Abstract

Microwave photonic bandpass filters (MPBPFs) are important building blocks in radio-frequency (RF) signal processing systems. However, most of the reported MPBPFs fail to satisfy the stringent real-world performance metrics, particularly low RF insertion loss. In this paper we report a novel MPBPF scheme using two cascaded integrated silicon nitride (Si3N4) ring resonators, achieving a high link gain in the RF filter passband. In this scheme, one ring operates at an optimal over-coupling condition to enable a strong RF passband whilst an auxiliary ring is used to increase the detected RF signal power via tuning the optical carrier-to-sideband ratio. The unique combination of these two techniques enables compact size as well as high RF performance. Compared to previously reported ring-based MPBPFs, this work achieves a record-high RF gain of 1.8 dB in the passband, with a high spectral resolution of 260 MHz. Furthermore, a multi-band MPBPF with optimized RF gain, tunable central frequencies, and frequency spacing tunability is realized using additional ring resonators, highlighting the scalability and flexibility of this chip-based MPBPF scheme.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection

David Marpaung, Blair Morrison, Ravi Pant, Chris Roeloffzen, Arne Leinse, Marcel Hoekman, Rene Heideman, and Benjamin J. Eggleton
Opt. Express 21(20) 23286-23294 (2013)

High link performance of Brillouin-loss based microwave bandpass photonic filters

Andri Mahendra, Yang Liu, Eric Magi, Amol Choudhary, David Marpaung, and Benjamin J. Eggleton
OSA Continuum 1(4) 1287-1297 (2018)

Variable carrier reduction in radio-over-fiber systems for increased modulation efficiency using a Si3N4 tunable extinction ratio ring resonator

