Abstract

We present a hybrid antireflective coating (ARC) providing a complete continuous graded refractive index (GRIN) transition from a high-index substrate down to ambient air. The ARC comprises a first GRIN layer of dense silicon-oxy-nitride with a varying, height adjusted material composition. Secondly, a layer of quasi-periodic nanopillars imitating AR-“moth-eye structure” is added to the dense GRIN layer. Demonstrated on a high index glass with a refractive index of ne=1.73 the hybrid GRIN-ARC is applicable to a broad material selection and allows to eliminate any step-like transition up to a refractive index of the substrate of ∼2.0. The ARC offers antireflective properties for large incidence angles and over an extremely broad spectrum ranging from 400 nm up to 2.5 µm. Compared to the sole substrate, the hybrid GRIN-ARC results in an increase of transmittance of more than 10% in the maximum, and more than 6% in the peripheral regions of the spectrum.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Antireflective “moth-eye” structures on tunable optical silicone membranes

Robert Brunner, Bettina Keil, Christoph Morhard, Dennis Lehr, Jan Draheim, Ulrike Wallrabe, and Joachim Spatz
Appl. Opt. 51(19) 4370-4376 (2012)

Gradient index antireflection coatings on glass containing plasma-etched organic layers

Ulrike Schulz, Friedrich Rickelt, Henning Ludwig, Peter Munzert, and Norbert Kaiser
Opt. Mater. Express 5(6) 1259-1265 (2015)

Mechanically robust antireflective moth-eye structures with a tailored coating of dielectric materials

Young Jin Yoo, Yeong Jae Kim, So-Young Kim, Jong Heon Lee, Kyujung Kim, Joo Hwan Ko, Ji Won Lee, Byoung Hun Lee, and Young Min Song
Opt. Mater. Express 9(11) 4178-4186 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Lohmueller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
    [Crossref]
  2. S. Guldin, P. Kohn, M. Stefik, J. Song, G. Divitini, F. Ecarla, C. Ducati, U. Wiesner, and U. Steiner, “Self-Cleaning Antireflective Optical Coatings,” Nano Lett. 13(11), 5329–5335 (2013).
    [Crossref]
  3. E. E. Perl, W. E. McMahon, R. M. Farrell, S. P. DenBaars, J. S. Speck, and J. E. Bowers, “Surface Structured Optical Coatings with Near-Perfect Broadband and Wide-Angle Antireflective Properties,” Nano Lett. 14(10), 5960–5964 (2014).
    [Crossref]
  4. J. van de Groep, P. Spinelli, and A. Polman, “Single-Step Soft-Imprinted Large-Area Nanopatterned Antireflection Coating,” Nano Lett. 15(6), 4223–4228 (2015).
    [Crossref]
  5. C. Zhang, P. Yi, L. Peng, and J. Ni, “Optimization and continuous fabrication of moth-eye nanostructure array on flexible polyethylene terephthalate substrate towards broadband antireflection,” Appl. Opt. 56(10), 2901–2907 (2017).
    [Crossref]
  6. H. Kasugai, Y. Miyake, A. Honshio, S. Mishima, T. Kawashima, K. Iida, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Kinoshita, and H. Shiomi, “High-Efficiency Nitride-Based Light-Emitting Diodes with Moth-Eye Structure,” Jpn. J. Appl. Phys. 44(10), 7414–7417 (2005).
    [Crossref]
  7. E.-J. Honga, K.-J. Byeona, H. Parka, J. Hwanga, H. Leea, K. Choib, and G. Y. Jung, “Fabrication of moth-eye structure on p-GaN layer of GaN-based LEDs for improvement of light extraction,” Mater. Sci. Eng., B 163(3), 170–173 (2009).
    [Crossref]
  8. F. L. Gonzalez and M. J. Gordon, “Enhancing near-infrared light absorption in PtSi thin films for Schottky barrier IR detectors using moth-eye surface structures,” Opt. Lett. 40(7), 1512–1515 (2015).
    [Crossref]
  9. A. Gombert and B. Bläsi, in Functional Properties of Bio-Inspired Surfaces, E. A. Favret and N. O. Fuentes, eds. (World Scientific Publishing, 2009) pp. 79–102.
  10. G. Tan, J.-H. Lee, Y.-H. Lan, M.-K. Wie, L.-H. Peng, I.-C. Cheng, and S.-T. Wu, “Broadband antireflection film with moth-eye-like structure for flexible display applications,” Optica 4(7), 678–683 (2017).
    [Crossref]
  11. Y. Lee, S.-I. Bae, J. Eom, H.-C. Suh, and K.-H. Jeong, “Antireflective glass nanoholes on optical Lenses,” Opt. Express 26(11), 14786–14791 (2018).
    [Crossref]
  12. S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovoltaics 18(3), 195–203 (2010).
    [Crossref]
  13. S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
    [Crossref]
  14. X. Liu, Y. Da, and Y. Xuan, “Full-spectrum light management by pseudo-disordered moth-eye structures for thin film solar cells,” Opt. Express 25(16), A824–A839 (2017).
    [Crossref]
  15. R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6(1), 6909 (2015).
    [Crossref]
  16. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).
  17. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B 273(1587), 661–667 (2006).
    [Crossref]
  18. L. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” P. Lond. Math. Soc. s1-11(1), 51–56 (1879).
    [Crossref]
  19. W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8(11), 584–586 (1983).
    [Crossref]
  20. W. H. Southwell, “Coating design using very thin high- and low-index layers,” Appl. Opt. 24(4), 457–460 (1985).
    [Crossref]
  21. S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng., R 69(1-3), 1–35 (2010).
    [Crossref]
  22. R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. P. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev. 6(5), 641–659 (2012).
    [Crossref]
  23. U. Schulz, P. Munzert, F. Rickelt, and N. Kaiser, “Hybrid antireflective coating with plasma-etched nanostructure,” Thin Solid Films 532, 119–122 (2013).
    [Crossref]
  24. U. Schulz, F. Rickelt, H. Ludwig, P. Munzert, and N. Kaiser, “Gradient index antireflection coatings on glass containing plasma-etched organic layers,” Opt. Mater. Express 5(6), 1259–1265 (2015).
    [Crossref]
  25. U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, and A. Tünnermann, “Antireflection of transparent polymers by advanced plasma etching procedures,” Opt. Express 15(20), 13108–13113 (2007).
    [Crossref]
  26. D. Lehr, M. Helgert, M. Sundermann, Ch. Morhard, C. Pacholski, J. Spatz, and R. Brunner, “Simulating different manufactured antireflective sub-wavelength structures considering the influence of local topographic variations,” Opt. Express 18(23), 23878–23890 (2010).
    [Crossref]
  27. T. Okuno, “Development of subwavelength structure coating (SWC) and its application to imaging lenses,” Proc. SPIE 7652, IMA2 (2010).
    [Crossref]
  28. U. Schulz, “Wideband antireflection coatings by combining interference multilayers with structured top layers,” Opt. Express 17(11), 8704–8708 (2009).
    [Crossref]
  29. E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
    [Crossref]
  30. S. Bruynooghe, D. Tonova, M. Sundermann, T. Koch, and U. Schulz, “Antireflection coatings combining interference multilayers and a nanoporous MgF2 top layer prepared by glancing angle deposition,” Surf. Coat. Technol. 267, 40–44 (2015).
    [Crossref]
  31. S. Bruynooghe, M. Schulze, M. Helgert, M. Challier, D. Tonova, M. Sundermann, T. Koch, A. Gatto, and E.-B. Kley, “Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures,” J. Nanophotonics 10(3), 033002 (2016).
    [Crossref]
  32. AG Schott, Datasheet N-SF10. https://shop.schott.com/advanced_optics/Produkte/Optisches-Glas/Optisches-Glas/Schwer-Flint/N-SF10/c/optical-glass/glass-N-SF10 , (accessed September 03, 2019)
  33. C. Williges, W. Chen, C. Morhard, J. P. Spatz, and R. Brunner, “Increasing the Order Parameter of Quasi Hexagonal Micellar Nanostructures by Ultrasound Annealing,” Langmuir 29(4), 989–993 (2013).
    [Crossref]
  34. C. Pacholski, C. Morhard, J. P. Spatz, D. Lehr, M. Schulze, E.-B. Kley, A. Tünnermann, M. Helgert, M. Sundermann, and R. Brunner, “Antireflective subwavelength structures on microlens arrays—comparison of various manufacturing techniques,” Appl. Opt. 51(1), 8–14 (2012).
    [Crossref]
  35. C. Morhard, C. Pacholski, R. Brunner, M. Helgert, D. Lehr, and J. P. Spatz, “Antireflective “moth-eye” structures fabricated by a cheap and versatile process on various optical elements,” in 11th IEEE International Conference on Nanotechnology (IEEE-NANO, 2011), pp. 116–121.
  36. C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21(42), 425301 (2010).
    [Crossref]
  37. Z. Diao, M. Kraus, R. Brunner, J.-H. Dirks, and J. P. Spatz, “Nanostructured Stealth Surfaces for Visible and Near-Infrared Light,” Nano Lett. 16(10), 6610–6616 (2016).
    [Crossref]
  38. H. Bartzsch, P. Frach, K. Goedicke, and C. Gottfried, “Different pulse techniques for stationary reactive sputtering with double ring magnetron,” Surf. Coat. Technol. 120-121, 723–727 (1999).
    [Crossref]
  39. F. Rebib, E. Tomasella, M. Dubois, J. Collier, T. Sauvage, and M. Jacquet, “SiOxNy thin films deposited by reactive sputtering: Process study and structural characterization,” Thin Solid Films 515(7-8), 3480–3487 (2007).
    [Crossref]
  40. Osires, software UNIGIT - a rigorous grating solver, https://www.unigit.net/ (accessed September 03, 2019)

