Abstract

Fourier ptychography uses a phase retrieval algorithm to reconstruct a high-resolution image with a wide field-of-view. Reflective-type Fourier ptychographic microscopy (FPM) is expected to be very useful for surface inspection, but the reported methods have several limitations. We propose a darkfield illuminator for reflective FPM consisting of a parabolic mirror and a flat LED panel. This increases the signal-to-noise ratio of the acquired images because the normal beam of each LED is directed toward the object. Furthermore, the LEDs do not have to be far from the object because they are collimated by the parabolic surface before illumination. Based on this, a reflective FPM with a synthesized numerical aperture (NA) of 1.06 was achieved, which is the highest value by reflective FPM as far as we know. To validate this experimentally, we measured a USAF reflective resolution target and reconstructed a high-resolution image. This resolved up to the period of 488 nm, which corresponds to the synthesized NA. Additionally, an integrated circuit was measured to demonstrate the effectiveness of surface inspection of the proposed system.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wide-field Fourier ptychographic microscopy using laser illumination source

Jaebum Chung, Hangwen Lu, Xiaoze Ou, Haojiang Zhou, and Changhuei Yang
Biomed. Opt. Express 7(11) 4787-4802 (2016)

Sampling criteria for Fourier ptychographic microscopy in object space and frequency space

Jiasong Sun, Qian Chen, Yuzhen Zhang, and Chao Zuo
Opt. Express 24(14) 15765-15781 (2016)

Apodized coherent transfer function constraint for partially coherent Fourier ptychographic microscopy