Andreas Perentos, Francisco Cuesta-Soto, Manuel Rodrigo, Antonio Canciamilla, Borja Vidal, Luigi Pierno, Amadeu Griol, N. S. Losilla, Laurent Bellieres, Francisco Lopez-Royo, Andrea Melloni, and Stavros Iezekiel
Opt. Express 20(23) 25478-25488 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  2. Y. Xu, H. Peng, R. Guo, H. Du, G. Hu, L. Zhu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on a single-bandpass microwave photonic filter and a recirculating delay line,” Chin. Opt. Lett. 16(11), 110602 (2018).
    [Crossref]
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  4. D. Marpaung, J. P. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13(2), 80–90 (2019).
    [Crossref]
  5. D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photonics Technol. Lett. 24(17), 1502–1505 (2012).
    [Crossref]
  6. Z. Zhang, B. Huang, Z. Zhang, C. Cheng, and H. Chen, “Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator,” Opt. Eng. 52(12), 127102 (2013).
    [Crossref]
  7. J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
    [Crossref]
  8. N. Ehteshami, W. Zhang, and J. Yao, “Optically tunable single passband microwave photonic filter based on phase-modulation to intensity modulation conversion in a silicon-on-insulator microring resonator,” in Proc. Int. Top. Meet. IEEE Microw. Photon, 2015, pp. 1–4.
  9. H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, and X. Zhang, “A continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator,” J. Lightwave Technol. 36(19), 4312–4318 (2018).
    [Crossref]
  10. W. Yang, X. Yi, S. Song, S. X. Chew, L. Li, and L. Nguyen, “Tunable single bandpass microwave photonic filter based on phase compensated silicon-on-insulator microring resonator,” in 2016 21st Opto Electronics and Communications Conference held jointly with 2016 International Conference on Photonics in Switching (IEEE2016), pp. 1–3.
  11. J. Li, P. Zheng, G. Hu, R. Zhang, B. Yun, and Y. Cui, “Performance improvements of a tunable bandpass microwave photonic filter based on a notch ring resonator using phase modulation with dual optical carriers,” Opt. Express 27(7), 9705–9715 (2019).
    [Crossref]
  12. X. Zou, F. Zou, Z. Cao, B. Lu, X. Yan, G. Yu, X. Deng, B. Luo, L. Yan, W. Pan, J. Yao, and A. M. J. Koonen, “A Multifunctional Photonic Integrated Circuit for Diverse Microwave Signal Generation, Transmission, and Processing,” Laser Photonics Rev. 13(6), 1800240 (2019).
    [Crossref]
  13. W. Zhang and J. Yao, “Silicon-based integrated microwave photonics,” IEEE J. Quantum Electron. 52(1), 1–12 (2016).
    [Crossref]
  14. E. J. Norberg, R. S. Guzzon, J. S. Parker, L.A. Johansson, and L.A. Coldren, “Programmable photonic microwave filters monolithically integrated in InP/InGaAsP,” J. Lightwave Technol. 29(11), 1611–1619 (2011).
    [Crossref]
  15. J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. D. Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3(1), 1075 (2012).
    [Crossref]
  16. A. Byrnes, R. Pant, E. Li, D. Choi, C. G. Poulton, S. Fan, S. Madden, B. L. Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20(17), 18836–18854 (2012).
    [Crossref]
  17. A. Choudhary, I. Aryanfar, S. Shahnia, B. Morrison, K. Vu, S. Madden, B. L. Davies, D. Marpaung, and B. J. Eggleton, “Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters,” Opt. Lett. 41(3), 436–439 (2016).
    [Crossref]
  18. Y. Liu, J. Hotten, A. Choudhary, B. J. Eggleton, and D. Marpaung, “All-optimized integrated RF photonic notch filter,” Opt. Lett. 42(22), 4631–4634 (2017).
    [Crossref]
  19. K. J. Williams, “Signal Processing Subsystems for RF Photonics,” in Optical fiber communication conference (2017), W4B.1.
  20. Y. Liu, D. Marpaung, A. Choudhary, J. Hotten, and B. J. Eggleton, “Link Performance Optimization of Chip-Based Si3N4 Microwave Photonic Filters,” J. Lightwave Technol. 36(19), 4361–4370 (2018).
    [Crossref]
  21. W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  22. A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photonics Technol. Lett. 19(5), 312–314 (2007).
    [Crossref]
  23. V. J. Urick, M. E. Godinez, P. S. Devgan, J. D. McKinney, and F. Bucholtz, “Analysis of an analog fiber-optic link employing a low-biased mach-zehnder modulator followed by an erbium-doped fiber amplifier,” J. Lightwave Technol. 27(12), 2013–2019 (2009).
    [Crossref]
  24. C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
    [Crossref]
  25. W. Zhang and J. Yao, “Integrated Frequency-Tunable Microwave Photonic Bandpass Filter on a Silicon Photonic Chip,” in Proceeding of Optical Fiber Communication Conference, 2018, M1H.5.
  26. K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4-5), 269–281 (2014).
    [Crossref]
  27. M. S. Nawrockaa, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
    [Crossref]
  28. Y. Liu, A. Choudhary, G. Ren, K. Vu, B. Morrison, A. C. Bedoy, T. G. Nguyen, D. Y. Choi, A. Mitchell, S. J. Madden, D. Marpaung, and B. J. Eggleton, “Integrating Brillouin processing with functional circuits for enhanced RF photonic processing,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2018), 18306286.
  29. T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Lončar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
    [Crossref]
  30. Z. Su, E. S. Hosseini, E. Timurdogan, J. Sun, M. Moresco, G. Leake, T. N. Adam, D. D. Coolbaugh, and M. R. Watts, “Whispering gallery germanium-on-silicon photodetector,” Opt. Lett. 42(15), 2878–2881 (2017).
    [Crossref]
  31. L. Zhuang, C. G. Roeloffzen, M. Hoekman, K. J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2(10), 854–859 (2015).
    [Crossref]
  32. M.A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J.E. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. 8(7), 1139–1150 (2018).
    [Crossref]
  33. M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, Li. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
    [Crossref]
  34. A. Beling, A. S. Cross, M. Piels, J. Peters, Qi. Zhou, J. E. Bowers, and J. C. Campbell, “InP-based waveguide photodiodes heterogeneously integrated on silicon-on-insulator for photonic microwave generation,” Opt. Express 21(22), 25901–25906 (2013).
    [Crossref]
  35. M. Merklein, B. Stiller, I. V. Kabakova, U. S. Mutugala, K. Vu, S. J. Madden, B. J. Eggleton, and R. Slavík, “Widely tunable, low phase noise microwave source based on a photonic chip,” Opt. Lett. 41(20), 4633–4636 (2016).
    [Crossref]
  36. Z. Zhu, M. Merklein, D. Y. Choi, K. Vu, P. Ma, S. J. Madden, and B. J. Eggleton, “Highly sensitive, broadband microwave frequency identification using a chip-based Brillouin optoelectronic oscillator,” Opt. Express 27(9), 12855–12868 (2019).
    [Crossref]