2018 (1)

2017 (3)

2016 (3)

S. Bruynooghe, M. Schulze, M. Helgert, M. Challier, D. Tonova, M. Sundermann, T. Koch, A. Gatto, and E.-B. Kley, “Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures,” J. Nanophotonics 10(3), 033002 (2016).
[Crossref]

Z. Diao, M. Kraus, R. Brunner, J.-H. Dirks, and J. P. Spatz, “Nanostructured Stealth Surfaces for Visible and Near-Infrared Light,” Nano Lett. 16(10), 6610–6616 (2016).
[Crossref]

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
[Crossref]

2015 (5)

J. van de Groep, P. Spinelli, and A. Polman, “Single-Step Soft-Imprinted Large-Area Nanopatterned Antireflection Coating,” Nano Lett. 15(6), 4223–4228 (2015).
[Crossref]

R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6(1), 6909 (2015).
[Crossref]

S. Bruynooghe, D. Tonova, M. Sundermann, T. Koch, and U. Schulz, “Antireflection coatings combining interference multilayers and a nanoporous MgF2 top layer prepared by glancing angle deposition,” Surf. Coat. Technol. 267, 40–44 (2015).
[Crossref]

F. L. Gonzalez and M. J. Gordon, “Enhancing near-infrared light absorption in PtSi thin films for Schottky barrier IR detectors using moth-eye surface structures,” Opt. Lett. 40(7), 1512–1515 (2015).
[Crossref]

U. Schulz, F. Rickelt, H. Ludwig, P. Munzert, and N. Kaiser, “Gradient index antireflection coatings on glass containing plasma-etched organic layers,” Opt. Mater. Express 5(6), 1259–1265 (2015).
[Crossref]

2014 (2)

E. E. Perl, W. E. McMahon, R. M. Farrell, S. P. DenBaars, J. S. Speck, and J. E. Bowers, “Surface Structured Optical Coatings with Near-Perfect Broadband and Wide-Angle Antireflective Properties,” Nano Lett. 14(10), 5960–5964 (2014).
[Crossref]

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[Crossref]

2013 (3)

U. Schulz, P. Munzert, F. Rickelt, and N. Kaiser, “Hybrid antireflective coating with plasma-etched nanostructure,” Thin Solid Films 532, 119–122 (2013).
[Crossref]

S. Guldin, P. Kohn, M. Stefik, J. Song, G. Divitini, F. Ecarla, C. Ducati, U. Wiesner, and U. Steiner, “Self-Cleaning Antireflective Optical Coatings,” Nano Lett. 13(11), 5329–5335 (2013).
[Crossref]

C. Williges, W. Chen, C. Morhard, J. P. Spatz, and R. Brunner, “Increasing the Order Parameter of Quasi Hexagonal Micellar Nanostructures by Ultrasound Annealing,” Langmuir 29(4), 989–993 (2013).
[Crossref]

2012 (2)

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. P. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev. 6(5), 641–659 (2012).
[Crossref]

C. Pacholski, C. Morhard, J. P. Spatz, D. Lehr, M. Schulze, E.-B. Kley, A. Tünnermann, M. Helgert, M. Sundermann, and R. Brunner, “Antireflective subwavelength structures on microlens arrays—comparison of various manufacturing techniques,” Appl. Opt. 51(1), 8–14 (2012).
[Crossref]

2010 (5)

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng., R 69(1-3), 1–35 (2010).
[Crossref]

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovoltaics 18(3), 195–203 (2010).
[Crossref]

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21(42), 425301 (2010).
[Crossref]

T. Okuno, “Development of subwavelength structure coating (SWC) and its application to imaging lenses,” Proc. SPIE 7652, IMA2 (2010).
[Crossref]

D. Lehr, M. Helgert, M. Sundermann, Ch. Morhard, C. Pacholski, J. Spatz, and R. Brunner, “Simulating different manufactured antireflective sub-wavelength structures considering the influence of local topographic variations,” Opt. Express 18(23), 23878–23890 (2010).
[Crossref]

2009 (2)

U. Schulz, “Wideband antireflection coatings by combining interference multilayers with structured top layers,” Opt. Express 17(11), 8704–8708 (2009).
[Crossref]

E.-J. Honga, K.-J. Byeona, H. Parka, J. Hwanga, H. Leea, K. Choib, and G. Y. Jung, “Fabrication of moth-eye structure on p-GaN layer of GaN-based LEDs for improvement of light extraction,” Mater. Sci. Eng., B 163(3), 170–173 (2009).
[Crossref]

2008 (1)

T. Lohmueller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]

2007 (2)

