Abstract

We report an ultra-low noise, polarization-maintaining, ultrafast Thulium-doped all-fiber chirped pulse amplifier, seeded by a polarized all-normal dispersion (ANDi) supercontinuum (SC) driven by an ultrafast Erbium-fiber laser. The system comprises only polarization-maintaining fibers and delivers 96 fs pulses with 350 mW output power at 100 MHz, centered at 1900 nm. The integrated relative intensity noise (RIN) in the range of 10 Hz – 10 MHz is only 0.047% at the amplifier output, which is virtually identical to the RIN of the Erbium-fiber laser driving the SC. Therefore, neither the SC generation nor the amplification process introduce significant excess noise. The RIN of our system is an order of magnitude lower than similar systems previously seeded with Raman solitons. This highlights the superior noise properties of ANDi SC and their potential as ultra-low noise seed sources for broadband, high power ultrafast fiber amplifiers and frequency combs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-PM coherent 2.05 µm Thulium/Holmium fiber frequency comb source at 100 MHz with up to 0.5 W average power and pulse duration down to 135 fs

H. Hoogland, A. Thai, D. Sánchez, S. L. Cousin, M. Hemmer, M. Engelbrecht, J. Biegert, and R. Holzwarth
Opt. Express 21(25) 31390-31394 (2013)

Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2 µm in all-solid soft glass photonic crystal fibers