2019 (6)

D. Marpaung, J. P. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13(2), 80–90 (2019).
[Crossref]

X. Zou, F. Zou, Z. Cao, B. Lu, X. Yan, G. Yu, X. Deng, B. Luo, L. Yan, W. Pan, J. Yao, and A. M. J. Koonen, “A Multifunctional Photonic Integrated Circuit for Diverse Microwave Signal Generation, Transmission, and Processing,” Laser Photonics Rev. 13(6), 1800240 (2019).
[Crossref]

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Lončar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, Li. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

J. Li, P. Zheng, G. Hu, R. Zhang, B. Yun, and Y. Cui, “Performance improvements of a tunable bandpass microwave photonic filter based on a notch ring resonator using phase modulation with dual optical carriers,” Opt. Express 27(7), 9705–9715 (2019).
[Crossref]

Z. Zhu, M. Merklein, D. Y. Choi, K. Vu, P. Ma, S. J. Madden, and B. J. Eggleton, “Highly sensitive, broadband microwave frequency identification using a chip-based Brillouin optoelectronic oscillator,” Opt. Express 27(9), 12855–12868 (2019).
[Crossref]

2018 (5)

H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, and X. Zhang, “A continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator,” J. Lightwave Technol. 36(19), 4312–4318 (2018).
[Crossref]

Y. Liu, D. Marpaung, A. Choudhary, J. Hotten, and B. J. Eggleton, “Link Performance Optimization of Chip-Based Si3N4 Microwave Photonic Filters,” J. Lightwave Technol. 36(19), 4361–4370 (2018).
[Crossref]

Y. Xu, H. Peng, R. Guo, H. Du, G. Hu, L. Zhu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on a single-bandpass microwave photonic filter and a recirculating delay line,” Chin. Opt. Lett. 16(11), 110602 (2018).
[Crossref]

M.A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J.E. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. 8(7), 1139–1150 (2018).
[Crossref]

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

2017 (2)

2016 (3)

2015 (1)

2014 (1)

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4-5), 269–281 (2014).
[Crossref]

2013 (2)

Z. Zhang, B. Huang, Z. Zhang, C. Cheng, and H. Chen, “Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator,” Opt. Eng. 52(12), 127102 (2013).
[Crossref]

A. Beling, A. S. Cross, M. Piels, J. Peters, Qi. Zhou, J. E. Bowers, and J. C. Campbell, “InP-based waveguide photodiodes heterogeneously integrated on silicon-on-insulator for photonic microwave generation,” Opt. Express 21(22), 25901–25906 (2013).
[Crossref]

2012 (4)

A. Byrnes, R. Pant, E. Li, D. Choi, C. G. Poulton, S. Fan, S. Madden, B. L. Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20(17), 18836–18854 (2012).
[Crossref]

D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photonics Technol. Lett. 24(17), 1502–1505 (2012).
[Crossref]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. D. Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3(1), 1075 (2012).
[Crossref]

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

2011 (1)

2010 (1)

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

2009 (2)

2007 (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photonics Technol. Lett. 19(5), 312–314 (2007).
[Crossref]

2006 (1)

M. S. Nawrockaa, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Adam, T. N.

Alippi, A.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Aryanfar, I.

Baets, R.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bedoy, A. C.

Y. Liu, A. Choudhary, G. Ren, K. Vu, B. Morrison, A. C. Bedoy, T. G. Nguyen, D. Y. Choi, A. Mitchell, S. J. Madden, D. Marpaung, and B. J. Eggleton, “Integrating Brillouin processing with functional circuits for enhanced RF photonic processing,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2018), 18306286.

Beling, A.

Benelajla, M.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Bergman, K.

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4-5), 269–281 (2014).
[Crossref]

Bienstman, P.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Boller, K. J.

Boller, K.-J.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Bourderionnet, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. D. Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3(1), 1075 (2012).
[Crossref]

Bowers, J. E.

Bowers, J.E.

M.A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J.E. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. 8(7), 1139–1150 (2018).
[Crossref]

Bucholtz, F.

Byrnes, A.

Cai, X.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, Li. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Campbell, J. C.

Cao, Z.