Xiong Chen, Youqiang Zhu, Minglu Sun, Dayu Li, Quanquan Mu, and Li Xuan
Opt. Express 27(10) 14099-14111 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
    [Crossref]
  2. L.-H. Yeh, J. Dong, J. Zhong, L. Tian, M. Chen, G. Tang, M. Soltanolkotabi, and L. Waller, “Experimental robustness of Fourier ptychography phase retrieval algorithms,” Opt. Express 23(26), 33214–33240 (2015).
    [Crossref]
  3. X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “High numerical aperture Fourier ptychography: principle, implementation and characterization,” Opt. Express 23(3), 3472–3491 (2015).
    [Crossref]
  4. J. Chung, J. Kim, X. Ou, R. Horstmeyer, and C. Yang, “Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography,” Biomed. Opt. Express 7(2), 352–368 (2016).
    [Crossref]
  5. S. Sen, D. B. Desai, M. H. Alsubaie, M. V Zhelyeznyakov, L. Molina, H. S. Sarraf, A. A. Bernussi, and L. G. de Peralta, “Imaging photonic crystals using Fourier plane imaging and Fourier ptychographic microscopy techniques implemented with a computer controlled hemispherical digital condenser,” Opt. Commun. 383, 500–507 (2017).
    [Crossref]
  6. Y. Xue, S. Cheng, Y. Li, and L. Tian, “Reliable deep-learning-based phase imaging with uncertainty quantification,” Optica 6(5), 618–629 (2019).
    [Crossref]
  7. A. Pan, C. Zuo, Y. Xie, M. Lei, and B. Yao, “Vignetting effect in Fourier ptychographic microscopy,” Opt. Lasers Eng. 120, 40–48 (2019).
    [Crossref]
  8. M. Zhang, L. Zhang, D. Yang, H. Liu, and Y. Liang, “Symmetrical illumination based extending depth of field in Fourier ptychographic microscopy,” Opt. Express 27(3), 3583–3597 (2019).
    [Crossref]
  9. X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
    [Crossref]
  10. J. Chung, G. W. Martinez, K. C. Lencioni, S. R. Sadda, and C. Yang, “Computational aberration compensation by coded-aperture-based correction of aberration obtained from optical Fourier coding and blur estimation,” Optica 6(5), 647–661 (2019).
    [Crossref]
  11. J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Efficient positional misalignment correction method for Fourier ptychographic microscopy,” Biomed. Opt. Express 7(4), 1336–1350 (2016).
    [Crossref]
  12. J. Liu, Y. Li, W. Wang, H. Zhang, Y. Wang, J. Tan, and C. Liu, “Stable and robust frequency domain position compensation strategy for Fourier ptychographic microscopy,” Opt. Express 25(23), 28053–28067 (2017).
    [Crossref]
  13. A. Zhou, W. Wang, N. Chen, E. Y. Lam, B. Lee, and G. Situ, “Fast and robust misalignment correction of Fourier ptychographic microscopy for full field of view reconstruction,” Opt. Express 26(18), 23661–23674 (2018).
    [Crossref]
  14. L. Bian, J. Suo, G. Situ, G. Zheng, F. Chen, and Q. Dai, “Content adaptive illumination for Fourier ptychography,” Opt. Lett. 39(23), 6648–6651 (2014).
    [Crossref]
  15. S. Dong, Z. Bian, R. Shiradkar, and G. Zheng, “Sparsely sampled Fourier ptychography,” Opt. Express 22(5), 5455–5464 (2014).
    [Crossref]
  16. S. Li, Y. Wang, W. Wu, and Y. Liang, “Predictive searching algorithm for Fourier ptychography,” J. Opt. 19(12), 125605 (2017).
    [Crossref]
  17. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
    [Crossref]
  18. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23(12), 3162–3170 (2006).
    [Crossref]
  19. T. M. Kreis and K. Schluter, “Resolution enhancement by aperture synthesis in digital holography,” Opt. Eng. 46(5), 055803 (2007).
    [Crossref]
  20. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17(10), 7873–7892 (2009).
    [Crossref]
  21. S. Pacheco, B. Salahieh, T. Milster, J. J. Rodriguez, and R. Liang, “Transfer function analysis in epi-illumination Fourier ptychography,” Opt. Lett. 40(22), 5343–5346 (2015).
    [Crossref]
  22. S. Pacheco, G. Zheng, and R. Liang, “Reflective Fourier ptychography,” J. Biomed. Opt. 21(2), 026010 (2016).
    [Crossref]
  23. K. Guo, S. Dong, and G. Zheng, “Fourier ptychography for brightfield, phase, darkfield, reflective, multi-slice, and fluorescence imaging,” IEEE J. Sel. Top. Quantum Electron. 22(4), 77–88 (2016).
    [Crossref]
  24. X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “Variable-illumination Fourier ptychographic imaging devices, systems, and methods,” U.S. patent 9,497,379 (2016).
  25. S. Sen, I. Ahmed, B. Aljubran, A. A. Bernussi, and L. G. de Peralta, “Fourier ptychographic microscopy using an infrared-emitting hemispherical digital condenser,” Appl. Opt. 55(23), 6421–6427 (2016).
    [Crossref]
  26. M. Alotaibi, S. Skinner-Ramos, A. Alamri, B. Alharbi, M. Alfarraj, and L. G. de Peralta, “Illumination-direction multiplexing Fourier ptychographic microscopy using hemispherical digital condensers,” Appl. Opt. 56(14), 4052–4057 (2017).
    [Crossref]
  27. A. Pan, Y. Zhang, K. Wen, M. Zhou, J. Min, M. Lei, and B. Yao, “Subwavelength resolution Fourier ptychography with hemispherical digital condensers,” Opt. Express 26(18), 23119–23131 (2018).
    [Crossref]
  28. K. Guo, S. Dong, P. Nanda, and G. Zheng, “Optimization of sampling pattern and the design of Fourier ptychographic illuminator,” Opt. Express 23(5), 6171–6180 (2015).
    [Crossref]
  29. L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2(2), 104–111 (2015).
    [Crossref]
  30. L. Tian, X. Li, K. Ramchandran, and L. Waller, “Multiplexed coded illumination for Fourier Ptychography with an LED array microscope,” Biomed. Opt. Express 5(7), 2376–2389 (2014).
    [Crossref]
  31. Y. Zhang, A. Pan, M. Lei, and B. Yao, “Data preprocessing methods for robust Fourier ptychographic microscopy,” Opt. Eng. 56(12), 123107 (2017).
    [Crossref]

2019 (4)

2018 (2)

2017 (5)