Mariusz Klimczak, Bartłomiej Siwicki, Binbin Zhou, Morten Bache, Dariusz Pysz, Ole Bang, and Ryszard Buczyński
Opt. Express 24(26) 29406-29416 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate,” Opt. Express 20(10), 10870–10878 (2012).
    [Crossref]
  2. S. Kumkar, G. Krauss, M. Wunram, D. Fehrenbacher, U. Demirbas, D. Brida, and A. Leitenstorfer, “Femtosecond coherent seeding of a broadband Tm:fiber amplifier by an Er:fiber system,” Opt. Lett. 37(4), 554–556 (2012).
    [Crossref]
  3. G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100  fs pulses tunable from 1700 to 2100  nm from a compact frequency-shifted Er-fiber laser,” Photonics Res. 5(3), 151–155 (2017).
    [Crossref]
  4. G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800–2000  nm range,” Photonics Res. 6(5), 368–372 (2018).
    [Crossref]
  5. N. Coluccelli, M. Cassinerio, P. Laporta, and G. Galzerano, “Single-clad Tm–Ho:fiber amplifier for high-power sub-100-fs pulses around 1.9 µm,” Opt. Lett. 38(15), 2757–2759 (2013).
    [Crossref]
  6. J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, and G. Soboń, “All-fiber mid-infrared source tunable from 6 to 9 µm based on difference frequency generation in OP-GaP crystal,” Opt. Express 26(9), 11756–11763 (2018).
    [Crossref]
  7. D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Efficient Frequency Comb Generation in the 9 µm Region Using Compact Fiber Sources,” IEEE Photonics Technol. Lett. 26(22), 2271–2274 (2014).
    [Crossref]
  8. C. Gaida, T. Heuermann, M. Gebhardt, E. Shestaev, T. P. Butler, D. Gerz, N. Lilienfein, P. Sulzer, M. Fischer, R. Holzwarth, A. Leitenstorfer, I. Pupeza, and J. Limpert, “High-power frequency comb at 2  µm wavelength emitted by a Tm-doped fiber laser system,” Opt. Lett. 43(21), 5178–5181 (2018).
    [Crossref]
  9. F. Adler and S. A. Diddams, “High-power, hybrid Er:fiber/Tm:fiber frequency comb source in the 2 µm wavelength region,” Opt. Lett. 37(9), 1400–1402 (2012).
    [Crossref]
  10. N. Coluccelli, M. Cassinerio, A. Gambetta, P. Laporta, and G. Galzerano, “High-power frequency comb in the range of 2–2.15  µm based on a holmium fiber amplifier seeded by wavelength-shifted Raman solitons from an erbium-fiber laser,” Opt. Lett. 39(6), 1661–1664 (2014).
    [Crossref]
  11. H. Hoogland, A. Thai, D. Sánchez, S. L. Cousin, M. Hemmer, M. Engelbrecht, J. Biegert, and R. Holzwarth, “All-PM coherent 2.05 µm Thulium/Holmium fiber frequency comb source at 100 MHz with up to 0.5 W average power and pulse duration down to 135 fs,” Opt. Express 21(25), 31390–31394 (2013).
    [Crossref]
  12. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010).
    [Crossref]
  13. F. Tan, H. Shi, R. Sun, P. Wang, and P. Wang, “1 µJ, sub-300 fs pulse generation from a compact thulium-doped chirped pulse amplifier seeded by Raman shifted erbium-doped fiber laser,” Opt. Express 24(20), 22461–22468 (2016).
    [Crossref]
  14. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28(11), 944–946 (2003).
    [Crossref]
  15. T. Heuermann, C. Gaida, M. Gebhardt, and J. Limpert, “Thulium-doped nonlinear fiber amplifier delivering 50  fs pulses at 20  W of average power,” Opt. Lett. 43(18), 4441–4444 (2018).
    [Crossref]
  16. A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017).
    [Crossref]
  17. D. S. Shreesha Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low-noise supercontinuum generation with a flat near-zero normal dispersion fiber,” Opt. Lett. 44(9), 2216–2219 (2019).
    [Crossref]
  18. E. Genier, P. Bowen, T. Sylvestre, J. M. Dudley, P. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36(2), A161–A167 (2019).
    [Crossref]
  19. M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
    [Crossref]
  20. A. M. Heidt, J. Modupeh Hodasi, A. Rampur, D.-M. Spangenberg, M. Ryser, M. Klimczak, and T. Feurer, “Low noise all-fiber amplification of a coherent supercontinuum at 2 µm and its limits imposed by polarization noise,” arXiv e-prints arXiv:1903.09583 (2019).
  21. G. Millot, E. Seve, S. Wabnitz, and M. Haelterman, “Observation of induced modulational polarization instabilities and pulse-train generation in the normal-dispersion regime of a birefringent optical fiber,” J. Opt. Soc. Am. B 15(4), 1266–1277 (1998).
    [Crossref]
  22. H. Tu, Y. Liu, X. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express 20(2), 1113–1128 (2012).
    [Crossref]
  23. I. Bravo Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 6579 (2018).
    [Crossref]
  24. Y. Liu, Y. Zhao, J. Lyngsø, S. You, W. L. Wilson, H. Tu, and S. A. Boppart, “Suppressing Short-Term Polarization Noise and Related Spectral Decoherence in All-Normal Dispersion Fiber Supercontinuum Generation,” J. Lightwave Technol. 33(9), 1814–1820 (2015).
    [Crossref]
  25. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
    [Crossref]
  26. D. Dobrakowski, A. Rampur, G. Stępniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
    [Crossref]
  27. P. Ciąćka, A. Rampur, A. Heidt, T. Feurer, and M. Klimczak, “Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths,” J. Opt. Soc. Am. B 35(6), 1301–1307 (2018).
    [Crossref]
  28. R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7(4), 641–655 (2001).
    [Crossref]
  29. K. W. DeLong, D. N. Fittinghoff, R. Trebino, B. Kohler, and K. Wilson, “Pulse retrieval in frequency-resolved optical gating based on the method of generalized projections,” Opt. Lett. 19(24), 2152–2154 (1994).
    [Crossref]
  30. C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, and J. Limpert, “Ultrafast thulium fiber laser system emitting more than 1  kW of average power,” Opt. Lett. 43(23), 5853–5856 (2018).
    [Crossref]

2019 (3)

2018 (7)

P. Ciąćka, A. Rampur, A. Heidt, T. Feurer, and M. Klimczak, “Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths,” J. Opt. Soc. Am. B 35(6), 1301–1307 (2018).
[Crossref]

