Abstract

We demonstrate the potential of a graphene capacitor structure on silicon-rich nitride micro-ring resonators for multitasking operations within high performance computing. Capacitor structures formed by two graphene sheets separated by a 10 nm insulating silicon nitride layer are considered. Hybrid integrated photonic structures are then designed to exploit the electro-absorptive operation of the graphene capacitor to tuneably control the transmission and attenuation of different wavelengths of light. By tuning the capacitor length, a shift in the resonant wavelength is produced giving rise to a broadband multilevel photonic volatile memory. The advantages of using silicon-rich nitride as the waveguiding material in place of the more conventional silicon nitride (Si3N4) are shown, with a doubling of the device’s operational bandwidth from 31.2 to 62.41 GHz achieved while also allowing a smaller device footprint. A systematic evaluation of the device’s performance and energy consumption is presented. A difference in the extinction ratio between the ON and OFF states of 16.5 dB and energy consumptions of <0.3 pJ/bit are obtained. Finally, it has been demonstrated that increasing the permittivity of the insulator layer in the capacitor structure, the energy consumption per bit can be reduced even further. Overall, the resonance tuning enabled by the novel graphene capacitor makes it a key component for future multilevel photonic memories and optical routing in high performance computing.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Low-energy high-speed graphene modulator for on-chip communication

Ipsita Chakraborty, Kapil Debnath, and Vivek Dixit
OSA Continuum 2(4) 1273-1284 (2019)

Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas

Teresa Tatoli, Donato Conteduca, Francesco Dell’Olio, Caterina Ciminelli, and Mario N. Armenise
Appl. Opt. 55(16) 4342-4349 (2016)

Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters

Longhai Yu, Yanlong Yin, Yaocheng Shi, Daoxin Dai, and Sailing He
Optica 3(2) 159-166 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  2. T. D. Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNxlayers for photonic applications,” J. Phys. D: Appl. Phys. 50(2), 025106 (2017).
    [Crossref]
  3. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987 (2008).
    [Crossref]
  4. J. N. Milgram, J. Wojcik, P. Mascher, and A. P. Knights, “Optically pumped Si nanocrystal emitter integrated with low loss silicon nitride waveguides,” Opt. Express 15(22), 14679–14688 (2007).
    [Crossref]
  5. R. Soref, “Tutorial: Integrated-photonic switching structures,” APL Photonics 3(2), 021101 (2018).
    [Crossref]
  6. C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
    [Crossref]
  7. J. Faneca, T. Perova, V. Tolmachev, and A. Baldycheva, “One-dimensional multi-channel photonic crystal resonators based on Silicon-On-Insulator with high quality factor,” Front. Phys. 6, 33 (2018).
    [Crossref]
  8. F. Y. Gardes, G. T. Reed, N. Emerson, and C. Png, “A sub-micron depletion-type photonic modulator in silicon on insulator,” Opt. Express 13(22), 8845–8854 (2005).
    [Crossref]
  9. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
    [Crossref]
  10. D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
    [Crossref]
  11. A. D. Neira, G. A. Wurtz, P. Ginzburg, and A. V. Zayats, “Ultrafast all-optical modulation with hyperbolic metamaterial integrated in si photonic circuitry,” Opt. Express 22(9), 10987–10994 (2014).
    [Crossref]
  12. A. S. Shalin, P. Ginzburg, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Nano-opto-mechanical effects in plasmonic waveguides,” Laser Photonics Rev. 8(1), 131–136 (2014).
    [Crossref]
  13. S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2d materials for optical modulation: Challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
    [Crossref]
  14. M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
    [Crossref]
  15. H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 ghz speed,” ACS Photonics 3(9), 1564–1568 (2016).
    [Crossref]
  16. Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator; PMID: 26042835.,” Nano Lett. 15(7), 4393–4400 (2015).
    [Crossref]
  17. M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5(1), 10967 (2015).
    [Crossref]
  18. M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
    [Crossref]
  19. M. Romagnoli, “Graphene photonics for optical communications,” Optical Fiber Communication Conference (OFC) 2019 p. M3D.3 (2019).
  20. K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, V. I. F. Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
    [Crossref]
  21. A. B. Kuzmenko, E. Van Heumen, F. Carbone, and D. Van Der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
    [Crossref]
  22. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
    [Crossref]
  23. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable Optical Transitions in Graphene,” Science 320(5873), 206–209 (2008).
    [Crossref]
  24. N. A. Hassan and R. Hijazi, “Chapter 6 - data hiding forensics,” in Data Hiding Techniques in Windows OS, N. A. Hassan and R. Hijazi, eds., (Syngress, Boston, 2017), pp. 207–265.
  25. J. Andréasson, U. Pischel, S. D. Straight, T. A. Moore, A. L. Moore, and D. Gust, “All-photonic multifunctional molecular logic device,” J. Am. Chem. Soc. 133(30), 11641–11648 (2011).
    [Crossref]
  26. Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
    [Crossref]
  27. H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
    [Crossref]
  28. J. Lin, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Electrically tunable infrared filter based on a cascaded liquid-crystal Fabry-Perot for spectral imaging detection,” Appl. Opt. 56(7), 1925 (2017).
    [Crossref]
  29. T. D. Bucio, A. Z. Khokhar, G. Z. Mashanovich, and F. Y. Gardes, “N-rich silicon nitride angled MMI for coarse wavelength division (de)multiplexing in the O-band,” Opt. Lett. 43(6), 1251 (2018).
    [Crossref]
  30. A. N. Obraztsov, “Making graphene on a large scale,” Nat. Nanotechnol. 4(4), 212–213 (2009).
    [Crossref]
  31. X. Hu and J. Wang, “High Figure of Merit Graphene Modulator Based on Long-Range Hybrid Plasmonic Slot Waveguide,” IEEE J. Quantum Electron. 53(3), 1–8 (2017).
    [Crossref]
  32. Y.-C. Chang, C.-H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of true two-dimensional layers by ellipsometry,” in 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications, (2014), pp. 1–2.
  33. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
    [Crossref]
  34. A. J. Stapleton, C. J. Shearer, C. T. Gibson, A. D. Slattery, and J. G. Shapter, “Accurate thickness measurement of graphene,” Nanotechnology 27(12), 125704 (2016).
    [Crossref]
  35. C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 ghz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
    [Crossref]
  36. P. Gunter, “Electro-optical effects in ferroelectrics,” Ferroelectrics 74(1), 305–307 (1987).
    [Crossref]
  37. W. Zhu, D. Neumayer, V. Perebeinos, and P. Avouris, “Silicon nitride gate dielectrics and band gap engineering in graphene layers,” Nano Lett. 10(9), 3572–3576 (2010).
    [Crossref]
  38. K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si_3N_4 microresonator,” Opt. Lett. 40(21), 4823 (2015).
    [Crossref]
  39. C. H. Ng, K. W. Chew, and S. F. Chu, “Characterization and comparison of pecvd silicon nitride and silicon oxynitride dielectric for mim capacitors,” IEEE Electron Device Lett. 24(8), 506–508 (2003).
    [Crossref]
  40. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
    [Crossref]
  41. E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
    [Crossref]
  42. E. J. Klein and A. Driessen, “Densely integrated photonic devices based on microring resonators in access networks,” in 2007 9th International Conference on Transparent Optical Networks, vol. 1 (2007), p. 201.
  43. M. Midrio, S. Boscolo, M. Moresco, M. Romagnoli, C. D. Angelis, A. Locatelli, and A.-D. Capobianco, “Graphene–assisted critically–coupled optical ring modulator,” Opt. Express 20(21), 23144–23155 (2012).
    [Crossref]
  44. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12(1), 90–103 (2004).
    [Crossref]
  45. G. Kovacevic, C. Phare, S. Y. Set, M. Lipson, and S. Yamashita, “Ultra-high-speed graphene optical modulator design based on tight field confinement in a slot waveguide,” Appl. Phys. Express 11(6), 065102 (2018).
    [Crossref]
  46. A. Venugopal, L. Colombo, and E. M. Vogel, “Contact resistance in few and multilayer graphene devices,” Appl. Phys. Lett. 96(1), 013512 (2010).
    [Crossref]
  47. W. S. Leong, X. Luo, Y. Li, K. H. Khoo, S. Y. Quek, and J. T. Thong, “Low resistance metal contacts to MoS 2 devices with nickel-etched-graphene electrodes,” ACS Nano 9(1), 869–877 (2015).
    [Crossref]
  48. V. Sorianello, M. Midrio, and M. Romagnoli, “Design optimization of single and double layer Graphene phase modulators in SOI,” Opt. Express 23(5), 6478 (2015).
    [Crossref]
  49. J. K. Lee, C. S. Park, and H. Kim, “Sheet resistance variation of graphene grown on annealed and mechanically polished Cu films,” RSC Adv. 4(107), 62453–62456 (2014).
    [Crossref]
  50. R. Ishikawa, Y. Kurokawa, S. Miyajima, and M. Konagai, “Peeling process of thin-film solar cells using graphene layers,” Appl. Phys. Express 10(8), 082301 (2017).
    [Crossref]