U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, and A. Tünnermann, “Antireflection of transparent polymers by advanced plasma etching procedures,” Opt. Express 15(20), 13108–13113 (2007).
[Crossref]

F. Rebib, E. Tomasella, M. Dubois, J. Collier, T. Sauvage, and M. Jacquet, “SiOxNy thin films deposited by reactive sputtering: Process study and structural characterization,” Thin Solid Films 515(7-8), 3480–3487 (2007).
[Crossref]

2006 (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B 273(1587), 661–667 (2006).
[Crossref]

2005 (1)

H. Kasugai, Y. Miyake, A. Honshio, S. Mishima, T. Kawashima, K. Iida, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Kinoshita, and H. Shiomi, “High-Efficiency Nitride-Based Light-Emitting Diodes with Moth-Eye Structure,” Jpn. J. Appl. Phys. 44(10), 7414–7417 (2005).
[Crossref]

1999 (1)

H. Bartzsch, P. Frach, K. Goedicke, and C. Gottfried, “Different pulse techniques for stationary reactive sputtering with double ring magnetron,” Surf. Coat. Technol. 120-121, 723–727 (1999).
[Crossref]

1985 (1)

1983 (1)

1967 (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

1879 (1)

L. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” P. Lond. Math. Soc. s1-11(1), 51–56 (1879).
[Crossref]

Akasaki, I.

H. Kasugai, Y. Miyake, A. Honshio, S. Mishima, T. Kawashima, K. Iida, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Kinoshita, and H. Shiomi, “High-Efficiency Nitride-Based Light-Emitting Diodes with Moth-Eye Structure,” Jpn. J. Appl. Phys. 44(10), 7414–7417 (2005).
[Crossref]

Amano, H.

H. Kasugai, Y. Miyake, A. Honshio, S. Mishima, T. Kawashima, K. Iida, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Kinoshita, and H. Shiomi, “High-Efficiency Nitride-Based Light-Emitting Diodes with Moth-Eye Structure,” Jpn. J. Appl. Phys. 44(10), 7414–7417 (2005).
[Crossref]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B 273(1587), 661–667 (2006).
[Crossref]

Bae, S.-I.

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovoltaics 18(3), 195–203 (2010).
[Crossref]

Bartzsch, H.

H. Bartzsch, P. Frach, K. Goedicke, and C. Gottfried, “Different pulse techniques for stationary reactive sputtering with double ring magnetron,” Surf. Coat. Technol. 120-121, 723–727 (1999).
[Crossref]

Bernhard, C. G.

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

Bläsi, B.

A. Gombert and B. Bläsi, in Functional Properties of Bio-Inspired Surfaces, E. A. Favret and N. O. Fuentes, eds. (World Scientific Publishing, 2009) pp. 79–102.

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovoltaics 18(3), 195–203 (2010).
[Crossref]

Bowers, J. E.

E. E. Perl, W. E. McMahon, R. M. Farrell, S. P. DenBaars, J. S. Speck, and J. E. Bowers, “Surface Structured Optical Coatings with Near-Perfect Broadband and Wide-Angle Antireflective Properties,” Nano Lett. 14(10), 5960–5964 (2014).
[Crossref]

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[Crossref]

Brunner, R.

Z. Diao, M. Kraus, R. Brunner, J.-H. Dirks, and J. P. Spatz, “Nanostructured Stealth Surfaces for Visible and Near-Infrared Light,” Nano Lett. 16(10), 6610–6616 (2016).
[Crossref]

C. Williges, W. Chen, C. Morhard, J. P. Spatz, and R. Brunner, “Increasing the Order Parameter of Quasi Hexagonal Micellar Nanostructures by Ultrasound Annealing,” Langmuir 29(4), 989–993 (2013).
[Crossref]

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. P. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev. 6(5), 641–659 (2012).
[Crossref]

C. Pacholski, C. Morhard, J. P. Spatz, D. Lehr, M. Schulze, E.-B. Kley, A. Tünnermann, M. Helgert, M. Sundermann, and R. Brunner, “Antireflective subwavelength structures on microlens arrays—comparison of various manufacturing techniques,” Appl. Opt. 51(1), 8–14 (2012).
[Crossref]

D. Lehr, M. Helgert, M. Sundermann, Ch. Morhard, C. Pacholski, J. Spatz, and R. Brunner, “Simulating different manufactured antireflective sub-wavelength structures considering the influence of local topographic variations,” Opt. Express 18(23), 23878–23890 (2010).
[Crossref]

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21(42), 425301 (2010).
[Crossref]

T. Lohmueller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]

C. Morhard, C. Pacholski, R. Brunner, M. Helgert, D. Lehr, and J. P. Spatz, “Antireflective “moth-eye” structures fabricated by a cheap and versatile process on various optical elements,” in 11th IEEE International Conference on Nanotechnology (IEEE-NANO, 2011), pp. 116–121.

Bruynooghe, S.

S. Bruynooghe, M. Schulze, M. Helgert, M. Challier, D. Tonova, M. Sundermann, T. Koch, A. Gatto, and E.-B. Kley, “Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures,” J. Nanophotonics 10(3), 033002 (2016).
[Crossref]

S. Bruynooghe, D. Tonova, M. Sundermann, T. Koch, and U. Schulz, “Antireflection coatings combining interference multilayers and a nanoporous MgF2 top layer prepared by glancing angle deposition,” Surf. Coat. Technol. 267, 40–44 (2015).
[Crossref]

Byeona, K.-J.

E.-J. Honga, K.-J. Byeona, H. Parka, J. Hwanga, H. Leea, K. Choib, and G. Y. Jung, “Fabrication of moth-eye structure on p-GaN layer of GaN-based LEDs for improvement of light extraction,” Mater. Sci. Eng., B 163(3), 170–173 (2009).
[Crossref]

Challier, M.

S. Bruynooghe, M. Schulze, M. Helgert, M. Challier, D. Tonova, M. Sundermann, T. Koch, A. Gatto, and E.-B. Kley, “Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures,” J. Nanophotonics 10(3), 033002 (2016).
[Crossref]

Chattopadhyay, S.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng., R 69(1-3), 1–35 (2010).
[Crossref]

Chen, K. H.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng., R 69(1-3), 1–35 (2010).
[Crossref]

Chen, L. C.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng., R 69(1-3), 1–35 (2010).
[Crossref]

Chen, W.

C. Williges, W. Chen, C. Morhard, J. P. Spatz, and R. Brunner, “Increasing the Order Parameter of Quasi Hexagonal Micellar Nanostructures by Ultrasound Annealing,” Langmuir 29(4), 989–993 (2013).
[Crossref]

Cheng, I.-C.

Choi, M.

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
[Crossref]

Choib, K.

E.-J. Honga, K.-J. Byeona, H. Parka, J. Hwanga, H. Leea, K. Choib, and G. Y. Jung, “Fabrication of moth-eye structure on p-GaN layer of GaN-based LEDs for improvement of light extraction,” Mater. Sci. Eng., B 163(3), 170–173 (2009).
[Crossref]

Collier, J.

F. Rebib, E. Tomasella, M. Dubois, J. Collier, T. Sauvage, and M. Jacquet, “SiOxNy thin films deposited by reactive sputtering: Process study and structural characterization,” Thin Solid Films 515(7-8), 3480–3487 (2007).
[Crossref]

Da, Y.