M. Alotaibi, S. Skinner-Ramos, A. Alamri, B. Alharbi, M. Alfarraj, and L. G. de Peralta, “Illumination-direction multiplexing Fourier ptychographic microscopy using hemispherical digital condensers,” Appl. Opt. 56(14), 4052–4057 (2017).
[Crossref]

Y. Zhang, A. Pan, M. Lei, and B. Yao, “Data preprocessing methods for robust Fourier ptychographic microscopy,” Opt. Eng. 56(12), 123107 (2017).
[Crossref]

S. Li, Y. Wang, W. Wu, and Y. Liang, “Predictive searching algorithm for Fourier ptychography,” J. Opt. 19(12), 125605 (2017).
[Crossref]

S. Sen, D. B. Desai, M. H. Alsubaie, M. V Zhelyeznyakov, L. Molina, H. S. Sarraf, A. A. Bernussi, and L. G. de Peralta, “Imaging photonic crystals using Fourier plane imaging and Fourier ptychographic microscopy techniques implemented with a computer controlled hemispherical digital condenser,” Opt. Commun. 383, 500–507 (2017).
[Crossref]

J. Liu, Y. Li, W. Wang, H. Zhang, Y. Wang, J. Tan, and C. Liu, “Stable and robust frequency domain position compensation strategy for Fourier ptychographic microscopy,” Opt. Express 25(23), 28053–28067 (2017).
[Crossref]

2016 (5)

2015 (5)

2014 (4)

2013 (1)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

2009 (1)

2007 (1)

T. M. Kreis and K. Schluter, “Resolution enhancement by aperture synthesis in digital holography,” Opt. Eng. 46(5), 055803 (2007).
[Crossref]

2006 (2)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23(12), 3162–3170 (2006).
[Crossref]

Ahmed, I.

Alamri, A.

Alexandrov, S. A.

T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17(10), 7873–7892 (2009).
[Crossref]

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref]

Alfarraj, M.

Alharbi, B.

Aljubran, B.

Alotaibi, M.

Alsubaie, M. H.

S. Sen, D. B. Desai, M. H. Alsubaie, M. V Zhelyeznyakov, L. Molina, H. S. Sarraf, A. A. Bernussi, and L. G. de Peralta, “Imaging photonic crystals using Fourier plane imaging and Fourier ptychographic microscopy techniques implemented with a computer controlled hemispherical digital condenser,” Opt. Commun. 383, 500–507 (2017).
[Crossref]

Bernussi, A. A.

S. Sen, D. B. Desai, M. H. Alsubaie, M. V Zhelyeznyakov, L. Molina, H. S. Sarraf, A. A. Bernussi, and L. G. de Peralta, “Imaging photonic crystals using Fourier plane imaging and Fourier ptychographic microscopy techniques implemented with a computer controlled hemispherical digital condenser,” Opt. Commun. 383, 500–507 (2017).
[Crossref]

S. Sen, I. Ahmed, B. Aljubran, A. A. Bernussi, and L. G. de Peralta, “Fourier ptychographic microscopy using an infrared-emitting hemispherical digital condenser,” Appl. Opt. 55(23), 6421–6427 (2016).
[Crossref]

Bian, L.

Bian, Z.

Chen, F.

Chen, M.

Chen, N.

Chen, Q.

Cheng, S.

Chung, J.

Dai, Q.

de Peralta, L. G.

S. Sen, D. B. Desai, M. H. Alsubaie, M. V Zhelyeznyakov, L. Molina, H. S. Sarraf, A. A. Bernussi, and L. G. de Peralta, “Imaging photonic crystals using Fourier plane imaging and Fourier ptychographic microscopy techniques implemented with a computer controlled hemispherical digital condenser,” Opt. Commun. 383, 500–507 (2017).
[Crossref]

M. Alotaibi, S. Skinner-Ramos, A. Alamri, B. Alharbi, M. Alfarraj, and L. G. de Peralta, “Illumination-direction multiplexing Fourier ptychographic microscopy using hemispherical digital condensers,” Appl. Opt. 56(14), 4052–4057 (2017).
[Crossref]

S. Sen, I. Ahmed, B. Aljubran, A. A. Bernussi, and L. G. de Peralta, “Fourier ptychographic microscopy using an infrared-emitting hemispherical digital condenser,” Appl. Opt. 55(23), 6421–6427 (2016).
[Crossref]

Desai, D. B.