2018 (5)

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

R. Soref, “Tutorial: Integrated-photonic switching structures,” APL Photonics 3(2), 021101 (2018).
[Crossref]

J. Faneca, T. Perova, V. Tolmachev, and A. Baldycheva, “One-dimensional multi-channel photonic crystal resonators based on Silicon-On-Insulator with high quality factor,” Front. Phys. 6, 33 (2018).
[Crossref]

G. Kovacevic, C. Phare, S. Y. Set, M. Lipson, and S. Yamashita, “Ultra-high-speed graphene optical modulator design based on tight field confinement in a slot waveguide,” Appl. Phys. Express 11(6), 065102 (2018).
[Crossref]

T. D. Bucio, A. Z. Khokhar, G. Z. Mashanovich, and F. Y. Gardes, “N-rich silicon nitride angled MMI for coarse wavelength division (de)multiplexing in the O-band,” Opt. Lett. 43(6), 1251 (2018).
[Crossref]

2017 (5)

J. Lin, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Electrically tunable infrared filter based on a cascaded liquid-crystal Fabry-Perot for spectral imaging detection,” Appl. Opt. 56(7), 1925 (2017).
[Crossref]

R. Ishikawa, Y. Kurokawa, S. Miyajima, and M. Konagai, “Peeling process of thin-film solar cells using graphene layers,” Appl. Phys. Express 10(8), 082301 (2017).
[Crossref]

T. D. Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNxlayers for photonic applications,” J. Phys. D: Appl. Phys. 50(2), 025106 (2017).
[Crossref]

X. Hu and J. Wang, “High Figure of Merit Graphene Modulator Based on Long-Range Hybrid Plasmonic Slot Waveguide,” IEEE J. Quantum Electron. 53(3), 1–8 (2017).
[Crossref]

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2d materials for optical modulation: Challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref]

2016 (2)

H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 ghz speed,” ACS Photonics 3(9), 1564–1568 (2016).
[Crossref]

A. J. Stapleton, C. J. Shearer, C. T. Gibson, A. D. Slattery, and J. G. Shapter, “Accurate thickness measurement of graphene,” Nanotechnology 27(12), 125704 (2016).
[Crossref]

2015 (7)

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 ghz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

W. S. Leong, X. Luo, Y. Li, K. H. Khoo, S. Y. Quek, and J. T. Thong, “Low resistance metal contacts to MoS 2 devices with nickel-etched-graphene electrodes,” ACS Nano 9(1), 869–877 (2015).
[Crossref]

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator; PMID: 26042835.,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref]

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5(1), 10967 (2015).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

V. Sorianello, M. Midrio, and M. Romagnoli, “Design optimization of single and double layer Graphene phase modulators in SOI,” Opt. Express 23(5), 6478 (2015).
[Crossref]

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si_3N_4 microresonator,” Opt. Lett. 40(21), 4823 (2015).
[Crossref]

2014 (3)

A. D. Neira, G. A. Wurtz, P. Ginzburg, and A. V. Zayats, “Ultrafast all-optical modulation with hyperbolic metamaterial integrated in si photonic circuitry,” Opt. Express 22(9), 10987–10994 (2014).
[Crossref]

A. S. Shalin, P. Ginzburg, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Nano-opto-mechanical effects in plasmonic waveguides,” Laser Photonics Rev. 8(1), 131–136 (2014).
[Crossref]

J. K. Lee, C. S. Park, and H. Kim, “Sheet resistance variation of graphene grown on annealed and mechanically polished Cu films,” RSC Adv. 4(107), 62453–62456 (2014).
[Crossref]

2012 (7)

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref]

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref]

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref]

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref]

K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, V. I. F. Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

M. Midrio, S. Boscolo, M. Moresco, M. Romagnoli, C. D. Angelis, A. Locatelli, and A.-D. Capobianco, “Graphene–assisted critically–coupled optical ring modulator,” Opt. Express 20(21), 23144–23155 (2012).
[Crossref]

2011 (2)

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
[Crossref]

J. Andréasson, U. Pischel, S. D. Straight, T. A. Moore, A. L. Moore, and D. Gust, “All-photonic multifunctional molecular logic device,” J. Am. Chem. Soc. 133(30), 11641–11648 (2011).
[Crossref]