DenBaars, S. P.

E. E. Perl, W. E. McMahon, R. M. Farrell, S. P. DenBaars, J. S. Speck, and J. E. Bowers, “Surface Structured Optical Coatings with Near-Perfect Broadband and Wide-Angle Antireflective Properties,” Nano Lett. 14(10), 5960–5964 (2014).
[Crossref]

Diao, Z.

Z. Diao, M. Kraus, R. Brunner, J.-H. Dirks, and J. P. Spatz, “Nanostructured Stealth Surfaces for Visible and Near-Infrared Light,” Nano Lett. 16(10), 6610–6616 (2016).
[Crossref]

Dirks, J.-H.

Z. Diao, M. Kraus, R. Brunner, J.-H. Dirks, and J. P. Spatz, “Nanostructured Stealth Surfaces for Visible and Near-Infrared Light,” Nano Lett. 16(10), 6610–6616 (2016).
[Crossref]

Divitini, G.

S. Guldin, P. Kohn, M. Stefik, J. Song, G. Divitini, F. Ecarla, C. Ducati, U. Wiesner, and U. Steiner, “Self-Cleaning Antireflective Optical Coatings,” Nano Lett. 13(11), 5329–5335 (2013).
[Crossref]

Dubois, M.

F. Rebib, E. Tomasella, M. Dubois, J. Collier, T. Sauvage, and M. Jacquet, “SiOxNy thin films deposited by reactive sputtering: Process study and structural characterization,” Thin Solid Films 515(7-8), 3480–3487 (2007).
[Crossref]

Ducati, C.

S. Guldin, P. Kohn, M. Stefik, J. Song, G. Divitini, F. Ecarla, C. Ducati, U. Wiesner, and U. Steiner, “Self-Cleaning Antireflective Optical Coatings,” Nano Lett. 13(11), 5329–5335 (2013).
[Crossref]

Ecarla, F.

S. Guldin, P. Kohn, M. Stefik, J. Song, G. Divitini, F. Ecarla, C. Ducati, U. Wiesner, and U. Steiner, “Self-Cleaning Antireflective Optical Coatings,” Nano Lett. 13(11), 5329–5335 (2013).
[Crossref]

Eom, J.

Farrell, R. M.

E. E. Perl, W. E. McMahon, R. M. Farrell, S. P. DenBaars, J. S. Speck, and J. E. Bowers, “Surface Structured Optical Coatings with Near-Perfect Broadband and Wide-Angle Antireflective Properties,” Nano Lett. 14(10), 5960–5964 (2014).
[Crossref]

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B 273(1587), 661–667 (2006).
[Crossref]

Frach, P.

H. Bartzsch, P. Frach, K. Goedicke, and C. Gottfried, “Different pulse techniques for stationary reactive sputtering with double ring magnetron,” Surf. Coat. Technol. 120-121, 723–727 (1999).
[Crossref]

Friedman, D. J.

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[Crossref]

Ganguly, A.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng., R 69(1-3), 1–35 (2010).
[Crossref]

Gatto, A.

S. Bruynooghe, M. Schulze, M. Helgert, M. Challier, D. Tonova, M. Sundermann, T. Koch, A. Gatto, and E.-B. Kley, “Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures,” J. Nanophotonics 10(3), 033002 (2016).
[Crossref]

Goedicke, K.

H. Bartzsch, P. Frach, K. Goedicke, and C. Gottfried, “Different pulse techniques for stationary reactive sputtering with double ring magnetron,” Surf. Coat. Technol. 120-121, 723–727 (1999).
[Crossref]

Gomard, G.

R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6(1), 6909 (2015).
[Crossref]

Gombert, A.

A. Gombert and B. Bläsi, in Functional Properties of Bio-Inspired Surfaces, E. A. Favret and N. O. Fuentes, eds. (World Scientific Publishing, 2009) pp. 79–102.

Gonzalez, F. L.

Gordon, M. J.

Gottfried, C.

H. Bartzsch, P. Frach, K. Goedicke, and C. Gottfried, “Different pulse techniques for stationary reactive sputtering with double ring magnetron,” Surf. Coat. Technol. 120-121, 723–727 (1999).
[Crossref]

Guldin, S.

S. Guldin, P. Kohn, M. Stefik, J. Song, G. Divitini, F. Ecarla, C. Ducati, U. Wiesner, and U. Steiner, “Self-Cleaning Antireflective Optical Coatings,” Nano Lett. 13(11), 5329–5335 (2013).
[Crossref]

Helgert, M.

S. Bruynooghe, M. Schulze, M. Helgert, M. Challier, D. Tonova, M. Sundermann, T. Koch, A. Gatto, and E.-B. Kley, “Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures,” J. Nanophotonics 10(3), 033002 (2016).
[Crossref]

C. Pacholski, C. Morhard, J. P. Spatz, D. Lehr, M. Schulze, E.-B. Kley, A. Tünnermann, M. Helgert, M. Sundermann, and R. Brunner, “Antireflective subwavelength structures on microlens arrays—comparison of various manufacturing techniques,” Appl. Opt. 51(1), 8–14 (2012).
[Crossref]

D. Lehr, M. Helgert, M. Sundermann, Ch. Morhard, C. Pacholski, J. Spatz, and R. Brunner, “Simulating different manufactured antireflective sub-wavelength structures considering the influence of local topographic variations,” Opt. Express 18(23), 23878–23890 (2010).
[Crossref]

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21(42), 425301 (2010).
[Crossref]

T. Lohmueller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]

C. Morhard, C. Pacholski, R. Brunner, M. Helgert, D. Lehr, and J. P. Spatz, “Antireflective “moth-eye” structures fabricated by a cheap and versatile process on various optical elements,” in 11th IEEE International Conference on Nanotechnology (IEEE-NANO, 2011), pp. 116–121.

Hölscher, H.

R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6(1), 6909 (2015).
[Crossref]

Honga, E.-J.

E.-J. Honga, K.-J. Byeona, H. Parka, J. Hwanga, H. Leea, K. Choib, and G. Y. Jung, “Fabrication of moth-eye structure on p-GaN layer of GaN-based LEDs for improvement of light extraction,” Mater. Sci. Eng., B 163(3), 170–173 (2009).
[Crossref]

Honshio, A.

H. Kasugai, Y. Miyake, A. Honshio, S. Mishima, T. Kawashima, K. Iida, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Kinoshita, and H. Shiomi, “High-Efficiency Nitride-Based Light-Emitting Diodes with Moth-Eye Structure,” Jpn. J. Appl. Phys. 44(10), 7414–7417 (2005).
[Crossref]

Huang, Y. F.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng., R 69(1-3), 1–35 (2010).
[Crossref]

Hwanga, J.

E.-J. Honga, K.-J. Byeona, H. Parka, J. Hwanga, H. Leea, K. Choib, and G. Y. Jung, “Fabrication of moth-eye structure on p-GaN layer of GaN-based LEDs for improvement of light extraction,” Mater. Sci. Eng., B 163(3), 170–173 (2009).
[Crossref]

Iida, K.