T. Heuermann, C. Gaida, M. Gebhardt, and J. Limpert, “Thulium-doped nonlinear fiber amplifier delivering 50  fs pulses at 20  W of average power,” Opt. Lett. 43(18), 4441–4444 (2018).
[Crossref]

I. Bravo Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 6579 (2018).
[Crossref]

C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, and J. Limpert, “Ultrafast thulium fiber laser system emitting more than 1  kW of average power,” Opt. Lett. 43(23), 5853–5856 (2018).
[Crossref]

G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800–2000  nm range,” Photonics Res. 6(5), 368–372 (2018).
[Crossref]

J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, and G. Soboń, “All-fiber mid-infrared source tunable from 6 to 9 µm based on difference frequency generation in OP-GaP crystal,” Opt. Express 26(9), 11756–11763 (2018).
[Crossref]

C. Gaida, T. Heuermann, M. Gebhardt, E. Shestaev, T. P. Butler, D. Gerz, N. Lilienfein, P. Sulzer, M. Fischer, R. Holzwarth, A. Leitenstorfer, I. Pupeza, and J. Limpert, “High-power frequency comb at 2  µm wavelength emitted by a Tm-doped fiber laser system,” Opt. Lett. 43(21), 5178–5181 (2018).
[Crossref]

2017 (2)

A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017).
[Crossref]

G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100  fs pulses tunable from 1700 to 2100  nm from a compact frequency-shifted Er-fiber laser,” Photonics Res. 5(3), 151–155 (2017).
[Crossref]

2016 (1)

2015 (1)

2014 (3)

2013 (2)

2012 (4)

2010 (1)

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010).
[Crossref]

2003 (1)

2001 (1)

R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7(4), 641–655 (2001).
[Crossref]

1998 (1)

1994 (1)

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Adler, F.

Anuszkiewicz, A.

D. Dobrakowski, A. Rampur, G. Stępniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
[Crossref]

Bache, M.

Bang, O.

Biegert, J.

Boppart, S. A.

Bowen, P.

Bravo Gonzalo, I.

I. Bravo Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 6579 (2018).
[Crossref]

Brida, D.

Buczynski, R.

Butler, T. P.

Cassinerio, M.

Churin, D.

D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Efficient Frequency Comb Generation in the 9 µm Region Using Compact Fiber Sources,” IEEE Photonics Technol. Lett. 26(22), 2271–2274 (2014).
[Crossref]

Ciacka, P.

Coluccelli, N.

Corwin, K. L.

Cousin, S. L.

DeLong, K. W.

Demirbas, U.

Demmler, S.

Diddams, S. A.

Dobrakowski, D.

D. Dobrakowski, A. Rampur, G. Stępniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
[Crossref]

Dudley, J. M.

Eggert, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010).
[Crossref]

Engelbrecht, M.

Engelsholm, R. D.

D. S. Shreesha Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low-noise supercontinuum generation with a flat near-zero normal dispersion fiber,” Opt. Lett. 44(9), 2216–2219 (2019).
[Crossref]

I. Bravo Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 6579 (2018).
[Crossref]

Feehan, J. S.

Fehrenbacher, D.

Feurer, T.

Fischer, M.

Fittinghoff, D. N.

Gaida, C.

Galzerano, G.

Gambetta, A.

Gebhardt, M.

Genier, E.

Gerz, D.

Gonzalo, I. B.

Hädrich, S.

Haelterman, M.

Hanke, T.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010).
[Crossref]

Heidt, A.

Heidt, A. M.

A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017).
[Crossref]

A. M. Heidt, J. Modupeh Hodasi, A. Rampur, D.-M. Spangenberg, M. Ryser, M. Klimczak, and T. Feurer, “Low noise all-fiber amplification of a coherent supercontinuum at 2 µm and its limits imposed by polarization noise,” arXiv e-prints arXiv:1903.09583 (2019).

Hemmer, M.

Heuermann, T.

Holzwarth, R.

Hoogland, H.

Huber, R.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010).
[Crossref]

Jauregui, C.