X. Zou, F. Zou, Z. Cao, B. Lu, X. Yan, G. Yu, X. Deng, B. Luo, L. Yan, W. Pan, J. Yao, and A. M. J. Koonen, “A Multifunctional Photonic Integrated Circuit for Diverse Microwave Signal Generation, Transmission, and Processing,” Laser Photonics Rev. 13(6), 1800240 (2019).
[Crossref]

Capmany, J.

D. Marpaung, J. P. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13(2), 80–90 (2019).
[Crossref]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. D. Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3(1), 1075 (2012).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chen, H.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, Li. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Z. Zhang, B. Huang, Z. Zhang, C. Cheng, and H. Chen, “Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator,” Opt. Eng. 52(12), 127102 (2013).
[Crossref]

Chen, Z.

Cheng, C.

Z. Zhang, B. Huang, Z. Zhang, C. Cheng, and H. Chen, “Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator,” Opt. Eng. 52(12), 127102 (2013).
[Crossref]

Chew, S. X.

W. Yang, X. Yi, S. Song, S. X. Chew, L. Li, and L. Nguyen, “Tunable single bandpass microwave photonic filter based on phase compensated silicon-on-insulator microring resonator,” in 2016 21st Opto Electronics and Communications Conference held jointly with 2016 International Conference on Photonics in Switching (IEEE2016), pp. 1–3.

Choi, D.

Choi, D. Y.

Z. Zhu, M. Merklein, D. Y. Choi, K. Vu, P. Ma, S. J. Madden, and B. J. Eggleton, “Highly sensitive, broadband microwave frequency identification using a chip-based Brillouin optoelectronic oscillator,” Opt. Express 27(9), 12855–12868 (2019).
[Crossref]

Y. Liu, A. Choudhary, G. Ren, K. Vu, B. Morrison, A. C. Bedoy, T. G. Nguyen, D. Y. Choi, A. Mitchell, S. J. Madden, D. Marpaung, and B. J. Eggleton, “Integrating Brillouin processing with functional circuits for enhanced RF photonic processing,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2018), 18306286.

Choudhary, A.

Claes, T.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Coldren, L.A.

Colman, P.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. D. Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3(1), 1075 (2012).
[Crossref]

Combrié, S.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. D. Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3(1), 1075 (2012).
[Crossref]

Coolbaugh, D. D.

Cross, A. S.

Cui, Y.

Cullen, T.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Lončar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

Davies, B. L.

Dekker, R.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Deng, X.

X. Zou, F. Zou, Z. Cao, B. Lu, X. Yan, G. Yu, X. Deng, B. Luo, L. Yan, W. Pan, J. Yao, and A. M. J. Koonen, “A Multifunctional Photonic Integrated Circuit for Diverse Microwave Signal Generation, Transmission, and Processing,” Laser Photonics Rev. 13(6), 1800240 (2019).
[Crossref]

Devenport, J.

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photonics Technol. Lett. 19(5), 312–314 (2007).
[Crossref]

Devgan, P. S.

Dolfi, D.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. D. Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3(1), 1075 (2012).
[Crossref]

Dong, J.

Du, H.

Dumon, P.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Eggleton, B. J.

Z. Zhu, M. Merklein, D. Y. Choi, K. Vu, P. Ma, S. J. Madden, and B. J. Eggleton, “Highly sensitive, broadband microwave frequency identification using a chip-based Brillouin optoelectronic oscillator,” Opt. Express 27(9), 12855–12868 (2019).
[Crossref]

Y. Liu, D. Marpaung, A. Choudhary, J. Hotten, and B. J. Eggleton, “Link Performance Optimization of Chip-Based Si3N4 Microwave Photonic Filters,” J. Lightwave Technol. 36(19), 4361–4370 (2018).
[Crossref]

Y. Liu, J. Hotten, A. Choudhary, B. J. Eggleton, and D. Marpaung, “All-optimized integrated RF photonic notch filter,” Opt. Lett. 42(22), 4631–4634 (2017).
[Crossref]

M. Merklein, B. Stiller, I. V. Kabakova, U. S. Mutugala, K. Vu, S. J. Madden, B. J. Eggleton, and R. Slavík, “Widely tunable, low phase noise microwave source based on a photonic chip,” Opt. Lett. 41(20), 4633–4636 (2016).
[Crossref]

A. Choudhary, I. Aryanfar, S. Shahnia, B. Morrison, K. Vu, S. Madden, B. L. Davies, D. Marpaung, and B. J. Eggleton, “Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters,” Opt. Lett. 41(3), 436–439 (2016).
[Crossref]