H. Kasugai, Y. Miyake, A. Honshio, S. Mishima, T. Kawashima, K. Iida, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Kinoshita, and H. Shiomi, “High-Efficiency Nitride-Based Light-Emitting Diodes with Moth-Eye Structure,” Jpn. J. Appl. Phys. 44(10), 7414–7417 (2005).
[Crossref]

Iwaya, M.

H. Kasugai, Y. Miyake, A. Honshio, S. Mishima, T. Kawashima, K. Iida, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Kinoshita, and H. Shiomi, “High-Efficiency Nitride-Based Light-Emitting Diodes with Moth-Eye Structure,” Jpn. J. Appl. Phys. 44(10), 7414–7417 (2005).
[Crossref]

Jacquet, M.

F. Rebib, E. Tomasella, M. Dubois, J. Collier, T. Sauvage, and M. Jacquet, “SiOxNy thin films deposited by reactive sputtering: Process study and structural characterization,” Thin Solid Films 515(7-8), 3480–3487 (2007).
[Crossref]

Jang, S.

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
[Crossref]

Jen, Y. J.

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng., R 69(1-3), 1–35 (2010).
[Crossref]

Jeong, K.-H.

Jung, G. Y.

E.-J. Honga, K.-J. Byeona, H. Parka, J. Hwanga, H. Leea, K. Choib, and G. Y. Jung, “Fabrication of moth-eye structure on p-GaN layer of GaN-based LEDs for improvement of light extraction,” Mater. Sci. Eng., B 163(3), 170–173 (2009).
[Crossref]

Kaiser, N.

Kamiyama, S.

H. Kasugai, Y. Miyake, A. Honshio, S. Mishima, T. Kawashima, K. Iida, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Kinoshita, and H. Shiomi, “High-Efficiency Nitride-Based Light-Emitting Diodes with Moth-Eye Structure,” Jpn. J. Appl. Phys. 44(10), 7414–7417 (2005).
[Crossref]

Kang, S. M.

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
[Crossref]

Kasugai, H.

H. Kasugai, Y. Miyake, A. Honshio, S. Mishima, T. Kawashima, K. Iida, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Kinoshita, and H. Shiomi, “High-Efficiency Nitride-Based Light-Emitting Diodes with Moth-Eye Structure,” Jpn. J. Appl. Phys. 44(10), 7414–7417 (2005).
[Crossref]

Kawashima, T.

H. Kasugai, Y. Miyake, A. Honshio, S. Mishima, T. Kawashima, K. Iida, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Kinoshita, and H. Shiomi, “High-Efficiency Nitride-Based Light-Emitting Diodes with Moth-Eye Structure,” Jpn. J. Appl. Phys. 44(10), 7414–7417 (2005).
[Crossref]

Kinoshita, H.

H. Kasugai, Y. Miyake, A. Honshio, S. Mishima, T. Kawashima, K. Iida, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Kinoshita, and H. Shiomi, “High-Efficiency Nitride-Based Light-Emitting Diodes with Moth-Eye Structure,” Jpn. J. Appl. Phys. 44(10), 7414–7417 (2005).
[Crossref]

Kley, E.-B.

S. Bruynooghe, M. Schulze, M. Helgert, M. Challier, D. Tonova, M. Sundermann, T. Koch, A. Gatto, and E.-B. Kley, “Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures,” J. Nanophotonics 10(3), 033002 (2016).
[Crossref]

C. Pacholski, C. Morhard, J. P. Spatz, D. Lehr, M. Schulze, E.-B. Kley, A. Tünnermann, M. Helgert, M. Sundermann, and R. Brunner, “Antireflective subwavelength structures on microlens arrays—comparison of various manufacturing techniques,” Appl. Opt. 51(1), 8–14 (2012).
[Crossref]

Koch, T.

S. Bruynooghe, M. Schulze, M. Helgert, M. Challier, D. Tonova, M. Sundermann, T. Koch, A. Gatto, and E.-B. Kley, “Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures,” J. Nanophotonics 10(3), 033002 (2016).
[Crossref]

S. Bruynooghe, D. Tonova, M. Sundermann, T. Koch, and U. Schulz, “Antireflection coatings combining interference multilayers and a nanoporous MgF2 top layer prepared by glancing angle deposition,” Surf. Coat. Technol. 267, 40–44 (2015).
[Crossref]

Kohn, P.

S. Guldin, P. Kohn, M. Stefik, J. Song, G. Divitini, F. Ecarla, C. Ducati, U. Wiesner, and U. Steiner, “Self-Cleaning Antireflective Optical Coatings,” Nano Lett. 13(11), 5329–5335 (2013).
[Crossref]

Kraus, M.

Z. Diao, M. Kraus, R. Brunner, J.-H. Dirks, and J. P. Spatz, “Nanostructured Stealth Surfaces for Visible and Near-Infrared Light,” Nano Lett. 16(10), 6610–6616 (2016).
[Crossref]

Lan, Y.-H.

Lee, J.-H.

Lee, J.-K.

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
[Crossref]

Lee, J.-W.

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
[Crossref]

Lee, Y.

Leea, H.

E.-J. Honga, K.-J. Byeona, H. Parka, J. Hwanga, H. Leea, K. Choib, and G. Y. Jung, “Fabrication of moth-eye structure on p-GaN layer of GaN-based LEDs for improvement of light extraction,” Mater. Sci. Eng., B 163(3), 170–173 (2009).
[Crossref]

Lehr, D.

C. Pacholski, C. Morhard, J. P. Spatz, D. Lehr, M. Schulze, E.-B. Kley, A. Tünnermann, M. Helgert, M. Sundermann, and R. Brunner, “Antireflective subwavelength structures on microlens arrays—comparison of various manufacturing techniques,” Appl. Opt. 51(1), 8–14 (2012).
[Crossref]

D. Lehr, M. Helgert, M. Sundermann, Ch. Morhard, C. Pacholski, J. Spatz, and R. Brunner, “Simulating different manufactured antireflective sub-wavelength structures considering the influence of local topographic variations,” Opt. Express 18(23), 23878–23890 (2010).
[Crossref]

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21(42), 425301 (2010).
[Crossref]

C. Morhard, C. Pacholski, R. Brunner, M. Helgert, D. Lehr, and J. P. Spatz, “Antireflective “moth-eye” structures fabricated by a cheap and versatile process on various optical elements,” in 11th IEEE International Conference on Nanotechnology (IEEE-NANO, 2011), pp. 116–121.

Leitel, R.

Lin, C.-T.

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[Crossref]

Liu, X.

Lohmueller, T.

T. Lohmueller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]

Ludwig, H.

McMahon, W. E.

E. E. Perl, W. E. McMahon, R. M. Farrell, S. P. DenBaars, J. S. Speck, and J. E. Bowers, “Surface Structured Optical Coatings with Near-Perfect Broadband and Wide-Angle Antireflective Properties,” Nano Lett. 14(10), 5960–5964 (2014).
[Crossref]

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[Crossref]

Mishima, S.

H. Kasugai, Y. Miyake, A. Honshio, S. Mishima, T. Kawashima, K. Iida, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Kinoshita, and H. Shiomi, “High-Efficiency Nitride-Based Light-Emitting Diodes with Moth-Eye Structure,” Jpn. J. Appl. Phys. 44(10), 7414–7417 (2005).
[Crossref]

Miyake, Y.