2010 (4)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

W. Zhu, D. Neumayer, V. Perebeinos, and P. Avouris, “Silicon nitride gate dielectrics and band gap engineering in graphene layers,” Nano Lett. 10(9), 3572–3576 (2010).
[Crossref]

A. Venugopal, L. Colombo, and E. M. Vogel, “Contact resistance in few and multilayer graphene devices,” Appl. Phys. Lett. 96(1), 013512 (2010).
[Crossref]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
[Crossref]

2009 (1)

A. N. Obraztsov, “Making graphene on a large scale,” Nat. Nanotechnol. 4(4), 212–213 (2009).
[Crossref]

2008 (4)

A. B. Kuzmenko, E. Van Heumen, F. Carbone, and D. Van Der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable Optical Transitions in Graphene,” Science 320(5873), 206–209 (2008).
[Crossref]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987 (2008).
[Crossref]

2007 (1)

2005 (2)

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

F. Y. Gardes, G. T. Reed, N. Emerson, and C. Png, “A sub-micron depletion-type photonic modulator in silicon on insulator,” Opt. Express 13(22), 8845–8854 (2005).
[Crossref]

2004 (1)

2003 (1)

C. H. Ng, K. W. Chew, and S. F. Chu, “Characterization and comparison of pecvd silicon nitride and silicon oxynitride dielectric for mim capacitors,” IEEE Electron Device Lett. 24(8), 506–508 (2003).
[Crossref]

1987 (1)

P. Gunter, “Electro-optical effects in ferroelectrics,” Ferroelectrics 74(1), 305–307 (1987).
[Crossref]

Alic, N.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987 (2008).
[Crossref]

Andréasson, J.

J. Andréasson, U. Pischel, S. D. Straight, T. A. Moore, A. L. Moore, and D. Gust, “All-photonic multifunctional molecular logic device,” J. Am. Chem. Soc. 133(30), 11641–11648 (2011).
[Crossref]

Angelis, C. D.

Anugrah, Y.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref]

Asghari, M.

Avouris, P.

W. Zhu, D. Neumayer, V. Perebeinos, and P. Avouris, “Silicon nitride gate dielectrics and band gap engineering in graphene layers,” Nano Lett. 10(9), 3572–3576 (2010).
[Crossref]

Baker, N.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

Baldycheva, A.

J. Faneca, T. Perova, V. Tolmachev, and A. Baldycheva, “One-dimensional multi-channel photonic crystal resonators based on Silicon-On-Insulator with high quality factor,” Front. Phys. 6, 33 (2018).
[Crossref]

Bao, Q.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref]

Belov, P. A.

A. S. Shalin, P. Ginzburg, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Nano-opto-mechanical effects in plasmonic waveguides,” Laser Photonics Rev. 8(1), 131–136 (2014).
[Crossref]

Bhaskaran, H.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref]

Boscolo, S.

Bucio, T. D.

T. D. Bucio, A. Z. Khokhar, G. Z. Mashanovich, and F. Y. Gardes, “N-rich silicon nitride angled MMI for coarse wavelength division (de)multiplexing in the O-band,” Opt. Lett. 43(6), 1251 (2018).
[Crossref]

T. D. Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNxlayers for photonic applications,” J. Phys. D: Appl. Phys. 50(2), 025106 (2017).
[Crossref]

Capobianco, A.-D.

Carbone, F.

A. B. Kuzmenko, E. Van Heumen, F. Carbone, and D. Van Der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
[Crossref]

Cardenas, J.

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 ghz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Chang, Y.-C.

Y.-C. Chang, C.-H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of true two-dimensional layers by ellipsometry,” in 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications, (2014), pp. 1–2.

Chew, K. W.

C. H. Ng, K. W. Chew, and S. F. Chu, “Characterization and comparison of pecvd silicon nitride and silicon oxynitride dielectric for mim capacitors,” IEEE Electron Device Lett. 24(8), 506–508 (2003).
[Crossref]

Chu, S. F.

C. H. Ng, K. W. Chew, and S. F. Chu, “Characterization and comparison of pecvd silicon nitride and silicon oxynitride dielectric for mim capacitors,” IEEE Electron Device Lett. 24(8), 506–508 (2003).
[Crossref]

Colombo, L.

K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, V. I. F. Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, V. I. F. Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

A. Venugopal, L. Colombo, and E. M. Vogel, “Contact resistance in few and multilayer graphene devices,” Appl. Phys. Lett. 96(1), 013512 (2010).
[Crossref]

Crommie, M.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable Optical Transitions in Graphene,” Science 320(5873), 206–209 (2008).
[Crossref]

D’Errico, A.

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

Dalir, H.

H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 ghz speed,” ACS Photonics 3(9), 1564–1568 (2016).
[Crossref]

Ding, Y.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator; PMID: 26042835.,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref]

Dong, P.

Driessen, A.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

E. J. Klein and A. Driessen, “Densely integrated photonic devices based on microring resonators in access networks,” in 2007 9th International Conference on Transparent Optical Networks, vol. 1 (2007), p. 201.

Emerson, N.

Fainman, Y.

Fal, V. I.

K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, V. I. F. Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Faneca, J.

J. Faneca, T. Perova, V. Tolmachev, and A. Baldycheva, “One-dimensional multi-channel photonic crystal resonators based on Silicon-On-Insulator with high quality factor,” Front. Phys. 6, 33 (2018).
[Crossref]

Fedeli, J.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Fedeli, J.-M.

Feng, D.

Feng, N.-N.

Ferrari, A. C.

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

Fournier, M.

Frandsen, L. H.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator; PMID: 26042835.,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref]

Fu, Y.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref]

Gaeta, A. L.

Galli, P.

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

Gardes, F. Y.

T. D. Bucio, A. Z. Khokhar, G. Z. Mashanovich, and F. Y. Gardes, “N-rich silicon nitride angled MMI for coarse wavelength division (de)multiplexing in the O-band,” Opt. Lett. 43(6), 1251 (2018).
[Crossref]

T. D. Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNxlayers for photonic applications,” J. Phys. D: Appl. Phys. 50(2), 025106 (2017).
[Crossref]

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

F. Y. Gardes, G. T. Reed, N. Emerson, and C. Png, “A sub-micron depletion-type photonic modulator in silicon on insulator,” Opt. Express 13(22), 8845–8854 (2005).
[Crossref]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref]

Gellert, P. R.

K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, V. I. F. Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, V. I. F. Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Geuzebroek, D. H.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

Gibson, C. T.

A. J. Stapleton, C. J. Shearer, C. T. Gibson, A. D. Slattery, and J. G. Shapter, “Accurate thickness measurement of graphene,” Nanotechnology 27(12), 125704 (2016).
[Crossref]

Giesecke, A. L.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5(1), 10967 (2015).
[Crossref]

Ginzburg, P.