A. Byrnes, R. Pant, E. Li, D. Choi, C. G. Poulton, S. Fan, S. Madden, B. L. Davies, and B. J. Eggleton, “Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering,” Opt. Express 20(17), 18836–18854 (2012).
[Crossref]

Y. Liu, A. Choudhary, G. Ren, K. Vu, B. Morrison, A. C. Bedoy, T. G. Nguyen, D. Y. Choi, A. Mitchell, S. J. Madden, D. Marpaung, and B. J. Eggleton, “Integrating Brillouin processing with functional circuits for enhanced RF photonic processing,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2018), 18306286.

Ehteshami, N.

N. Ehteshami, W. Zhang, and J. Yao, “Optically tunable single passband microwave photonic filter based on phase-modulation to intensity modulation conversion in a silicon-on-insulator microring resonator,” in Proc. Int. Top. Meet. IEEE Microw. Photon, 2015, pp. 1–4.

Epping, J. P.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Esman, R.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Lončar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

Fan, S.

Fan, Y.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Feng, X.

D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photonics Technol. Lett. 24(17), 1502–1505 (2012).
[Crossref]

Galan, J. V.

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Gao, S.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, Li. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Gasulla, I.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. D. Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3(1), 1075 (2012).
[Crossref]

Geskus, D.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Geuzebroek, D.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Godinez, M. E.

Grootjans, R.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Guo, C.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, Li. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Guo, R.

Guzzon, R. S.

He, M.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, Li. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Heideman, R. G.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Heyn, P. D.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Hoekman, M.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

L. Zhuang, C. G. Roeloffzen, M. Hoekman, K. J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2(10), 854–859 (2015).
[Crossref]

Hosseini, E. S.

Hotten, J.

Hu, G.

Hu, X.

Huang, B.

Z. Zhang, B. Huang, Z. Zhang, C. Cheng, and H. Chen, “Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator,” Opt. Eng. 52(12), 127102 (2013).
[Crossref]

Huang, D.

M.A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J.E. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. 8(7), 1139–1150 (2018).
[Crossref]

Huang, Y.

D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photonics Technol. Lett. 24(17), 1502–1505 (2012).
[Crossref]

Jian, J.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, Li. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Johansson, L.A.

Kabakova, I. V.

Karim, A.

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photonics Technol. Lett. 19(5), 312–314 (2007).
[Crossref]

King, O.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Lončar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

Klein, E. J.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Komljenovic, T.

M.A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J.E. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. 8(7), 1139–1150 (2018).
[Crossref]

Koonen, A. M. J.

X. Zou, F. Zou, Z. Cao, B. Lu, X. Yan, G. Yu, X. Deng, B. Luo, L. Yan, W. Pan, J. Yao, and A. M. J. Koonen, “A Multifunctional Photonic Integrated Circuit for Diverse Microwave Signal Generation, Transmission, and Processing,” Laser Photonics Rev. 13(6), 1800240 (2019).
[Crossref]

Leake, G.

Lehoucq, G.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. D. Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3(1), 1075 (2012).
[Crossref]

Leinse, A.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Li, E.

Li, J.

Li, L.

W. Yang, X. Yi, S. Song, S. X. Chew, L. Li, and L. Nguyen, “Tunable single bandpass microwave photonic filter based on phase compensated silicon-on-insulator microring resonator,” in 2016 21st Opto Electronics and Communications Conference held jointly with 2016 International Conference on Photonics in Switching (IEEE2016), pp. 1–3.

Liu, L.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, Li. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, Li. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Liu, T.

M. S. Nawrockaa, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Liu, Y.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Y. Liu, D. Marpaung, A. Choudhary, J. Hotten, and B. J. Eggleton, “Link Performance Optimization of Chip-Based Si3N4 Microwave Photonic Filters,” J. Lightwave Technol. 36(19), 4361–4370 (2018).
[Crossref]

Y. Liu, J. Hotten, A. Choudhary, B. J. Eggleton, and D. Marpaung, “All-optimized integrated RF photonic notch filter,” Opt. Lett. 42(22), 4631–4634 (2017).
[Crossref]

Y. Liu, A. Choudhary, G. Ren, K. Vu, B. Morrison, A. C. Bedoy, T. G. Nguyen, D. Y. Choi, A. Mitchell, S. J. Madden, D. Marpaung, and B. J. Eggleton, “Integrating Brillouin processing with functional circuits for enhanced RF photonic processing,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2018), 18306286.

