schroeder, E.

A. K. Sinclair, E. Schroeder, D. Zhu, M. Colangelo, J. Glasby, P. D. Mauskopf, H. Mani, and K. K. Berggren, “Demonstration of microwave multiplexed readout of DC-biased superconducting nanowire detectors,” IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019).
[Crossref]

Schuette, D. R.

B. F. Aull, E. K. Duerr, J. P. Frechette, K. A. McIntosh, D. R. Schuette, and R. D. Younger, “Large-format Geiger-mode avalanche photodiode arrays and readout circuits,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–10 (2018).
[Crossref]

Schwarzer, D.

Shaw, M.

M. Shaw, F. Marsili, A. Beyer, R. Briggs, J. Allmaras, and W. H. Farr, “Superconducting nanowire single photon detectors for deep space optical communication,” Proc. SPIE 10096, 100960J (2017).
[Crossref]

A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.

Shaw, M. D.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from wsi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
[Crossref]

Shukla, V. N.

B. Buck, G. D. Allen, E. K. Duerr, K. A. McIntosh, S. Moynihan, V. N. Shukla, and J. D. Wang, “Photon counting camera for the NASA deep space optical communication demonstration on the PSYCHE mission,” Proc. SPIE 10978, 1097809 (2019).
[Crossref]

Siegel, M.

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111(3), 032603 (2017).
[Crossref]

Silberhorn, C.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Sinclair, A. K.

A. K. Sinclair, E. Schroeder, D. Zhu, M. Colangelo, J. Glasby, P. D. Mauskopf, H. Mani, and K. K. Berggren, “Demonstration of microwave multiplexed readout of DC-biased superconducting nanowire detectors,” IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019).
[Crossref]

Slomkowski, K.

M. Itzler, G. Salzano, M. Entwistle, X. Jiang, M. Owens, B. Piccione, S. Wilton, K. Slomkowski, S. C. Roszko, and E. Wei, “Asynchronous Geiger-mode APD cameras with free-running InGaAsP pixels,” Proc. SPIE 10212, 102120K (2017).
[Crossref]

Sodnik, Z.

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

Sohler, W.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Srinivasan, M.

A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.

Stern, J. A.

V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from wsi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
[Crossref]

Stevens, M.

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Stevens, M. J.

Takesue, H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007).
[Crossref]

Tamaki, K.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007).
[Crossref]

Tanner, M. G.

Terai, H.

Tiranov, A.

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Usmani, I.

C. Clausen, I. Usmani, F. Bussiéres, N. Sangouard, M. Afzelius, H. De Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

Verma, V.

Y. Hochberg, I. Charaev, S.-W. Nam, V. Verma, M. Colangelo, and K. K. Berggren, “Detecting sub-GeV dark matter with superconducting nanowires,” Phys. Rev. Lett. 123(15), 151802 (2019).
[Crossref]

Verma, V. B.

L. Chen, D. Schwarzer, J. A. Lau, V. B. Verma, M. J. Stevens, F. M. Marsili, R. P. Mirin, S. W. Nam, and A. M. Wodtke, “Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution,” Opt. Express 26(12), 14859 (2018).
[Crossref]

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from wsi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
[Crossref]

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Wang, H. Z.

Q. Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H. Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

Wang, J. D.

B. Buck, G. D. Allen, E. K. Duerr, K. A. McIntosh, S. Moynihan, V. N. Shukla, and J. D. Wang, “Photon counting camera for the NASA deep space optical communication demonstration on the PSYCHE mission,” Proc. SPIE 10978, 1097809 (2019).
[Crossref]

Wang, Z.

Wei, E.

M. Itzler, G. Salzano, M. Entwistle, X. Jiang, M. Owens, B. Piccione, S. Wilton, K. Slomkowski, S. C. Roszko, and E. Wei, “Asynchronous Geiger-mode APD cameras with free-running InGaAsP pixels,” Proc. SPIE 10212, 102120K (2017).
[Crossref]

Wilton, S.

M. Itzler, G. Salzano, M. Entwistle, X. Jiang, M. Owens, B. Piccione, S. Wilton, K. Slomkowski, S. C. Roszko, and E. Wei, “Asynchronous Geiger-mode APD cameras with free-running InGaAsP pixels,” Proc. SPIE 10212, 102120K (2017).
[Crossref]

Wodtke, A. M.

Wong, A.

A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.

Wright, M.

A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.

Wuensch, S.

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111(3), 032603 (2017).
[Crossref]

Yabuno, M.

Yamamoto, Y.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007).
[Crossref]

Yamashita, T.

Younger, R. D.

B. F. Aull, E. K. Duerr, J. P. Frechette, K. A. McIntosh, D. R. Schuette, and R. D. Younger, “Large-format Geiger-mode avalanche photodiode arrays and readout circuits,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–10 (2018).
[Crossref]

Zhang, Q.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007).
[Crossref]

Zhao, Q.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[Crossref]

Zhao, Q. Y.

D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13(7), 596–601 (2018).
[Crossref]

Q. Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H. Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

Zhu, D.