H. Kasugai, Y. Miyake, A. Honshio, S. Mishima, T. Kawashima, K. Iida, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Kinoshita, and H. Shiomi, “High-Efficiency Nitride-Based Light-Emitting Diodes with Moth-Eye Structure,” Jpn. J. Appl. Phys. 44(10), 7414–7417 (2005).
[Crossref]

Morhard, C.

C. Williges, W. Chen, C. Morhard, J. P. Spatz, and R. Brunner, “Increasing the Order Parameter of Quasi Hexagonal Micellar Nanostructures by Ultrasound Annealing,” Langmuir 29(4), 989–993 (2013).
[Crossref]

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. P. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev. 6(5), 641–659 (2012).
[Crossref]

C. Pacholski, C. Morhard, J. P. Spatz, D. Lehr, M. Schulze, E.-B. Kley, A. Tünnermann, M. Helgert, M. Sundermann, and R. Brunner, “Antireflective subwavelength structures on microlens arrays—comparison of various manufacturing techniques,” Appl. Opt. 51(1), 8–14 (2012).
[Crossref]

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21(42), 425301 (2010).
[Crossref]

C. Morhard, C. Pacholski, R. Brunner, M. Helgert, D. Lehr, and J. P. Spatz, “Antireflective “moth-eye” structures fabricated by a cheap and versatile process on various optical elements,” in 11th IEEE International Conference on Nanotechnology (IEEE-NANO, 2011), pp. 116–121.

Morhard, Ch.

Munzert, P.

Ni, J.

Okuno, T.

T. Okuno, “Development of subwavelength structure coating (SWC) and its application to imaging lenses,” Proc. SPIE 7652, IMA2 (2010).
[Crossref]

Pacholski, C.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. P. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev. 6(5), 641–659 (2012).
[Crossref]

C. Pacholski, C. Morhard, J. P. Spatz, D. Lehr, M. Schulze, E.-B. Kley, A. Tünnermann, M. Helgert, M. Sundermann, and R. Brunner, “Antireflective subwavelength structures on microlens arrays—comparison of various manufacturing techniques,” Appl. Opt. 51(1), 8–14 (2012).
[Crossref]

D. Lehr, M. Helgert, M. Sundermann, Ch. Morhard, C. Pacholski, J. Spatz, and R. Brunner, “Simulating different manufactured antireflective sub-wavelength structures considering the influence of local topographic variations,” Opt. Express 18(23), 23878–23890 (2010).
[Crossref]

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21(42), 425301 (2010).
[Crossref]

C. Morhard, C. Pacholski, R. Brunner, M. Helgert, D. Lehr, and J. P. Spatz, “Antireflective “moth-eye” structures fabricated by a cheap and versatile process on various optical elements,” in 11th IEEE International Conference on Nanotechnology (IEEE-NANO, 2011), pp. 116–121.

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B 273(1587), 661–667 (2006).
[Crossref]

Park, N.-G.

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
[Crossref]

Parka, H.

E.-J. Honga, K.-J. Byeona, H. Parka, J. Hwanga, H. Leea, K. Choib, and G. Y. Jung, “Fabrication of moth-eye structure on p-GaN layer of GaN-based LEDs for improvement of light extraction,” Mater. Sci. Eng., B 163(3), 170–173 (2009).
[Crossref]

Peng, L.

Peng, L.-H.

Perl, E. E.

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[Crossref]

E. E. Perl, W. E. McMahon, R. M. Farrell, S. P. DenBaars, J. S. Speck, and J. E. Bowers, “Surface Structured Optical Coatings with Near-Perfect Broadband and Wide-Angle Antireflective Properties,” Nano Lett. 14(10), 5960–5964 (2014).
[Crossref]

Polman, A.

J. van de Groep, P. Spinelli, and A. Polman, “Single-Step Soft-Imprinted Large-Area Nanopatterned Antireflection Coating,” Nano Lett. 15(6), 4223–4228 (2015).
[Crossref]

Rayleigh, L.

L. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” P. Lond. Math. Soc. s1-11(1), 51–56 (1879).
[Crossref]

Rebib, F.

F. Rebib, E. Tomasella, M. Dubois, J. Collier, T. Sauvage, and M. Jacquet, “SiOxNy thin films deposited by reactive sputtering: Process study and structural characterization,” Thin Solid Films 515(7-8), 3480–3487 (2007).
[Crossref]

Rickelt, F.

U. Schulz, F. Rickelt, H. Ludwig, P. Munzert, and N. Kaiser, “Gradient index antireflection coatings on glass containing plasma-etched organic layers,” Opt. Mater. Express 5(6), 1259–1265 (2015).
[Crossref]

U. Schulz, P. Munzert, F. Rickelt, and N. Kaiser, “Hybrid antireflective coating with plasma-etched nanostructure,” Thin Solid Films 532, 119–122 (2013).
[Crossref]

Sandfuchs, O.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. P. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev. 6(5), 641–659 (2012).
[Crossref]

Sauvage, T.

F. Rebib, E. Tomasella, M. Dubois, J. Collier, T. Sauvage, and M. Jacquet, “SiOxNy thin films deposited by reactive sputtering: Process study and structural characterization,” Thin Solid Films 515(7-8), 3480–3487 (2007).
[Crossref]

Schott, AG

AG Schott, Datasheet N-SF10. https://shop.schott.com/advanced_optics/Produkte/Optisches-Glas/Optisches-Glas/Schwer-Flint/N-SF10/c/optical-glass/glass-N-SF10 , (accessed September 03, 2019)

Schulz, U.

Schulze, M.

S. Bruynooghe, M. Schulze, M. Helgert, M. Challier, D. Tonova, M. Sundermann, T. Koch, A. Gatto, and E.-B. Kley, “Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures,” J. Nanophotonics 10(3), 033002 (2016).
[Crossref]

C. Pacholski, C. Morhard, J. P. Spatz, D. Lehr, M. Schulze, E.-B. Kley, A. Tünnermann, M. Helgert, M. Sundermann, and R. Brunner, “Antireflective subwavelength structures on microlens arrays—comparison of various manufacturing techniques,” Appl. Opt. 51(1), 8–14 (2012).
[Crossref]

Shiomi, H.

H. Kasugai, Y. Miyake, A. Honshio, S. Mishima, T. Kawashima, K. Iida, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Kinoshita, and H. Shiomi, “High-Efficiency Nitride-Based Light-Emitting Diodes with Moth-Eye Structure,” Jpn. J. Appl. Phys. 44(10), 7414–7417 (2005).
[Crossref]

Siddique, R. H.

R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6(1), 6909 (2015).
[Crossref]

Song, J.

S. Guldin, P. Kohn, M. Stefik, J. Song, G. Divitini, F. Ecarla, C. Ducati, U. Wiesner, and U. Steiner, “Self-Cleaning Antireflective Optical Coatings,” Nano Lett. 13(11), 5329–5335 (2013).
[Crossref]

Southwell, W. H.

Spatz, J.

Spatz, J. P.