S. Sen, D. B. Desai, M. H. Alsubaie, M. V Zhelyeznyakov, L. Molina, H. S. Sarraf, A. A. Bernussi, and L. G. de Peralta, “Imaging photonic crystals using Fourier plane imaging and Fourier ptychographic microscopy techniques implemented with a computer controlled hemispherical digital condenser,” Opt. Commun. 383, 500–507 (2017).
[Crossref]

Dong, J.

Dong, S.

García, J.

García-Martínez, P.

Guo, K.

K. Guo, S. Dong, and G. Zheng, “Fourier ptychography for brightfield, phase, darkfield, reflective, multi-slice, and fluorescence imaging,” IEEE J. Sel. Top. Quantum Electron. 22(4), 77–88 (2016).
[Crossref]

K. Guo, S. Dong, P. Nanda, and G. Zheng, “Optimization of sampling pattern and the design of Fourier ptychographic illuminator,” Opt. Express 23(5), 6171–6180 (2015).
[Crossref]

Gutzler, T.

T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17(10), 7873–7892 (2009).
[Crossref]

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref]

Hillman, T. R.

T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17(10), 7873–7892 (2009).
[Crossref]

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref]

Horstmeyer, R.

J. Chung, J. Kim, X. Ou, R. Horstmeyer, and C. Yang, “Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography,” Biomed. Opt. Express 7(2), 352–368 (2016).
[Crossref]

X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “High numerical aperture Fourier ptychography: principle, implementation and characterization,” Opt. Express 23(3), 3472–3491 (2015).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “Variable-illumination Fourier ptychographic imaging devices, systems, and methods,” U.S. patent 9,497,379 (2016).

Kim, J.

Kreis, T. M.

T. M. Kreis and K. Schluter, “Resolution enhancement by aperture synthesis in digital holography,” Opt. Eng. 46(5), 055803 (2007).
[Crossref]

Lam, E. Y.

Lee, B.

Lei, M.

A. Pan, C. Zuo, Y. Xie, M. Lei, and B. Yao, “Vignetting effect in Fourier ptychographic microscopy,” Opt. Lasers Eng. 120, 40–48 (2019).
[Crossref]

A. Pan, Y. Zhang, K. Wen, M. Zhou, J. Min, M. Lei, and B. Yao, “Subwavelength resolution Fourier ptychography with hemispherical digital condensers,” Opt. Express 26(18), 23119–23131 (2018).
[Crossref]

Y. Zhang, A. Pan, M. Lei, and B. Yao, “Data preprocessing methods for robust Fourier ptychographic microscopy,” Opt. Eng. 56(12), 123107 (2017).
[Crossref]

Lencioni, K. C.

Li, S.

S. Li, Y. Wang, W. Wu, and Y. Liang, “Predictive searching algorithm for Fourier ptychography,” J. Opt. 19(12), 125605 (2017).
[Crossref]

Li, X.

Li, Y.

Liang, R.

Liang, Y.

Liu, C.

Liu, H.

Liu, J.

Martinez, G. W.

Mico, V.

Milster, T.

Min, J.

Molina, L.

S. Sen, D. B. Desai, M. H. Alsubaie, M. V Zhelyeznyakov, L. Molina, H. S. Sarraf, A. A. Bernussi, and L. G. de Peralta, “Imaging photonic crystals using Fourier plane imaging and Fourier ptychographic microscopy techniques implemented with a computer controlled hemispherical digital condenser,” Opt. Commun. 383, 500–507 (2017).
[Crossref]

Nanda, P.

Ou, X.

Pacheco, S.

Pan, A.

A. Pan, C. Zuo, Y. Xie, M. Lei, and B. Yao, “Vignetting effect in Fourier ptychographic microscopy,” Opt. Lasers Eng. 120, 40–48 (2019).
[Crossref]

A. Pan, Y. Zhang, K. Wen, M. Zhou, J. Min, M. Lei, and B. Yao, “Subwavelength resolution Fourier ptychography with hemispherical digital condensers,” Opt. Express 26(18), 23119–23131 (2018).
[Crossref]

Y. Zhang, A. Pan, M. Lei, and B. Yao, “Data preprocessing methods for robust Fourier ptychographic microscopy,” Opt. Eng. 56(12), 123107 (2017).
[Crossref]

Ramchandran, K.