Kasztelanic, R.

D. Dobrakowski, A. Rampur, G. Stępniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
[Crossref]

Kieu, K.

D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Efficient Frequency Comb Generation in the 9 µm Region Using Compact Fiber Sources,” IEEE Photonics Technol. Lett. 26(22), 2271–2274 (2014).
[Crossref]

Klimczak, M.

D. Dobrakowski, A. Rampur, G. Stępniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
[Crossref]

P. Ciąćka, A. Rampur, A. Heidt, T. Feurer, and M. Klimczak, “Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths,” J. Opt. Soc. Am. B 35(6), 1301–1307 (2018).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
[Crossref]

A. M. Heidt, J. Modupeh Hodasi, A. Rampur, D.-M. Spangenberg, M. Ryser, M. Klimczak, and T. Feurer, “Low noise all-fiber amplification of a coherent supercontinuum at 2 µm and its limits imposed by polarization noise,” arXiv e-prints arXiv:1903.09583 (2019).

Kohler, B.

Kolner, B. H.

R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7(4), 641–655 (2001).
[Crossref]

Krauss, G.

S. Kumkar, G. Krauss, M. Wunram, D. Fehrenbacher, U. Demirbas, D. Brida, and A. Leitenstorfer, “Femtosecond coherent seeding of a broadband Tm:fiber amplifier by an Er:fiber system,” Opt. Lett. 37(4), 554–556 (2012).
[Crossref]

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010).
[Crossref]

Kumkar, S.

Lægsgaard, J.

Langrock, C.

R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7(4), 641–655 (2001).
[Crossref]

Laporta, P.

Leitenstorfer, A.

Lilienfein, N.

Limpert, J.

Lisowska, J.

D. Dobrakowski, A. Rampur, G. Stępniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
[Crossref]

Liu, X.

Liu, Y.

Lohss, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010).
[Crossref]

Lyngsø, J.

Martynkien, T.

J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, and G. Soboń, “All-fiber mid-infrared source tunable from 6 to 9 µm based on difference frequency generation in OP-GaP crystal,” Opt. Express 26(9), 11756–11763 (2018).
[Crossref]

G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800–2000  nm range,” Photonics Res. 6(5), 368–372 (2018).
[Crossref]

G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100  fs pulses tunable from 1700 to 2100  nm from a compact frequency-shifted Er-fiber laser,” Photonics Res. 5(3), 151–155 (2017).
[Crossref]

Mergo, P.

G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800–2000  nm range,” Photonics Res. 6(5), 368–372 (2018).
[Crossref]

J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, and G. Soboń, “All-fiber mid-infrared source tunable from 6 to 9 µm based on difference frequency generation in OP-GaP crystal,” Opt. Express 26(9), 11756–11763 (2018).
[Crossref]

G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100  fs pulses tunable from 1700 to 2100  nm from a compact frequency-shifted Er-fiber laser,” Photonics Res. 5(3), 151–155 (2017).
[Crossref]

Millot, G.

Modupeh Hodasi, J.

A. M. Heidt, J. Modupeh Hodasi, A. Rampur, D.-M. Spangenberg, M. Ryser, M. Klimczak, and T. Feurer, “Low noise all-fiber amplification of a coherent supercontinuum at 2 µm and its limits imposed by polarization noise,” arXiv e-prints arXiv:1903.09583 (2019).

Moselund, P.

Moselund, P. M.

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Newbury, N. R.

Norwood, R. A.

D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Efficient Frequency Comb Generation in the 9 µm Region Using Compact Fiber Sources,” IEEE Photonics Technol. Lett. 26(22), 2271–2274 (2014).
[Crossref]

Peyghambarian, N.

D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Efficient Frequency Comb Generation in the 9 µm Region Using Compact Fiber Sources,” IEEE Photonics Technol. Lett. 26(22), 2271–2274 (2014).
[Crossref]

Price, J. H. V.

Pupeza, I.

Pysz, D.

D. Dobrakowski, A. Rampur, G. Stępniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
[Crossref]

Radzewicz, C.