A. S. Shalin, P. Ginzburg, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Nano-opto-mechanical effects in plasmonic waveguides,” Laser Photonics Rev. 8(1), 131–136 (2014).
[Crossref]

A. D. Neira, G. A. Wurtz, P. Ginzburg, and A. V. Zayats, “Ultrafast all-optical modulation with hyperbolic metamaterial integrated in si photonic circuitry,” Opt. Express 22(9), 10987–10994 (2014).
[Crossref]

Girit, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable Optical Transitions in Graphene,” Science 320(5873), 206–209 (2008).
[Crossref]

Gong, Q.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref]

Grosse, P.

Gunter, P.

P. Gunter, “Electro-optical effects in ferroelectrics,” Ferroelectrics 74(1), 305–307 (1987).
[Crossref]

Guo, X.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2d materials for optical modulation: Challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref]

Gust, D.

J. Andréasson, U. Pischel, S. D. Straight, T. A. Moore, A. L. Moore, and D. Gust, “All-photonic multifunctional molecular logic device,” J. Am. Chem. Soc. 133(30), 11641–11648 (2011).
[Crossref]

Hassan, N. A.

N. A. Hassan and R. Hijazi, “Chapter 6 - data hiding forensics,” in Data Hiding Techniques in Windows OS, N. A. Hassan and R. Hijazi, eds., (Syngress, Boston, 2017), pp. 207–265.

Hijazi, R.

N. A. Hassan and R. Hijazi, “Chapter 6 - data hiding forensics,” in Data Hiding Techniques in Windows OS, N. A. Hassan and R. Hijazi, eds., (Syngress, Boston, 2017), pp. 207–265.

Hosseini, P.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Hu, H.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator; PMID: 26042835.,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref]

Hu, X.

X. Hu and J. Wang, “High Figure of Merit Graphene Modulator Based on Long-Range Hybrid Plasmonic Slot Waveguide,” IEEE J. Quantum Electron. 53(3), 1–8 (2017).
[Crossref]

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref]

Hu, Y.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
[Crossref]

Huang, Y. Y.

Huyghebaert, C.

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

Ikeda, K.

Ishikawa, R.

R. Ishikawa, Y. Kurokawa, S. Miyajima, and M. Konagai, “Peeling process of thin-film solar cells using graphene layers,” Appl. Phys. Express 10(8), 082301 (2017).
[Crossref]

Kelderman, H.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

Khokhar, A. Z.

T. D. Bucio, A. Z. Khokhar, G. Z. Mashanovich, and F. Y. Gardes, “N-rich silicon nitride angled MMI for coarse wavelength division (de)multiplexing in the O-band,” Opt. Lett. 43(6), 1251 (2018).
[Crossref]

T. D. Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNxlayers for photonic applications,” J. Phys. D: Appl. Phys. 50(2), 025106 (2017).
[Crossref]

Khoo, K. H.

W. S. Leong, X. Luo, Y. Li, K. H. Khoo, S. Y. Quek, and J. T. Thong, “Low resistance metal contacts to MoS 2 devices with nickel-etched-graphene electrodes,” ACS Nano 9(1), 869–877 (2015).
[Crossref]

Kim, H.

J. K. Lee, C. S. Park, and H. Kim, “Sheet resistance variation of graphene grown on annealed and mechanically polished Cu films,” RSC Adv. 4(107), 62453–62456 (2014).
[Crossref]

Kim, K.

K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, V. I. F. Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, V. I. F. Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Kivshar, Y. S.

A. S. Shalin, P. Ginzburg, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Nano-opto-mechanical effects in plasmonic waveguides,” Laser Photonics Rev. 8(1), 131–136 (2014).
[Crossref]

Klein, E. J.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

E. J. Klein and A. Driessen, “Densely integrated photonic devices based on microring resonators in access networks,” in 2007 9th International Conference on Transparent Optical Networks, vol. 1 (2007), p. 201.

Knights, A. P.

Ko, V. I. F.

K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, V. I. F. Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Koester, S. J.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref]

Konagai, M.

R. Ishikawa, Y. Kurokawa, S. Miyajima, and M. Konagai, “Peeling process of thin-film solar cells using graphene layers,” Appl. Phys. Express 10(8), 082301 (2017).
[Crossref]

Koppens, F. H. L.

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

Kovacevic, G.

G. Kovacevic, C. Phare, S. Y. Set, M. Lipson, and S. Yamashita, “Ultra-high-speed graphene optical modulator design based on tight field confinement in a slot waveguide,” Appl. Phys. Express 11(6), 065102 (2018).
[Crossref]

Krishnamoorthy, A. V.

Kuo, B. P. P.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Kurokawa, Y.

R. Ishikawa, Y. Kurokawa, S. Miyajima, and M. Konagai, “Peeling process of thin-film solar cells using graphene layers,” Appl. Phys. Express 10(8), 082301 (2017).
[Crossref]

Kurz, H.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5(1), 10967 (2015).
[Crossref]

Kuzmenko, A. B.

A. B. Kuzmenko, E. Van Heumen, F. Carbone, and D. Van Der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
[Crossref]

Lacava, C.

T. D. Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNxlayers for photonic applications,” J. Phys. D: Appl. Phys. 50(2), 025106 (2017).
[Crossref]

Lamont, M. R. E.

Lee, J. K.

J. K. Lee, C. S. Park, and H. Kim, “Sheet resistance variation of graphene grown on annealed and mechanically polished Cu films,” RSC Adv. 4(107), 62453–62456 (2014).
[Crossref]

Lee, Y.-H. D.

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 ghz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Lei, Y.

Leong, W. S.

W. S. Leong, X. Luo, Y. Li, K. H. Khoo, S. Y. Quek, and J. T. Thong, “Low resistance metal contacts to MoS 2 devices with nickel-etched-graphene electrodes,” ACS Nano 9(1), 869–877 (2015).
[Crossref]

Li, H.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref]

Li, M.

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref]

Li, Y.

W. S. Leong, X. Luo, Y. Li, K. H. Khoo, S. Y. Quek, and J. T. Thong, “Low resistance metal contacts to MoS 2 devices with nickel-etched-graphene electrodes,” ACS Nano 9(1), 869–877 (2015).
[Crossref]

Liang, H.

Liao, J.

Lin, J.

Lipson, M.

G. Kovacevic, C. Phare, S. Y. Set, M. Lipson, and S. Yamashita, “Ultra-high-speed graphene optical modulator design based on tight field confinement in a slot waveguide,” Appl. Phys. Express 11(6), 065102 (2018).
[Crossref]

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si_3N_4 microresonator,” Opt. Lett. 40(21), 4823 (2015).
[Crossref]

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 ghz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Liu, C.-H.