Rodriguez, J. J.

Sadda, S. R.

Salahieh, B.

Sampson, D. D.

T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17(10), 7873–7892 (2009).
[Crossref]

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref]

Sarraf, H. S.

S. Sen, D. B. Desai, M. H. Alsubaie, M. V Zhelyeznyakov, L. Molina, H. S. Sarraf, A. A. Bernussi, and L. G. de Peralta, “Imaging photonic crystals using Fourier plane imaging and Fourier ptychographic microscopy techniques implemented with a computer controlled hemispherical digital condenser,” Opt. Commun. 383, 500–507 (2017).
[Crossref]

Schluter, K.

T. M. Kreis and K. Schluter, “Resolution enhancement by aperture synthesis in digital holography,” Opt. Eng. 46(5), 055803 (2007).
[Crossref]

Sen, S.

S. Sen, D. B. Desai, M. H. Alsubaie, M. V Zhelyeznyakov, L. Molina, H. S. Sarraf, A. A. Bernussi, and L. G. de Peralta, “Imaging photonic crystals using Fourier plane imaging and Fourier ptychographic microscopy techniques implemented with a computer controlled hemispherical digital condenser,” Opt. Commun. 383, 500–507 (2017).
[Crossref]

S. Sen, I. Ahmed, B. Aljubran, A. A. Bernussi, and L. G. de Peralta, “Fourier ptychographic microscopy using an infrared-emitting hemispherical digital condenser,” Appl. Opt. 55(23), 6421–6427 (2016).
[Crossref]

Shiradkar, R.

Situ, G.

Skinner-Ramos, S.

Soltanolkotabi, M.

Sun, J.

Suo, J.

Tan, J.

Tang, G.

Tian, L.

Waller, L.

Wang, W.

Wang, Y.

Wen, K.

Wu, W.

S. Li, Y. Wang, W. Wu, and Y. Liang, “Predictive searching algorithm for Fourier ptychography,” J. Opt. 19(12), 125605 (2017).
[Crossref]

Xie, Y.

A. Pan, C. Zuo, Y. Xie, M. Lei, and B. Yao, “Vignetting effect in Fourier ptychographic microscopy,” Opt. Lasers Eng. 120, 40–48 (2019).
[Crossref]

Xue, Y.

Yang, C.

Yang, D.

Yao, B.

A. Pan, C. Zuo, Y. Xie, M. Lei, and B. Yao, “Vignetting effect in Fourier ptychographic microscopy,” Opt. Lasers Eng. 120, 40–48 (2019).
[Crossref]

A. Pan, Y. Zhang, K. Wen, M. Zhou, J. Min, M. Lei, and B. Yao, “Subwavelength resolution Fourier ptychography with hemispherical digital condensers,” Opt. Express 26(18), 23119–23131 (2018).
[Crossref]

Y. Zhang, A. Pan, M. Lei, and B. Yao, “Data preprocessing methods for robust Fourier ptychographic microscopy,” Opt. Eng. 56(12), 123107 (2017).
[Crossref]

Yeh, L.-H.

Zalevsky, Z.

Zhang, H.

Zhang, L.

Zhang, M.

Zhang, Y.

Zhelyeznyakov, M. V

S. Sen, D. B. Desai, M. H. Alsubaie, M. V Zhelyeznyakov, L. Molina, H. S. Sarraf, A. A. Bernussi, and L. G. de Peralta, “Imaging photonic crystals using Fourier plane imaging and Fourier ptychographic microscopy techniques implemented with a computer controlled hemispherical digital condenser,” Opt. Commun. 383, 500–507 (2017).
[Crossref]

Zheng, G.