Rampur, A.

D. Dobrakowski, A. Rampur, G. Stępniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
[Crossref]

P. Ciąćka, A. Rampur, A. Heidt, T. Feurer, and M. Klimczak, “Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths,” J. Opt. Soc. Am. B 35(6), 1301–1307 (2018).
[Crossref]

A. M. Heidt, J. Modupeh Hodasi, A. Rampur, D.-M. Spangenberg, M. Ryser, M. Klimczak, and T. Feurer, “Low noise all-fiber amplification of a coherent supercontinuum at 2 µm and its limits imposed by polarization noise,” arXiv e-prints arXiv:1903.09583 (2019).

Rothhardt, J.

Rutkowski, L.

Ryser, M.

A. M. Heidt, J. Modupeh Hodasi, A. Rampur, D.-M. Spangenberg, M. Ryser, M. Klimczak, and T. Feurer, “Low noise all-fiber amplification of a coherent supercontinuum at 2 µm and its limits imposed by polarization noise,” arXiv e-prints arXiv:1903.09583 (2019).

Sánchez, D.

Schunemann, P. G.

Scott, R. P.

R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7(4), 641–655 (2001).
[Crossref]

Sell, A.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010).
[Crossref]

Seve, E.

Shestaev, E.

Shi, H.

Shreesha Rao, D. S.

Siwicki, B.

Skibinski, P.

Sobon, G.

J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, and G. Soboń, “All-fiber mid-infrared source tunable from 6 to 9 µm based on difference frequency generation in OP-GaP crystal,” Opt. Express 26(9), 11756–11763 (2018).
[Crossref]

G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800–2000  nm range,” Photonics Res. 6(5), 368–372 (2018).
[Crossref]

G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100  fs pulses tunable from 1700 to 2100  nm from a compact frequency-shifted Er-fiber laser,” Photonics Res. 5(3), 151–155 (2017).
[Crossref]

Sørensen, M. P.

I. Bravo Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 6579 (2018).
[Crossref]

Sotor, J.

G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800–2000  nm range,” Photonics Res. 6(5), 368–372 (2018).
[Crossref]

J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, and G. Soboń, “All-fiber mid-infrared source tunable from 6 to 9 µm based on difference frequency generation in OP-GaP crystal,” Opt. Express 26(9), 11756–11763 (2018).
[Crossref]

G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100  fs pulses tunable from 1700 to 2100  nm from a compact frequency-shifted Er-fiber laser,” Photonics Res. 5(3), 151–155 (2017).
[Crossref]

Spangenberg, D.-M.

A. M. Heidt, J. Modupeh Hodasi, A. Rampur, D.-M. Spangenberg, M. Ryser, M. Klimczak, and T. Feurer, “Low noise all-fiber amplification of a coherent supercontinuum at 2 µm and its limits imposed by polarization noise,” arXiv e-prints arXiv:1903.09583 (2019).

Stepien, R.

Stepniewski, G.

D. Dobrakowski, A. Rampur, G. Stępniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
[Crossref]

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Stutzki, F.

Sulzer, P.

Sun, R.

Sylvestre, T.

Tan, F.

Tarnowski, K.

G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800–2000  nm range,” Photonics Res. 6(5), 368–372 (2018).
[Crossref]

G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100  fs pulses tunable from 1700 to 2100  nm from a compact frequency-shifted Er-fiber laser,” Photonics Res. 5(3), 151–155 (2017).
[Crossref]

Thai, A.

Tomaszewska, D.

G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800–2000  nm range,” Photonics Res. 6(5), 368–372 (2018).
[Crossref]

Trebino, R.

Tu, H.

Tünnermann, A.

Turchinovich, D.

Wabnitz, S.

Wang, P.

Washburn, B. R.

Wilson, K.

Wilson, W. L.

Windeler, R. S.

Wunram, M.

You, S.

Zhao, Y.

Zhou, B.