Z. Diao, M. Kraus, R. Brunner, J.-H. Dirks, and J. P. Spatz, “Nanostructured Stealth Surfaces for Visible and Near-Infrared Light,” Nano Lett. 16(10), 6610–6616 (2016).
[Crossref]

C. Williges, W. Chen, C. Morhard, J. P. Spatz, and R. Brunner, “Increasing the Order Parameter of Quasi Hexagonal Micellar Nanostructures by Ultrasound Annealing,” Langmuir 29(4), 989–993 (2013).
[Crossref]

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. P. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev. 6(5), 641–659 (2012).
[Crossref]

C. Pacholski, C. Morhard, J. P. Spatz, D. Lehr, M. Schulze, E.-B. Kley, A. Tünnermann, M. Helgert, M. Sundermann, and R. Brunner, “Antireflective subwavelength structures on microlens arrays—comparison of various manufacturing techniques,” Appl. Opt. 51(1), 8–14 (2012).
[Crossref]

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21(42), 425301 (2010).
[Crossref]

T. Lohmueller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]

C. Morhard, C. Pacholski, R. Brunner, M. Helgert, D. Lehr, and J. P. Spatz, “Antireflective “moth-eye” structures fabricated by a cheap and versatile process on various optical elements,” in 11th IEEE International Conference on Nanotechnology (IEEE-NANO, 2011), pp. 116–121.

Speck, J. S.

E. E. Perl, W. E. McMahon, R. M. Farrell, S. P. DenBaars, J. S. Speck, and J. E. Bowers, “Surface Structured Optical Coatings with Near-Perfect Broadband and Wide-Angle Antireflective Properties,” Nano Lett. 14(10), 5960–5964 (2014).
[Crossref]

Spinelli, P.

J. van de Groep, P. Spinelli, and A. Polman, “Single-Step Soft-Imprinted Large-Area Nanopatterned Antireflection Coating,” Nano Lett. 15(6), 4223–4228 (2015).
[Crossref]

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B 273(1587), 661–667 (2006).
[Crossref]

Stefik, M.

S. Guldin, P. Kohn, M. Stefik, J. Song, G. Divitini, F. Ecarla, C. Ducati, U. Wiesner, and U. Steiner, “Self-Cleaning Antireflective Optical Coatings,” Nano Lett. 13(11), 5329–5335 (2013).
[Crossref]

Steiner, U.

S. Guldin, P. Kohn, M. Stefik, J. Song, G. Divitini, F. Ecarla, C. Ducati, U. Wiesner, and U. Steiner, “Self-Cleaning Antireflective Optical Coatings,” Nano Lett. 13(11), 5329–5335 (2013).
[Crossref]

Suh, H.-C.

Sundermann, M.

S. Bruynooghe, M. Schulze, M. Helgert, M. Challier, D. Tonova, M. Sundermann, T. Koch, A. Gatto, and E.-B. Kley, “Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures,” J. Nanophotonics 10(3), 033002 (2016).
[Crossref]

S. Bruynooghe, D. Tonova, M. Sundermann, T. Koch, and U. Schulz, “Antireflection coatings combining interference multilayers and a nanoporous MgF2 top layer prepared by glancing angle deposition,” Surf. Coat. Technol. 267, 40–44 (2015).
[Crossref]

C. Pacholski, C. Morhard, J. P. Spatz, D. Lehr, M. Schulze, E.-B. Kley, A. Tünnermann, M. Helgert, M. Sundermann, and R. Brunner, “Antireflective subwavelength structures on microlens arrays—comparison of various manufacturing techniques,” Appl. Opt. 51(1), 8–14 (2012).
[Crossref]

D. Lehr, M. Helgert, M. Sundermann, Ch. Morhard, C. Pacholski, J. Spatz, and R. Brunner, “Simulating different manufactured antireflective sub-wavelength structures considering the influence of local topographic variations,” Opt. Express 18(23), 23878–23890 (2010).
[Crossref]

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21(42), 425301 (2010).
[Crossref]

T. Lohmueller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]

Tan, G.

Tomasella, E.

F. Rebib, E. Tomasella, M. Dubois, J. Collier, T. Sauvage, and M. Jacquet, “SiOxNy thin films deposited by reactive sputtering: Process study and structural characterization,” Thin Solid Films 515(7-8), 3480–3487 (2007).
[Crossref]

Tonova, D.

S. Bruynooghe, M. Schulze, M. Helgert, M. Challier, D. Tonova, M. Sundermann, T. Koch, A. Gatto, and E.-B. Kley, “Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures,” J. Nanophotonics 10(3), 033002 (2016).
[Crossref]

S. Bruynooghe, D. Tonova, M. Sundermann, T. Koch, and U. Schulz, “Antireflection coatings combining interference multilayers and a nanoporous MgF2 top layer prepared by glancing angle deposition,” Surf. Coat. Technol. 267, 40–44 (2015).
[Crossref]

Tünnermann, A.

van de Groep, J.

J. van de Groep, P. Spinelli, and A. Polman, “Single-Step Soft-Imprinted Large-Area Nanopatterned Antireflection Coating,” Nano Lett. 15(6), 4223–4228 (2015).
[Crossref]

Wendling, I.

Wie, M.-K.

Wiesner, U.

S. Guldin, P. Kohn, M. Stefik, J. Song, G. Divitini, F. Ecarla, C. Ducati, U. Wiesner, and U. Steiner, “Self-Cleaning Antireflective Optical Coatings,” Nano Lett. 13(11), 5329–5335 (2013).
[Crossref]

Williges, C.

C. Williges, W. Chen, C. Morhard, J. P. Spatz, and R. Brunner, “Increasing the Order Parameter of Quasi Hexagonal Micellar Nanostructures by Ultrasound Annealing,” Langmuir 29(4), 989–993 (2013).
[Crossref]

Wu, S.-T.

Xuan, Y.

Yi, P.

Yoo, D.-E.

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
[Crossref]

Yoon, J.

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
[Crossref]

Zhang, C.

Appl. Opt. (3)

Endeavour (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

IEEE J. Photovoltaics (1)

E. E. Perl, C.-T. Lin, W. E. McMahon, D. J. Friedman, and J. E. Bowers, “Ultrabroadband and wide-angle hybrid antireflection coatings with nanostructures,” IEEE J. Photovoltaics 4(3), 962–967 (2014).
[Crossref]

J. Nanophotonics (1)

S. Bruynooghe, M. Schulze, M. Helgert, M. Challier, D. Tonova, M. Sundermann, T. Koch, A. Gatto, and E.-B. Kley, “Broadband and wide-angle hybrid antireflection coatings prepared by combining interference multilayers with subwavelength structures,” J. Nanophotonics 10(3), 033002 (2016).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Kasugai, Y. Miyake, A. Honshio, S. Mishima, T. Kawashima, K. Iida, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, H. Kinoshita, and H. Shiomi, “High-Efficiency Nitride-Based Light-Emitting Diodes with Moth-Eye Structure,” Jpn. J. Appl. Phys. 44(10), 7414–7417 (2005).
[Crossref]

Langmuir (1)

C. Williges, W. Chen, C. Morhard, J. P. Spatz, and R. Brunner, “Increasing the Order Parameter of Quasi Hexagonal Micellar Nanostructures by Ultrasound Annealing,” Langmuir 29(4), 989–993 (2013).
[Crossref]