K. Guo, S. Dong, and G. Zheng, “Fourier ptychography for brightfield, phase, darkfield, reflective, multi-slice, and fluorescence imaging,” IEEE J. Sel. Top. Quantum Electron. 22(4), 77–88 (2016).
[Crossref]

S. Pacheco, G. Zheng, and R. Liang, “Reflective Fourier ptychography,” J. Biomed. Opt. 21(2), 026010 (2016).
[Crossref]

K. Guo, S. Dong, P. Nanda, and G. Zheng, “Optimization of sampling pattern and the design of Fourier ptychographic illuminator,” Opt. Express 23(5), 6171–6180 (2015).
[Crossref]

X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “High numerical aperture Fourier ptychography: principle, implementation and characterization,” Opt. Express 23(3), 3472–3491 (2015).
[Crossref]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
[Crossref]

L. Bian, J. Suo, G. Situ, G. Zheng, F. Chen, and Q. Dai, “Content adaptive illumination for Fourier ptychography,” Opt. Lett. 39(23), 6648–6651 (2014).
[Crossref]

S. Dong, Z. Bian, R. Shiradkar, and G. Zheng, “Sparsely sampled Fourier ptychography,” Opt. Express 22(5), 5455–5464 (2014).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “Variable-illumination Fourier ptychographic imaging devices, systems, and methods,” U.S. patent 9,497,379 (2016).

Zhong, J.

Zhou, A.

Zhou, M.

Zuo, C.

A. Pan, C. Zuo, Y. Xie, M. Lei, and B. Yao, “Vignetting effect in Fourier ptychographic microscopy,” Opt. Lasers Eng. 120, 40–48 (2019).
[Crossref]

J. Sun, Q. Chen, Y. Zhang, and C. Zuo, “Efficient positional misalignment correction method for Fourier ptychographic microscopy,” Biomed. Opt. Express 7(4), 1336–1350 (2016).
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (3)

IEEE J. Sel. Top. Quantum Electron. (1)

K. Guo, S. Dong, and G. Zheng, “Fourier ptychography for brightfield, phase, darkfield, reflective, multi-slice, and fluorescence imaging,” IEEE J. Sel. Top. Quantum Electron. 22(4), 77–88 (2016).
[Crossref]

J. Biomed. Opt. (1)

S. Pacheco, G. Zheng, and R. Liang, “Reflective Fourier ptychography,” J. Biomed. Opt. 21(2), 026010 (2016).
[Crossref]

J. Opt. (1)

S. Li, Y. Wang, W. Wu, and Y. Liang, “Predictive searching algorithm for Fourier ptychography,” J. Opt. 19(12), 125605 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

Opt. Commun. (1)

S. Sen, D. B. Desai, M. H. Alsubaie, M. V Zhelyeznyakov, L. Molina, H. S. Sarraf, A. A. Bernussi, and L. G. de Peralta, “Imaging photonic crystals using Fourier plane imaging and Fourier ptychographic microscopy techniques implemented with a computer controlled hemispherical digital condenser,” Opt. Commun. 383, 500–507 (2017).
[Crossref]

Opt. Eng. (2)

T. M. Kreis and K. Schluter, “Resolution enhancement by aperture synthesis in digital holography,” Opt. Eng. 46(5), 055803 (2007).
[Crossref]

Y. Zhang, A. Pan, M. Lei, and B. Yao, “Data preprocessing methods for robust Fourier ptychographic microscopy,” Opt. Eng. 56(12), 123107 (2017).
[Crossref]

Opt. Express (10)

A. Pan, Y. Zhang, K. Wen, M. Zhou, J. Min, M. Lei, and B. Yao, “Subwavelength resolution Fourier ptychography with hemispherical digital condensers,” Opt. Express 26(18), 23119–23131 (2018).
[Crossref]

K. Guo, S. Dong, P. Nanda, and G. Zheng, “Optimization of sampling pattern and the design of Fourier ptychographic illuminator,” Opt. Express 23(5), 6171–6180 (2015).
[Crossref]

T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17(10), 7873–7892 (2009).
[Crossref]

M. Zhang, L. Zhang, D. Yang, H. Liu, and Y. Liang, “Symmetrical illumination based extending depth of field in Fourier ptychographic microscopy,” Opt. Express 27(3), 3583–3597 (2019).
[Crossref]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
[Crossref]