Lloret, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. D. Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3(1), 1075 (2012).
[Crossref]

Loncar, M.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Lončar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

Lowery, A. J.

Lu, B.

X. Zou, F. Zou, Z. Cao, B. Lu, X. Yan, G. Yu, X. Deng, B. Luo, L. Yan, W. Pan, J. Yao, and A. M. J. Koonen, “A Multifunctional Photonic Integrated Circuit for Diverse Microwave Signal Generation, Transmission, and Processing,” Laser Photonics Rev. 13(6), 1800240 (2019).
[Crossref]

Luo, B.

X. Zou, F. Zou, Z. Cao, B. Lu, X. Yan, G. Yu, X. Deng, B. Luo, L. Yan, W. Pan, J. Yao, and A. M. J. Koonen, “A Multifunctional Photonic Integrated Circuit for Diverse Microwave Signal Generation, Transmission, and Processing,” Laser Photonics Rev. 13(6), 1800240 (2019).
[Crossref]

Ma, P.

Madden, S.

Madden, S. J.

Z. Zhu, M. Merklein, D. Y. Choi, K. Vu, P. Ma, S. J. Madden, and B. J. Eggleton, “Highly sensitive, broadband microwave frequency identification using a chip-based Brillouin optoelectronic oscillator,” Opt. Express 27(9), 12855–12868 (2019).
[Crossref]

M. Merklein, B. Stiller, I. V. Kabakova, U. S. Mutugala, K. Vu, S. J. Madden, B. J. Eggleton, and R. Slavík, “Widely tunable, low phase noise microwave source based on a photonic chip,” Opt. Lett. 41(20), 4633–4636 (2016).
[Crossref]

Y. Liu, A. Choudhary, G. Ren, K. Vu, B. Morrison, A. C. Bedoy, T. G. Nguyen, D. Y. Choi, A. Mitchell, S. J. Madden, D. Marpaung, and B. J. Eggleton, “Integrating Brillouin processing with functional circuits for enhanced RF photonic processing,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2018), 18306286.

Malik, A.

M.A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J.E. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. 8(7), 1139–1150 (2018).
[Crossref]

Marchenko, D.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Marpaung, D.

D. Marpaung, J. P. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13(2), 80–90 (2019).
[Crossref]

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Y. Liu, D. Marpaung, A. Choudhary, J. Hotten, and B. J. Eggleton, “Link Performance Optimization of Chip-Based Si3N4 Microwave Photonic Filters,” J. Lightwave Technol. 36(19), 4361–4370 (2018).
[Crossref]

Y. Liu, J. Hotten, A. Choudhary, B. J. Eggleton, and D. Marpaung, “All-optimized integrated RF photonic notch filter,” Opt. Lett. 42(22), 4631–4634 (2017).
[Crossref]

A. Choudhary, I. Aryanfar, S. Shahnia, B. Morrison, K. Vu, S. Madden, B. L. Davies, D. Marpaung, and B. J. Eggleton, “Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters,” Opt. Lett. 41(3), 436–439 (2016).
[Crossref]

Y. Liu, A. Choudhary, G. Ren, K. Vu, B. Morrison, A. C. Bedoy, T. G. Nguyen, D. Y. Choi, A. Mitchell, S. J. Madden, D. Marpaung, and B. J. Eggleton, “Integrating Brillouin processing with functional circuits for enhanced RF photonic processing,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2018), 18306286.

Marti, J.

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

McKinney, J. D.

Merklein, M.

Mitchell, A.

Y. Liu, A. Choudhary, G. Ren, K. Vu, B. Morrison, A. C. Bedoy, T. G. Nguyen, D. Y. Choi, A. Mitchell, S. J. Madden, D. Marpaung, and B. J. Eggleton, “Integrating Brillouin processing with functional circuits for enhanced RF photonic processing,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2018), 18306286.

Moresco, M.

Morrison, B.