A. K. Sinclair, E. Schroeder, D. Zhu, M. Colangelo, J. Glasby, P. D. Mauskopf, H. Mani, and K. K. Berggren, “Demonstration of microwave multiplexed readout of DC-biased superconducting nanowire detectors,” IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019).
[Crossref]

D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13(7), 596–601 (2018).
[Crossref]

Q. Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H. Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

Zwick, T.

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111(3), 032603 (2017).
[Crossref]

Zwiller, V.

Appl. Phys. Lett. (4)

M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E. Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam, “A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout,” Appl. Phys. Lett. 106(19), 192601 (2015).
[Crossref]

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting-nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[Crossref]

S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, and M. Siegel, “Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array,” Appl. Phys. Lett. 111(3), 032603 (2017).
[Crossref]

V. B. Verma, R. Horansky, F. Marsili, J. A. Stern, M. D. Shaw, A. E. Lita, R. P. Mirin, and S. W. Nam, “A four-pixel single-photon pulse-position array fabricated from wsi superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 104(5), 051115 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. F. Aull, E. K. Duerr, J. P. Frechette, K. A. McIntosh, D. R. Schuette, and R. D. Younger, “Large-format Geiger-mode avalanche photodiode arrays and readout circuits,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–10 (2018).
[Crossref]

IEEE Trans. Appl. Supercond. (1)

A. K. Sinclair, E. Schroeder, D. Zhu, M. Colangelo, J. Glasby, P. D. Mauskopf, H. Mani, and K. K. Berggren, “Demonstration of microwave multiplexed readout of DC-biased superconducting nanowire detectors,” IEEE Trans. Appl. Supercond. 29(5), 1–4 (2019).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

T. J. Paulus, “Timing electronics and fast timing methods with scintillation detectors,” IEEE Trans. Nucl. Sci. 32(3), 1242–1249 (1985).
[Crossref]

Nat. Nanotechnol. (1)

D. Zhu, Q. Y. Zhao, H. Choi, T. J. Lu, A. E. Dane, D. Englund, and K. K. Berggren, “A scalable multi-photon coincidence detector based on superconducting nanowires,” Nat. Nanotechnol. 13(7), 596–601 (2018).
[Crossref]

Nat. Photonics (3)

Q. Y. Zhao, D. Zhu, N. Calandri, A. E. Dane, A. N. McCaughan, F. Bellei, H. Z. Wang, D. F. Santavicca, and K. K. Berggren, “Single-photon imager based on a superconducting nanowire delay line,” Nat. Photonics 11(4), 247–251 (2017).
[Crossref]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics 1(6), 343–348 (2007).
[Crossref]

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Marsili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory,” Nat. Photonics 8(10), 775–778 (2014).
[Crossref]

Nature (1)

C. Clausen, I. Usmani, F. Bussiéres, N. Sangouard, M. Afzelius, H. De Riedmatten, and N. Gisin, “Quantum storage of photonic entanglement in a crystal,” Nature 469(7331), 508–511 (2011).
[Crossref]

Opt. Express (5)

Optica (1)

Phys. Rev. Lett. (2)

Y. Hochberg, I. Charaev, S.-W. Nam, V. Verma, M. Colangelo, and K. K. Berggren, “Detecting sub-GeV dark matter with superconducting nanowires,” Phys. Rev. Lett. 123(15), 151802 (2019).
[Crossref]

J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-NOT gate in the telecommunications band,” Phys. Rev. Lett. 100(13), 133603 (2008).
[Crossref]

Proc. SPIE (4)

D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A. Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and D. M. Cornwell, “Overview and results of the Lunar Laser Communication Demonstration,” Proc. SPIE 8971, 89710S (2014).
[Crossref]

M. Shaw, F. Marsili, A. Beyer, R. Briggs, J. Allmaras, and W. H. Farr, “Superconducting nanowire single photon detectors for deep space optical communication,” Proc. SPIE 10096, 100960J (2017).
[Crossref]

M. Itzler, G. Salzano, M. Entwistle, X. Jiang, M. Owens, B. Piccione, S. Wilton, K. Slomkowski, S. C. Roszko, and E. Wei, “Asynchronous Geiger-mode APD cameras with free-running InGaAsP pixels,” Proc. SPIE 10212, 102120K (2017).
[Crossref]

B. Buck, G. D. Allen, E. K. Duerr, K. A. McIntosh, S. Moynihan, V. N. Shukla, and J. D. Wang, “Photon counting camera for the NASA deep space optical communication demonstration on the PSYCHE mission,” Proc. SPIE 10978, 1097809 (2019).
[Crossref]

Supercond. Sci. Technol. (1)

A. N. McCaughan, “Readout architectures for superconducting nanowire single photon detectors,” Supercond. Sci. Technol. 31(4), 040501 (2018).
[Crossref]

Other (3)

The OST mission concept study team, “The Origins Space Telescope (OST) mission concept study interim report,” https://arxiv.org/abs/1809.09702 (2018).