Y.-C. Chang, C.-H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of true two-dimensional layers by ellipsometry,” in 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications, (2014), pp. 1–2.

Liu, M.

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref]

Locatelli, A.

Loh, K. P.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref]

Lu, C.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref]

Luke, K.

Luo, X.

W. S. Leong, X. Luo, Y. Li, K. H. Khoo, S. Y. Quek, and J. T. Thong, “Low resistance metal contacts to MoS 2 devices with nickel-etched-graphene electrodes,” ACS Nano 9(1), 869–877 (2015).
[Crossref]

Mascher, P.

Mashanovich, G.

Mashanovich, G. Z.

T. D. Bucio, A. Z. Khokhar, G. Z. Mashanovich, and F. Y. Gardes, “N-rich silicon nitride angled MMI for coarse wavelength division (de)multiplexing in the O-band,” Opt. Lett. 43(6), 1251 (2018).
[Crossref]

T. D. Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNxlayers for photonic applications,” J. Phys. D: Appl. Phys. 50(2), 025106 (2017).
[Crossref]

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Matheisen, C.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5(1), 10967 (2015).
[Crossref]

Midrio, M.

Milgram, J. N.

Miyajima, S.

R. Ishikawa, Y. Kurokawa, S. Miyajima, and M. Konagai, “Peeling process of thin-film solar cells using graphene layers,” Appl. Phys. Express 10(8), 082301 (2017).
[Crossref]

Mohsin, M.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5(1), 10967 (2015).
[Crossref]

Mookherjea, S.

Moore, A. L.

J. Andréasson, U. Pischel, S. D. Straight, T. A. Moore, A. L. Moore, and D. Gust, “All-photonic multifunctional molecular logic device,” J. Am. Chem. Soc. 133(30), 11641–11648 (2011).
[Crossref]

Moore, T. A.

J. Andréasson, U. Pischel, S. D. Straight, T. A. Moore, A. L. Moore, and D. Gust, “All-photonic multifunctional molecular logic device,” J. Am. Chem. Soc. 133(30), 11641–11648 (2011).
[Crossref]

Moresco, M.

Mortensen, N. A.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator; PMID: 26042835.,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref]

Myslivets, E.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref]

Neira, A. D.

Neumaier, D.

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5(1), 10967 (2015).
[Crossref]

Neumayer, D.

W. Zhu, D. Neumayer, V. Perebeinos, and P. Avouris, “Silicon nitride gate dielectrics and band gap engineering in graphene layers,” Nano Lett. 10(9), 3572–3576 (2010).
[Crossref]

Ng, C. H.

C. H. Ng, K. W. Chew, and S. F. Chu, “Characterization and comparison of pecvd silicon nitride and silicon oxynitride dielectric for mim capacitors,” IEEE Electron Device Lett. 24(8), 506–508 (2003).
[Crossref]

Norris, T. B.

Y.-C. Chang, C.-H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of true two-dimensional layers by ellipsometry,” in 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications, (2014), pp. 1–2.

Novoselov, K. S.

K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, V. I. F. Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref]

Obraztsov, A. N.

A. N. Obraztsov, “Making graphene on a large scale,” Nat. Nanotechnol. 4(4), 212–213 (2009).
[Crossref]

Okawachi, Y.

Otto, M.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5(1), 10967 (2015).
[Crossref]

Paloczi, G. T.

Park, C. S.

J. K. Lee, C. S. Park, and H. Kim, “Sheet resistance variation of graphene grown on annealed and mechanically polished Cu films,” RSC Adv. 4(107), 62453–62456 (2014).
[Crossref]

Perebeinos, V.

W. Zhu, D. Neumayer, V. Perebeinos, and P. Avouris, “Silicon nitride gate dielectrics and band gap engineering in graphene layers,” Nano Lett. 10(9), 3572–3576 (2010).
[Crossref]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref]

Pernice, W. H. P.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Perova, T.

J. Faneca, T. Perova, V. Tolmachev, and A. Baldycheva, “One-dimensional multi-channel photonic crystal resonators based on Silicon-On-Insulator with high quality factor,” Front. Phys. 6, 33 (2018).
[Crossref]

Petropoulos, P.

T. D. Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNxlayers for photonic applications,” J. Phys. D: Appl. Phys. 50(2), 025106 (2017).
[Crossref]

Phare, C.

G. Kovacevic, C. Phare, S. Y. Set, M. Lipson, and S. Yamashita, “Ultra-high-speed graphene optical modulator design based on tight field confinement in a slot waveguide,” Appl. Phys. Express 11(6), 065102 (2018).
[Crossref]

Phare, C. T.

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 ghz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Pischel, U.

J. Andréasson, U. Pischel, S. D. Straight, T. A. Moore, A. L. Moore, and D. Gust, “All-photonic multifunctional molecular logic device,” J. Am. Chem. Soc. 133(30), 11641–11648 (2011).
[Crossref]

Png, C.

Poon, J. K. S.

Qian, W.

Quek, S. Y.

W. S. Leong, X. Luo, Y. Li, K. H. Khoo, S. Y. Quek, and J. T. Thong, “Low resistance metal contacts to MoS 2 devices with nickel-etched-graphene electrodes,” ACS Nano 9(1), 869–877 (2015).
[Crossref]

Radic, S.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Reed, G. T.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

F. Y. Gardes, G. T. Reed, N. Emerson, and C. Png, “A sub-micron depletion-type photonic modulator in silicon on insulator,” Opt. Express 13(22), 8845–8854 (2005).
[Crossref]

Ríos, C.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Romagnoli, M.

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

V. Sorianello, M. Midrio, and M. Romagnoli, “Design optimization of single and double layer Graphene phase modulators in SOI,” Opt. Express 23(5), 6478 (2015).
[Crossref]

M. Midrio, S. Boscolo, M. Moresco, M. Romagnoli, C. D. Angelis, A. Locatelli, and A.-D. Capobianco, “Graphene–assisted critically–coupled optical ring modulator,” Opt. Express 20(21), 23144–23155 (2012).
[Crossref]

M. Romagnoli, “Graphene photonics for optical communications,” Optical Fiber Communication Conference (OFC) 2019 p. M3D.3 (2019).

Sagade, A. A.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5(1), 10967 (2015).
[Crossref]

Saperstein, R. E.

Schall, D.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5(1), 10967 (2015).
[Crossref]

Scherer, T.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Scheuer, J.

Schwab, M. G.

K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, V. I. F. Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, V. I. F. Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Sengo, G.

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

Set, S. Y.