IEEE J. Sel. Top. Quantum Electron. (1)

R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7(4), 641–655 (2001).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Efficient Frequency Comb Generation in the 9 µm Region Using Compact Fiber Sources,” IEEE Photonics Technol. Lett. 26(22), 2271–2274 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

D. Dobrakowski, A. Rampur, G. Stępniewski, A. Anuszkiewicz, J. Lisowska, D. Pysz, R. Kasztelanic, and M. Klimczak, “Development of highly nonlinear polarization-maintaining fibers with normal dispersion across entire transmission window,” J. Opt. 21(1), 015504 (2019).
[Crossref]

J. Opt. Soc. Am. B (4)

Nat. Photonics (1)

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010).
[Crossref]

Opt. Commun. (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Opt. Express (6)

H. Tu, Y. Liu, X. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express 20(2), 1113–1128 (2012).
[Crossref]

J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate,” Opt. Express 20(10), 10870–10878 (2012).
[Crossref]

H. Hoogland, A. Thai, D. Sánchez, S. L. Cousin, M. Hemmer, M. Engelbrecht, J. Biegert, and R. Holzwarth, “All-PM coherent 2.05 µm Thulium/Holmium fiber frequency comb source at 100 MHz with up to 0.5 W average power and pulse duration down to 135 fs,” Opt. Express 21(25), 31390–31394 (2013).
[Crossref]

J. Sotor, T. Martynkien, P. G. Schunemann, P. Mergo, L. Rutkowski, and G. Soboń, “All-fiber mid-infrared source tunable from 6 to 9 µm based on difference frequency generation in OP-GaP crystal,” Opt. Express 26(9), 11756–11763 (2018).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
[Crossref]

F. Tan, H. Shi, R. Sun, P. Wang, and P. Wang, “1 µJ, sub-300 fs pulse generation from a compact thulium-doped chirped pulse amplifier seeded by Raman shifted erbium-doped fiber laser,” Opt. Express 24(20), 22461–22468 (2016).
[Crossref]

Opt. Lett. (10)

T. Heuermann, C. Gaida, M. Gebhardt, and J. Limpert, “Thulium-doped nonlinear fiber amplifier delivering 50  fs pulses at 20  W of average power,” Opt. Lett. 43(18), 4441–4444 (2018).
[Crossref]

C. Gaida, T. Heuermann, M. Gebhardt, E. Shestaev, T. P. Butler, D. Gerz, N. Lilienfein, P. Sulzer, M. Fischer, R. Holzwarth, A. Leitenstorfer, I. Pupeza, and J. Limpert, “High-power frequency comb at 2  µm wavelength emitted by a Tm-doped fiber laser system,” Opt. Lett. 43(21), 5178–5181 (2018).
[Crossref]

C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, and J. Limpert, “Ultrafast thulium fiber laser system emitting more than 1  kW of average power,” Opt. Lett. 43(23), 5853–5856 (2018).
[Crossref]

D. S. Shreesha Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low-noise supercontinuum generation with a flat near-zero normal dispersion fiber,” Opt. Lett. 44(9), 2216–2219 (2019).
[Crossref]

N. Coluccelli, M. Cassinerio, A. Gambetta, P. Laporta, and G. Galzerano, “High-power frequency comb in the range of 2–2.15  µm based on a holmium fiber amplifier seeded by wavelength-shifted Raman solitons from an erbium-fiber laser,” Opt. Lett. 39(6), 1661–1664 (2014).
[Crossref]

N. Coluccelli, M. Cassinerio, P. Laporta, and G. Galzerano, “Single-clad Tm–Ho:fiber amplifier for high-power sub-100-fs pulses around 1.9 µm,” Opt. Lett. 38(15), 2757–2759 (2013).
[Crossref]

S. Kumkar, G. Krauss, M. Wunram, D. Fehrenbacher, U. Demirbas, D. Brida, and A. Leitenstorfer, “Femtosecond coherent seeding of a broadband Tm:fiber amplifier by an Er:fiber system,” Opt. Lett. 37(4), 554–556 (2012).
[Crossref]