Laser Photonics Rev. (1)

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. P. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser Photonics Rev. 6(5), 641–659 (2012).
[Crossref]

Mater. Sci. Eng., B (1)

E.-J. Honga, K.-J. Byeona, H. Parka, J. Hwanga, H. Leea, K. Choib, and G. Y. Jung, “Fabrication of moth-eye structure on p-GaN layer of GaN-based LEDs for improvement of light extraction,” Mater. Sci. Eng., B 163(3), 170–173 (2009).
[Crossref]

Mater. Sci. Eng., R (1)

S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng., R 69(1-3), 1–35 (2010).
[Crossref]

Nano Lett. (5)

T. Lohmueller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8(5), 1429–1433 (2008).
[Crossref]

S. Guldin, P. Kohn, M. Stefik, J. Song, G. Divitini, F. Ecarla, C. Ducati, U. Wiesner, and U. Steiner, “Self-Cleaning Antireflective Optical Coatings,” Nano Lett. 13(11), 5329–5335 (2013).
[Crossref]

E. E. Perl, W. E. McMahon, R. M. Farrell, S. P. DenBaars, J. S. Speck, and J. E. Bowers, “Surface Structured Optical Coatings with Near-Perfect Broadband and Wide-Angle Antireflective Properties,” Nano Lett. 14(10), 5960–5964 (2014).
[Crossref]

J. van de Groep, P. Spinelli, and A. Polman, “Single-Step Soft-Imprinted Large-Area Nanopatterned Antireflection Coating,” Nano Lett. 15(6), 4223–4228 (2015).
[Crossref]

Z. Diao, M. Kraus, R. Brunner, J.-H. Dirks, and J. P. Spatz, “Nanostructured Stealth Surfaces for Visible and Near-Infrared Light,” Nano Lett. 16(10), 6610–6616 (2016).
[Crossref]

Nanotechnology (1)

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21(42), 425301 (2010).
[Crossref]

Nat. Commun. (1)

R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6(1), 6909 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. Express (1)

Optica (1)

P. Lond. Math. Soc. (1)

L. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” P. Lond. Math. Soc. s1-11(1), 51–56 (1879).
[Crossref]

Proc. R. Soc. B (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B 273(1587), 661–667 (2006).
[Crossref]

Proc. SPIE (1)

T. Okuno, “Development of subwavelength structure coating (SWC) and its application to imaging lenses,” Proc. SPIE 7652, IMA2 (2010).
[Crossref]

Prog. Photovoltaics (1)

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovoltaics 18(3), 195–203 (2010).
[Crossref]

Small (1)

S. M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, and N.-G. Park, “Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells,” Small 12(18), 2443–2449 (2016).
[Crossref]

Surf. Coat. Technol. (2)

S. Bruynooghe, D. Tonova, M. Sundermann, T. Koch, and U. Schulz, “Antireflection coatings combining interference multilayers and a nanoporous MgF2 top layer prepared by glancing angle deposition,” Surf. Coat. Technol. 267, 40–44 (2015).
[Crossref]

H. Bartzsch, P. Frach, K. Goedicke, and C. Gottfried, “Different pulse techniques for stationary reactive sputtering with double ring magnetron,” Surf. Coat. Technol. 120-121, 723–727 (1999).
[Crossref]

Thin Solid Films (2)

F. Rebib, E. Tomasella, M. Dubois, J. Collier, T. Sauvage, and M. Jacquet, “SiOxNy thin films deposited by reactive sputtering: Process study and structural characterization,” Thin Solid Films 515(7-8), 3480–3487 (2007).
[Crossref]

U. Schulz, P. Munzert, F. Rickelt, and N. Kaiser, “Hybrid antireflective coating with plasma-etched nanostructure,” Thin Solid Films 532, 119–122 (2013).
[Crossref]

Other (4)

AG Schott, Datasheet N-SF10. https://shop.schott.com/advanced_optics/Produkte/Optisches-Glas/Optisches-Glas/Schwer-Flint/N-SF10/c/optical-glass/glass-N-SF10 , (accessed September 03, 2019)

C. Morhard, C. Pacholski, R. Brunner, M. Helgert, D. Lehr, and J. P. Spatz, “Antireflective “moth-eye” structures fabricated by a cheap and versatile process on various optical elements,” in 11th IEEE International Conference on Nanotechnology (IEEE-NANO, 2011), pp. 116–121.

A. Gombert and B. Bläsi, in Functional Properties of Bio-Inspired Surfaces, E. A. Favret and N. O. Fuentes, eds. (World Scientific Publishing, 2009) pp. 79–102.

Osires, software UNIGIT - a rigorous grating solver, https://www.unigit.net/ (accessed September 03, 2019)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Fabrication and structure of the hybrid ‘moth-eye’ - dense GRIN layer antireflective coating (ARC). (a) Schematic representation of the entire structure consisting of substrate (blue), dense GRIN layer (color-gradient blue to red), and SiO2 moth-eye structures. The hybrid ARC offers a smooth transition of the refractive index from the substrate to air (see schematic on the right). (b) Sputter rate and refractive index of the SixOyNz layer in dependency of the reactive gas composition. (c) Schematic illustration of the fabrication process steps. The substrate (I) is coated with a dense gradient-index layer of SixOyNz (II). (III) A final layer of homogeneous SiO2 is coated on top. (IV) A quasi-hexagonal array of gold-nanoparticles is created by BCML and is used as an etching mask in an additional RIE step (V) to manufacture moth-eye structures (VI).
Fig. 2.
Fig. 2. SEM images of the manufactured moth-eye structures under a tilted top-view of 54°. (a) Section of the ‘moth-eye’ structured topography showing uniformly distributed pillars of equal height and with a periodicity significantly smaller than half of the wavelength of visible light. (b) Region of a FIB-cut. For FIB preparation the moth-eye structures are partly coated with platinum. In the cutting region the entire ARC stack comprising the substrate (light gray), the GRIN transition region (dark gray) and at the top the ‘moth-eye’ structures, which are embedded in the platinum layer, are clearly observable. The image contrast is enhanced in the inset to highlight the cross section of the hybrid antireflective coating.
Fig. 3.
Fig. 3. Quantitative transmittance characteristics: The double-side structured substrates show high transmittance and low reflectance over a very broad spectral range in comparison to the unstructured N-SF10 substrate (black curve). Different etching depths correspond to different transmittance and reflectance curves. (a) Simulated spectra for different etching depths assuming that the overall thickness of the fabricated structure keeps constant. (b), (c) Measured reflectance and transmittance in the spectral range 400-2500 nm, which closely match to the simulated results. For comparison the measurements of the coated substrate (450 nm GRIN and 450 nm SiO2) without moth-eye structures are shown (‘GRIN only’, black dashed curve). (d), (e) Detailed view on the measured reflectance and transmittance in the spectral range 500-1200 nm. (f) Transmittance and reflectance in dependency of the angle of incidence (AOI) of a hybrid antireflective coated sample with 300 nm pillar height measured and averaged for different wavelengths between 400 and 1000 nm (red and black dots). For comparison the measured transmittance and reflectance for uncoated N-SF10 is shown (pink and blue triangles).