G. Kovacevic, C. Phare, S. Y. Set, M. Lipson, and S. Yamashita, “Ultra-high-speed graphene optical modulator design based on tight field confinement in a slot waveguide,” Appl. Phys. Express 11(6), 065102 (2018).
[Crossref]

Shafiiha, R.

Shalin, A. S.

A. S. Shalin, P. Ginzburg, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Nano-opto-mechanical effects in plasmonic waveguides,” Laser Photonics Rev. 8(1), 131–136 (2014).
[Crossref]

Shapter, J. G.

A. J. Stapleton, C. J. Shearer, C. T. Gibson, A. D. Slattery, and J. G. Shapter, “Accurate thickness measurement of graphene,” Nanotechnology 27(12), 125704 (2016).
[Crossref]

Shearer, C. J.

A. J. Stapleton, C. J. Shearer, C. T. Gibson, A. D. Slattery, and J. G. Shapter, “Accurate thickness measurement of graphene,” Nanotechnology 27(12), 125704 (2016).
[Crossref]

Shen, Y. R.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable Optical Transitions in Graphene,” Science 320(5873), 206–209 (2008).
[Crossref]

Slattery, A. D.

A. J. Stapleton, C. J. Shearer, C. T. Gibson, A. D. Slattery, and J. G. Shapter, “Accurate thickness measurement of graphene,” Nanotechnology 27(12), 125704 (2016).
[Crossref]

Soref, R.

R. Soref, “Tutorial: Integrated-photonic switching structures,” APL Photonics 3(2), 021101 (2018).
[Crossref]

Sorianello, V.

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

V. Sorianello, M. Midrio, and M. Romagnoli, “Design optimization of single and double layer Graphene phase modulators in SOI,” Opt. Express 23(5), 6478 (2015).
[Crossref]

Stankovic, S.

T. D. Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNxlayers for photonic applications,” J. Phys. D: Appl. Phys. 50(2), 025106 (2017).
[Crossref]

Stapleton, A. J.

A. J. Stapleton, C. J. Shearer, C. T. Gibson, A. D. Slattery, and J. G. Shapter, “Accurate thickness measurement of graphene,” Nanotechnology 27(12), 125704 (2016).
[Crossref]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref]

Stegmaier, M.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Straight, S. D.

J. Andréasson, U. Pischel, S. D. Straight, T. A. Moore, A. L. Moore, and D. Gust, “All-photonic multifunctional molecular logic device,” J. Am. Chem. Soc. 133(30), 11641–11648 (2011).
[Crossref]

Templ, W.

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

Thomson, D. J.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Thong, J. T.

W. S. Leong, X. Luo, Y. Li, K. H. Khoo, S. Y. Quek, and J. T. Thong, “Low resistance metal contacts to MoS 2 devices with nickel-etched-graphene electrodes,” ACS Nano 9(1), 869–877 (2015).
[Crossref]

Tian, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable Optical Transitions in Graphene,” Science 320(5873), 206–209 (2008).
[Crossref]

Tolmachev, V.

J. Faneca, T. Perova, V. Tolmachev, and A. Baldycheva, “One-dimensional multi-channel photonic crystal resonators based on Silicon-On-Insulator with high quality factor,” Front. Phys. 6, 33 (2018).
[Crossref]

Tong, L.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2d materials for optical modulation: Challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref]

Tong, Q.

Van Der Marel, D.

A. B. Kuzmenko, E. Van Heumen, F. Carbone, and D. Van Der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
[Crossref]

Van Heumen, E.

A. B. Kuzmenko, E. Van Heumen, F. Carbone, and D. Van Der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
[Crossref]

Venugopal, A.

A. Venugopal, L. Colombo, and E. M. Vogel, “Contact resistance in few and multilayer graphene devices,” Appl. Phys. Lett. 96(1), 013512 (2010).
[Crossref]

Vogel, E. M.

A. Venugopal, L. Colombo, and E. M. Vogel, “Contact resistance in few and multilayer graphene devices,” Appl. Phys. Lett. 96(1), 013512 (2010).
[Crossref]

Wang, D.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Wang, F.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable Optical Transitions in Graphene,” Science 320(5873), 206–209 (2008).
[Crossref]

Wang, H.

Wang, J.

X. Hu and J. Wang, “High Figure of Merit Graphene Modulator Based on Long-Range Hybrid Plasmonic Slot Waveguide,” IEEE J. Quantum Electron. 53(3), 1–8 (2017).
[Crossref]

Wang, Y.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2d materials for optical modulation: Challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref]

H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 ghz speed,” ACS Photonics 3(9), 1564–1568 (2016).
[Crossref]

Wei, D.

Wojcik, J.

Wright, C. D.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Wu, X.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2d materials for optical modulation: Challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref]

Wurtz, G. A.

Xia, Y.

H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 ghz speed,” ACS Photonics 3(9), 1564–1568 (2016).
[Crossref]

Xiao, S.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator; PMID: 26042835.,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref]

Xie, C.

Xin, Z.

Yamashita, S.

G. Kovacevic, C. Phare, S. Y. Set, M. Lipson, and S. Yamashita, “Ultra-high-speed graphene optical modulator design based on tight field confinement in a slot waveguide,” Appl. Phys. Express 11(6), 065102 (2018).
[Crossref]

Yang, H.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref]

Yariv, A.

Yin, X.

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref]

Yu, S.

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2d materials for optical modulation: Challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref]

Yue, S.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref]

Yvind, K.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator; PMID: 26042835.,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref]

Zayats, A. V.

A. S. Shalin, P. Ginzburg, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Nano-opto-mechanical effects in plasmonic waveguides,” Laser Photonics Rev. 8(1), 131–136 (2014).
[Crossref]

A. D. Neira, G. A. Wurtz, P. Ginzburg, and A. V. Zayats, “Ultrafast all-optical modulation with hyperbolic metamaterial integrated in si photonic circuitry,” Opt. Express 22(9), 10987–10994 (2014).
[Crossref]

Zettl, A.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable Optical Transitions in Graphene,” Science 320(5873), 206–209 (2008).
[Crossref]

Zhang, X.

J. Lin, Q. Tong, Y. Lei, Z. Xin, D. Wei, X. Zhang, J. Liao, H. Wang, and C. Xie, “Electrically tunable infrared filter based on a cascaded liquid-crystal Fabry-Perot for spectral imaging detection,” Appl. Opt. 56(7), 1925 (2017).
[Crossref]

H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 ghz speed,” ACS Photonics 3(9), 1564–1568 (2016).
[Crossref]

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref]

Zhang, Y.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable Optical Transitions in Graphene,” Science 320(5873), 206–209 (2008).
[Crossref]

Zheng, X.