S. Dong, Z. Bian, R. Shiradkar, and G. Zheng, “Sparsely sampled Fourier ptychography,” Opt. Express 22(5), 5455–5464 (2014).
[Crossref]

L.-H. Yeh, J. Dong, J. Zhong, L. Tian, M. Chen, G. Tang, M. Soltanolkotabi, and L. Waller, “Experimental robustness of Fourier ptychography phase retrieval algorithms,” Opt. Express 23(26), 33214–33240 (2015).
[Crossref]

X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “High numerical aperture Fourier ptychography: principle, implementation and characterization,” Opt. Express 23(3), 3472–3491 (2015).
[Crossref]

J. Liu, Y. Li, W. Wang, H. Zhang, Y. Wang, J. Tan, and C. Liu, “Stable and robust frequency domain position compensation strategy for Fourier ptychographic microscopy,” Opt. Express 25(23), 28053–28067 (2017).
[Crossref]

A. Zhou, W. Wang, N. Chen, E. Y. Lam, B. Lee, and G. Situ, “Fast and robust misalignment correction of Fourier ptychographic microscopy for full field of view reconstruction,” Opt. Express 26(18), 23661–23674 (2018).
[Crossref]

Opt. Lasers Eng. (1)

A. Pan, C. Zuo, Y. Xie, M. Lei, and B. Yao, “Vignetting effect in Fourier ptychographic microscopy,” Opt. Lasers Eng. 120, 40–48 (2019).
[Crossref]

Opt. Lett. (2)

Optica (3)

Phys. Rev. Lett. (1)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[Crossref]

Other (1)

X. Ou, R. Horstmeyer, G. Zheng, and C. Yang, “Variable-illumination Fourier ptychographic imaging devices, systems, and methods,” U.S. patent 9,497,379 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Result of the ray tracing for illuminating an object from the BI (blue lines) and the DI (red lines). (b) The spectral positions of the transfer functions for each LED in the BI (blue circles) and the DI (red circles).
Fig. 2.
Fig. 2. (a) Experimental setup of reflective FPM. CMOS: Complementary metal–oxide–semiconductor image sensor, TL: tube lens, BS: beam-splitter, PM: parabolic mirror, OL: objective lens, CL: convex lens, FS: field stop, O: object. (b) Experimental setup of the reflective FPM. (c) The LED array for the darkfield illuminator and the objective lens.
Fig. 3.
Fig. 3. (a) Reconstructed high-resolution image. Scale bar, 100 µm. (b) Magnified image around the finest pattern of the reconstructed image. Scale bar, 10 µm. The inset shows the magnified view of Element 1 in Group 11. (c) Magnified image when illuminated by a normal beam. Scale bar, 10 µm. (d) Intensity profiles for the bars in the x and y directions of Element 1 in Group 11 from (b). (e) Synthesized spectrum by FPM in logarithmic scale.
Fig. 4.
Fig. 4. (a) Reconstructed high-resolution image of the integrated circuit. The scale bar represents 100 µm. (b1),(c1),(d1) Magnified images of the specified region obtained when only on-axis LED is illuminated. (b2),(c2),(d2) High resolution images by FPM process. (b3),(c3),(d3) Images obtained with a 100× objective lens. The scale bars in (b2), (c2), and (d2) represent 10 µm.
Fig. 5.
Fig. 5. Simulation results of the ray tracing for (a) Olympus MPLFLN 5× and (b) Olympus MPLFLN 10×.
Fig. 6.
Fig. 6. (a1)-(a3) Darkfield images of the integrated circuit when illuminated by a single LED of the (a1) first ring, (a2) second ring, and (a3) third ring of the DI, respectively. (b1)-(b3) Stray light by the LEDs corresponding to the case of (a1)-(a3). (c) The histogram of the darkfield images. (d) The histogram of the stray lights and when all LEDs are off. The scale bar in (a1) represents 100 µm.

Tables (1)

Tables Icon

Table 1. Design parameters of the epi-illuminators

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

sin θ i = r BI i f obj ,
sin θ i = r DI i r DI i 2 + ( r DI i 2 4 f p + f p ) 2 ,
p λ 2 N A obj f tube f obj ,