F. Adler and S. A. Diddams, “High-power, hybrid Er:fiber/Tm:fiber frequency comb source in the 2 µm wavelength region,” Opt. Lett. 37(9), 1400–1402 (2012).
[Crossref]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28(11), 944–946 (2003).
[Crossref]

K. W. DeLong, D. N. Fittinghoff, R. Trebino, B. Kohler, and K. Wilson, “Pulse retrieval in frequency-resolved optical gating based on the method of generalized projections,” Opt. Lett. 19(24), 2152–2154 (1994).
[Crossref]

Photonics Res. (2)

G. Soboń, T. Martynkien, K. Tarnowski, P. Mergo, and J. Sotor, “Generation of sub-100  fs pulses tunable from 1700 to 2100  nm from a compact frequency-shifted Er-fiber laser,” Photonics Res. 5(3), 151–155 (2017).
[Crossref]

G. Soboń, T. Martynkien, D. Tomaszewska, K. Tarnowski, P. Mergo, and J. Sotor, “All-in-fiber amplification and compression of coherent frequency-shifted solitons tunable in the 1800–2000  nm range,” Photonics Res. 6(5), 368–372 (2018).
[Crossref]

Sci. Rep. (1)

I. Bravo Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 6579 (2018).
[Crossref]

Other (1)

A. M. Heidt, J. Modupeh Hodasi, A. Rampur, D.-M. Spangenberg, M. Ryser, M. Klimczak, and T. Feurer, “Low noise all-fiber amplification of a coherent supercontinuum at 2 µm and its limits imposed by polarization noise,” arXiv e-prints arXiv:1903.09583 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Experimental setup of coherently seeded ultrafast all-PM thulium fiber amplifier. HW – half-wave plate, L - aspheric lens, PM ANDi PCF - polarization maintaining all normal dispersion photonic crystal fiber, ILP - inline polarizer, PM ISO - polarization maintaining isolator, PM WDM - polarization maintaining wavelength division multiplexer, Er CW – Erbium-doped continuous wave fiber laser.
Fig. 2.
Fig. 2. Measured group birefringence and chromatic dispersion along both axes of the PM ANDi PCF. The inset shows a scanning electron microscopy image of the fiber structure.
Fig. 3.
Fig. 3. Measured group delay trace of the coherent ANDi supercontinuum seed signal using cross-correlation frequency-resolved optical gating. Left: Comparison of supercontinuum spectra retrieved from XFROG and measured with OSA (linear scale). Bottom: retrieved pulse shape.
Fig. 4.
Fig. 4. Measured group velocity dispersion characteristics of the PM2000D and PM1550 fiber (representing Tm-doped fiber), adapted from [27];
Fig. 5.
Fig. 5. Logarithmic scale spectra of the amplifier seed pulse (black) and the amplified signal in slow axis (dark blue) and in fast axis (light blue). The all-fiber PM Tm fiber amplifier system operates in slow axis.
Fig. 6.
Fig. 6. Retrieved output pulse spectrograms (a) at the output of the Tm fiber prior to recompression (b) after 2 m of additional PM1550 fiber.
Fig. 7.
Fig. 7. Characterization of the compressed pulse at the output of the PM1550 fiber using SHG FROG. (a) Measured FROG trace, (b) Retrieved FROG trace, (c) FROG-retrieved spectrum (blue) compared to spectrum independently measured with an OSA (black) and phase profile (red), (d) FROG-retrieved pulse shape (blue) compared to the Fourier limit (black) and phase profile (red).
Fig. 8.
Fig. 8. Measured noise characteristics of the Tm amplifier (solid blue), Er:fiber seed laser (solid red) and ANDi supercontinuum (solid green). The dotted lines indicate the shot-noise limit corresponding to the Tm amplifier (blue dot), seed laser (red dot) and supercontinuum (green dot). The black continuous line is the noise floor of the photodiode. The right y-axis shows the integrated RIN of the Tm amplifier (blue dash), the Er:fiber seed laser (red dash) and the ANDi supercontinuum (green dash).