Zhong, Z.

Y.-C. Chang, C.-H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of true two-dimensional layers by ellipsometry,” in 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications, (2014), pp. 1–2.

Zhu, W.

W. Zhu, D. Neumayer, V. Perebeinos, and P. Avouris, “Silicon nitride gate dielectrics and band gap engineering in graphene layers,” Nano Lett. 10(9), 3572–3576 (2010).
[Crossref]

Zhu, X.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator; PMID: 26042835.,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref]

Zlatanovic, S.

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

ACS Nano (2)

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref]

W. S. Leong, X. Luo, Y. Li, K. H. Khoo, S. Y. Quek, and J. T. Thong, “Low resistance metal contacts to MoS 2 devices with nickel-etched-graphene electrodes,” ACS Nano 9(1), 869–877 (2015).
[Crossref]

ACS Photonics (1)

H. Dalir, Y. Xia, Y. Wang, and X. Zhang, “Athermal broadband graphene optical modulator with 35 ghz speed,” ACS Photonics 3(9), 1564–1568 (2016).
[Crossref]

Adv. Mater. (1)

S. Yu, X. Wu, Y. Wang, X. Guo, and L. Tong, “2d materials for optical modulation: Challenges and opportunities,” Adv. Mater. 29(14), 1606128 (2017).
[Crossref]

APL Photonics (1)

R. Soref, “Tutorial: Integrated-photonic switching structures,” APL Photonics 3(2), 021101 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (2)

R. Ishikawa, Y. Kurokawa, S. Miyajima, and M. Konagai, “Peeling process of thin-film solar cells using graphene layers,” Appl. Phys. Express 10(8), 082301 (2017).
[Crossref]

G. Kovacevic, C. Phare, S. Y. Set, M. Lipson, and S. Yamashita, “Ultra-high-speed graphene optical modulator design based on tight field confinement in a slot waveguide,” Appl. Phys. Express 11(6), 065102 (2018).
[Crossref]

Appl. Phys. Lett. (2)

A. Venugopal, L. Colombo, and E. M. Vogel, “Contact resistance in few and multilayer graphene devices,” Appl. Phys. Lett. 96(1), 013512 (2010).
[Crossref]

H. Li, Y. Anugrah, S. J. Koester, and M. Li, “Optical absorption in graphene integrated on silicon waveguides,” Appl. Phys. Lett. 101(11), 111110 (2012).
[Crossref]

Ferroelectrics (1)

P. Gunter, “Electro-optical effects in ferroelectrics,” Ferroelectrics 74(1), 305–307 (1987).
[Crossref]

Front. Phys. (1)

J. Faneca, T. Perova, V. Tolmachev, and A. Baldycheva, “One-dimensional multi-channel photonic crystal resonators based on Silicon-On-Insulator with high quality factor,” Front. Phys. 6, 33 (2018).
[Crossref]

IEEE Electron Device Lett. (1)

C. H. Ng, K. W. Chew, and S. F. Chu, “Characterization and comparison of pecvd silicon nitride and silicon oxynitride dielectric for mim capacitors,” IEEE Electron Device Lett. 24(8), 506–508 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

X. Hu and J. Wang, “High Figure of Merit Graphene Modulator Based on Long-Range Hybrid Plasmonic Slot Waveguide,” IEEE J. Quantum Electron. 53(3), 1–8 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. J. Thomson, F. Y. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-gb/s silicon optical modulator,” IEEE Photonics Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

E. J. Klein, D. H. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photonics Technol. Lett. 17(11), 2358–2360 (2005).
[Crossref]

J. Am. Chem. Soc. (1)

J. Andréasson, U. Pischel, S. D. Straight, T. A. Moore, A. L. Moore, and D. Gust, “All-photonic multifunctional molecular logic device,” J. Am. Chem. Soc. 133(30), 11641–11648 (2011).
[Crossref]

J. Phys. D: Appl. Phys. (1)

T. D. Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNxlayers for photonic applications,” J. Phys. D: Appl. Phys. 50(2), 025106 (2017).
[Crossref]

Laser Photonics Rev. (1)

A. S. Shalin, P. Ginzburg, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Nano-opto-mechanical effects in plasmonic waveguides,” Laser Photonics Rev. 8(1), 131–136 (2014).
[Crossref]

Nano Lett. (4)

M. Liu, X. Yin, and X. Zhang, “Double-layer graphene optical modulator,” Nano Lett. 12(3), 1482–1485 (2012).
[Crossref]

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator; PMID: 26042835.,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref]

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12(11), 5784–5790 (2012).
[Crossref]

W. Zhu, D. Neumayer, V. Perebeinos, and P. Avouris, “Silicon nitride gate dielectrics and band gap engineering in graphene layers,” Nano Lett. 10(9), 3572–3576 (2010).
[Crossref]

Nanotechnology (1)

A. J. Stapleton, C. J. Shearer, C. T. Gibson, A. D. Slattery, and J. G. Shapter, “Accurate thickness measurement of graphene,” Nanotechnology 27(12), 125704 (2016).
[Crossref]

Nat. Nanotechnol. (1)

A. N. Obraztsov, “Making graphene on a large scale,” Nat. Nanotechnol. 4(4), 212–213 (2009).
[Crossref]

Nat. Photonics (3)

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 ghz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Nat. Rev. Mater. (1)

M. Romagnoli, V. Sorianello, M. Midrio, F. H. L. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A. C. Ferrari, “Graphene-based integrated photonics for next-generation datacom and telecom,” Nat. Rev. Mater. 3(10), 392–414 (2018).
[Crossref]

Nature (1)

K. S. Novoselov, V. I. Fal, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, V. I. F. Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490(7419), 192–200 (2012).
[Crossref]

Opt. Express (9)

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987 (2008).
[Crossref]

J. N. Milgram, J. Wojcik, P. Mascher, and A. P. Knights, “Optically pumped Si nanocrystal emitter integrated with low loss silicon nitride waveguides,” Opt. Express 15(22), 14679–14688 (2007).
[Crossref]

A. D. Neira, G. A. Wurtz, P. Ginzburg, and A. V. Zayats, “Ultrafast all-optical modulation with hyperbolic metamaterial integrated in si photonic circuitry,” Opt. Express 22(9), 10987–10994 (2014).
[Crossref]

F. Y. Gardes, G. T. Reed, N. Emerson, and C. Png, “A sub-micron depletion-type photonic modulator in silicon on insulator,” Opt. Express 13(22), 8845–8854 (2005).
[Crossref]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
[Crossref]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
[Crossref]