A. Biswas, M. Srinivasan, R. Rogalin, S. Piazzolla, J. Liu, B. Schratz, A. Wong, E. Alerstam, M. Wright, W. T. Roberts, J. Kovalik, G. Ortiz, A. Na-Nakornpanom, M. Shaw, C. Okino, K. Andrews, M. Peng, D. Orozco, and W. Klipstein, “Status of NASA’s deep space optical communication technology demonstration,” in Proceedings of IEEE International Conference on Space Optical Systems and Applications (IEEE, 2018), pp. 23–27.

See http://www.dotfast-consulting.at/ and https://uqdevices.com/ . The use of trade names is intended to allow the measurements to be appropriately interpreted and does not imply endorsement by the US government, nor does it imply these are necessarily the best available for the purpose used here.

Supplementary Material (1)

NameDescription
» Visualization 1       These two movies show the total number of counts for each pixel of a 32x32 SNSPD array in real time as a laser spot is swept across the array to spell out text.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. a) Schematic of the row-column array. b) Optical micrograph of the fabricated array showing the pixel pitch and size. c) Chip-scale layout of the array showing the Nb leads (teal), Au bond pads (yellow), and WSi column inductors (red). d) Fabrication flow, as described in the text. The SNSPD meander and layer thicknesses are not shown to scale.
Fig. 2.
Fig. 2. Examples of positive (red) and negative (blue) pulses from one column of the array measured at the TDC input. The array was biased at 3 µA per pixel. Solid lines represent individual pulses and dashed lines are time-averaged pulses. The narrow pulse shape and overshoot are caused by high-pass filtering by the cryogenic amplifiers. The amplifier chain’s gain is greater for positive pulses.
Fig. 3.
Fig. 3. Illustration of coincidence times in the row-column multiplexing scheme. The inset shows how the choice of coincidence window can lead to over- or under-counting of events. Vertical lines depict two pairs of time tags, with the first pair corresponding to detection event A and the second pair corresponding to detection event B. The orange and red horizontal bars correspond to two different choices of coincidence window. If the coincidence window is too short (orange), then intra-event coincidences can be missed, and events are under-counted. If the coincidence window is too long (red), then inter-event time tags are falsely registered as events. The two histograms show example distributions of time differences between sequential row-column time tags across the array with the array biased at 3 µA and flood-illuminated with CW light. Row-row and column-column interarrival times have been omitted. Without calibrating the time tags, the interarrival times have a broad distribution primarily due to differential time delays within the TDC, with most interarrivals < 6 ns (purple). After applying calibrated timing offsets to each row and column, the interarrival time distribution is largely limited by the jitter, with most interarrivals < 1.5 ns (blue). Both histograms have a non-zero background that corresponds to the Poisson-distributed inter-event arrival times.
Fig. 4.
Fig. 4. Count rate vs. average pixel bias current summed across each of the 32 rows under 1550 nm flood illumination. a) 3-D view of the count rate showing the spatial distribution of efficiency and hot pixels across the array. In general, the hot pixels appear to be evenly distributed spatially, although the two edge rows do contain some of the most constricted pixels. b) 2-D view of the same data in (a). A clear inflection point is visible in the count rate vs. bias curve, indicating that the array approaches saturated internal efficiency. Above 4.3 µA, more than half of the array’s rows are affected by hot pixels, although the overall percentage of hot pixels is much lower.
Fig. 5.
Fig. 5. Imaging capabilities of the array. a, b) Log-scale count rate across the array under illumination with a focused laser beam. a) Approximately 3 µA bias current, adjusted to equalize background counts across the rows. The laser spot photon flux is $8.5\times 10^{6}$ photons/s (ph/s), and the scale is clipped at count rates above $1.6\times 10^{5}$ counts/s (cps). The image represents $2.0\times 10^{6}$ counts gathered over 2.3 s. b) 4 µA bias current, with rows 1 and 32 biased at 0 µA. The laser spot photon flux is 14.9 Mph/s, and the scale is clipped at count rates above $3.3\times 10^{5}$ cps. The image represents $1.8\times 10^{6}$ counts gathered over approximately 0.25 s. At the lower bias, there are fewer hot or dead pixels, and no cross-talk is evident. At the higher bias current, misattributions due to hot pixels are evident in streaks and false hot pixels. The hot pixel with the highest count rate (r13c3) has a count rate of 4.6  Mcps. c) Persistence images as a laser spot is swept across the array to spell out text using a steering mirror and a voltage-controlled attenuator (see Visualization 1). The array bias current is 3  µA.
Fig. 6.
Fig. 6. Jitter measurements. a) Maps of the FWHM jitter measured for each pixel of the array at bias currents of 3 µA (left) and 4 µA (right). b) Histograms of the data in (a) showing the distribution of jitter across the array measured with the array biased at 3 µA (green) and at 4 µA (blue). At the lower bias current, the average pixel jitter was 400 ps, but the jitter distribution is peaked near 365 ps with a long tail towards higher jitter values. At the higher bias current, the average pixel jitter was 250 ps.