M. Midrio, S. Boscolo, M. Moresco, M. Romagnoli, C. D. Angelis, A. Locatelli, and A.-D. Capobianco, “Graphene–assisted critically–coupled optical ring modulator,” Opt. Express 20(21), 23144–23155 (2012).
[Crossref]

J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12(1), 90–103 (2004).
[Crossref]

V. Sorianello, M. Midrio, and M. Romagnoli, “Design optimization of single and double layer Graphene phase modulators in SOI,” Opt. Express 23(5), 6478 (2015).
[Crossref]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

A. B. Kuzmenko, E. Van Heumen, F. Carbone, and D. Van Der Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100(11), 117401 (2008).
[Crossref]

RSC Adv. (1)

J. K. Lee, C. S. Park, and H. Kim, “Sheet resistance variation of graphene grown on annealed and mechanically polished Cu films,” RSC Adv. 4(107), 62453–62456 (2014).
[Crossref]

Sci. Rep. (1)

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5(1), 10967 (2015).
[Crossref]

Science (2)

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science 320(5881), 1308 (2008).
[Crossref]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-Variable Optical Transitions in Graphene,” Science 320(5873), 206–209 (2008).
[Crossref]

Other (4)

N. A. Hassan and R. Hijazi, “Chapter 6 - data hiding forensics,” in Data Hiding Techniques in Windows OS, N. A. Hassan and R. Hijazi, eds., (Syngress, Boston, 2017), pp. 207–265.

Y.-C. Chang, C.-H. Liu, Z. Zhong, and T. B. Norris, “Extracting the complex optical conductivity of true two-dimensional layers by ellipsometry,” in 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications, (2014), pp. 1–2.

M. Romagnoli, “Graphene photonics for optical communications,” Optical Fiber Communication Conference (OFC) 2019 p. M3D.3 (2019).

E. J. Klein and A. Driessen, “Densely integrated photonic devices based on microring resonators in access networks,” in 2007 9th International Conference on Transparent Optical Networks, vol. 1 (2007), p. 201.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic of the integrated parallel volatile photonic memory based on a multiplexed system of hybrid graphene capacitor-SRN microring circuits. The photonic circuit consist of three microrings of radii $R_1$, $R_2$, $R_3$ with integrated graphene capacitor sections (graphene-red; electrical contacts- yellow). The schematic depicts coding for the binary number "101" where transmission of different wavelengths is tuned by switching the graphene capacitors ’ON’ or ’OFF’ on different rings.
Fig. 2.
Fig. 2. (a) Schematic cross-section of the HWGC structure - a SRN ridge waveguide with a graphene-(Si3N4) capacitor on top. (b) Top view of an embedded micro-ring resonator partially covered by a graphene capacitor incorporating golden contacts for the application of a voltage to the device.
Fig. 3.
Fig. 3. The effective refractive index of the mode propagating in the hybrid structure made of a graphene capacitor on top of a 1.2 x 0.3 $\mu$m SRN (n=2.54) ridge waveguide, plotted against (a) the graphene’s Fermi level and (b) the voltage applied to the capacitor. The graphene capacitor is made of a layer of 10 nm of (Si3N4) acting as the insulator between two graphene sheets. The real part of the $n_{eff}$, $n_{eff}^c$, is represented by the blue line (left y-axis) and the imaginary part ($k_{eff}^c$), expressed in terms of the loss coefficient, is represented by the red line (right y-axis).
Fig. 4.
Fig. 4. (a) Resonant wavelength as a function of the length of graphene capacitor for a fixed ring resonator radius ($R=65\mu$m). (b) Resonant wavelength shift produced by the graphene capacitor for different lengths (blue) and extinction ratio difference achieved for different graphene capacitor length (red).
Fig. 5.
Fig. 5. (a) Transmission at the input waveguide for three different ring resonators with radii $R_1$=70 $\mu$m, $R_2$=65 $\mu$m and $R_3$=60 $\mu$m and different voltages applied individually to each of the rings. (b) Binary coding combinations obtained by individually tuning each ring resonator graphene capacitor. The extinction ratio difference ($ER$) between the ON and OFF states at the output waveguides for each of the individual ring resonators ($R_1$, $R_2$ and $R_3$) allows one to code $2^3$ combinations.
Fig. 6.
Fig. 6. (a) HWGC cross-section showing the defined equivalent circuit of the graphene capacitor and contacts where $R_c$, $R_s$ are the contact and the sheet resistance respectively and C is the capacitance. $d_c$ is the graphene capacitor width and $d_s$ is the distance between the contacts and the waveguide. (b) Time response of the HWGC.
Fig. 7.
Fig. 7. (a) Parametric sweep study of the $k_{eff}$ in the mode against the distance between the contact and the graphene capacitor ($d_s$) for values between 200-1200 nm for Si3N4 (black line) and for Silicon Rich Nitride (SRN) (red line) (b) Parametric sweep study of the contact resistance for Si3N4 platform (black line) and for SRN (red line). The ridge waveguide dimensions are 1200 nm width and 300 nm thick.
Fig. 8.
Fig. 8. (a) Plot of the energy per bit against the Extinction Ratio ($ER$) between the ON and OFF state achieved for different lengths of the graphene capacitor. For each curve, each circle marker corresponds to a different value of $V_{ON}$ used for the ON-state, at 1V intervals; with the first marker representing 5V and the last one 11V. In all cases, the values used for the OFF-state is $V_{OFF}=4V$. (b) The loss coefficient $\alpha _c$ of the guided mode along the HWGC structure against the operating voltage. Several curves are plotted for different values of the dielectric constant of the insulator between the plates of the capacitor, $\varepsilon _{ins}$.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

σ t ( ω , μ , Γ , T ) = σ i n t r a + σ i n t e r + σ i n t e r
σ i n t r a = 4 σ 0 μ π ( τ 1 1 j ω ) ,
σ i n t e r = σ 0 ( 1 + 1 π t a n 1 ( ω 2 μ τ 2 1 ) 1 π t a n 1 ( ω + 2 μ τ 2 1 ) )
σ i n t e r = σ 0 2 π l n ( ( 2 μ + ω ) 2 + 2 τ 2 2 ( 2 μ ω ) 2 + 2 τ 2 2 ) ,
ε ( μ ) = 1 + j σ ( μ ) ω ε 0 δ ,
μ = h ν F 2 π π | n s | ,
| V | = e n s C + 2 μ e ,
| V | = e π ( h ν F ) 2 μ 2 C + 2 | μ | e ,
E 0.5 e V = q n s ε i n s ε 0 3.6 10 7 ε i n s [ V c m ]
n e f f L = m λ m
B d w = 1 2 π [ 2 ( R c + R s ) ] C
E b = 1 4 C V 2 = 1 4 ε 0 ε i n s t i n s L g d c [ V O N V O F F ] 2