A. Choudhary, I. Aryanfar, S. Shahnia, B. Morrison, K. Vu, S. Madden, B. L. Davies, D. Marpaung, and B. J. Eggleton, “Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters,” Opt. Lett. 41(3), 436–439 (2016).
[Crossref]

Y. Liu, A. Choudhary, G. Ren, K. Vu, B. Morrison, A. C. Bedoy, T. G. Nguyen, D. Y. Choi, A. Mitchell, S. J. Madden, D. Marpaung, and B. J. Eggleton, “Integrating Brillouin processing with functional circuits for enhanced RF photonic processing,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2018), 18306286.

Mutugala, U. S.

Nawrockaa, M. S.

M. S. Nawrockaa, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Nguyen, L.

W. Yang, X. Yi, S. Song, S. X. Chew, L. Li, and L. Nguyen, “Tunable single bandpass microwave photonic filter based on phase compensated silicon-on-insulator microring resonator,” in 2016 21st Opto Electronics and Communications Conference held jointly with 2016 International Conference on Photonics in Switching (IEEE2016), pp. 1–3.

Nguyen, T. G.

Y. Liu, A. Choudhary, G. Ren, K. Vu, B. Morrison, A. C. Bedoy, T. G. Nguyen, D. Y. Choi, A. Mitchell, S. J. Madden, D. Marpaung, and B. J. Eggleton, “Integrating Brillouin processing with functional circuits for enhanced RF photonic processing,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2018), 18306286.

Norberg, E. J.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Oldenbeuving, R. M.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Padmaraju, K.

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4-5), 269–281 (2014).
[Crossref]

Palaci, J.

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Pan, W.

X. Zou, F. Zou, Z. Cao, B. Lu, X. Yan, G. Yu, X. Deng, B. Luo, L. Yan, W. Pan, J. Yao, and A. M. J. Koonen, “A Multifunctional Photonic Integrated Circuit for Diverse Microwave Signal Generation, Transmission, and Processing,” Laser Photonics Rev. 13(6), 1800240 (2019).
[Crossref]

Panepucci, R. R.

M. S. Nawrockaa, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Pant, R.

Parker, J. S.

Peng, H.

Peters, J.

M.A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J.E. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. 8(7), 1139–1150 (2018).
[Crossref]

A. Beling, A. S. Cross, M. Piels, J. Peters, Qi. Zhou, J. E. Bowers, and J. C. Campbell, “InP-based waveguide photodiodes heterogeneously integrated on silicon-on-insulator for photonic microwave generation,” Opt. Express 21(22), 25901–25906 (2013).
[Crossref]

Piels, M.

Poulton, C. G.

Qie, J.

Qiu, H.

Reimer, C.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Lončar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

Ren, G.

Y. Liu, A. Choudhary, G. Ren, K. Vu, B. Morrison, A. C. Bedoy, T. G. Nguyen, D. Y. Choi, A. Mitchell, S. J. Madden, D. Marpaung, and B. J. Eggleton, “Integrating Brillouin processing with functional circuits for enhanced RF photonic processing,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2018), 18306286.

Ren, T.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Lončar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

Ren, Y.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, Li. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Roeloffzen, C. G.

Roeloffzen, C. G. H.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Rossi, A. D.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. D. Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3(1), 1075 (2012).
[Crossref]

Ruan, Z.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, Li. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Sales, S.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. D. Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3(1), 1075 (2012).
[Crossref]

Sancho, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. D. Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3(1), 1075 (2012).
[Crossref]

Schreuder, E.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Selvaraja, S. K.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Shahnia, S.

Shao, L.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Lončar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

Slavík, R.

Song, S.

W. Yang, X. Yi, S. Song, S. X. Chew, L. Li, and L. Nguyen, “Tunable single bandpass microwave photonic filter based on phase compensated silicon-on-insulator microring resonator,” in 2016 21st Opto Electronics and Communications Conference held jointly with 2016 International Conference on Photonics in Switching (IEEE2016), pp. 1–3.

Stiller, B.

Su, Z.

Sun, J.

Sun, S.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, Li. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Taballione, C.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Taddei, C.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Thourhout, D. V.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Timens, R. B.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Timurdogan, E.

Tran, M.A.

M.A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J.E. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. 8(7), 1139–1150 (2018).
[Crossref]

Urick, V. J.

Vaerenbergh, T. V.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

van Dijk, P. W. L.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

van Rees, A.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Vidal, B.

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Villanueva, G. E.

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

Visscher, I.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Vos, K. D.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Vu, K.

Wang, C.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Lončar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

Wang, X.

M. S. Nawrockaa, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Watts, M. R.

Wen, X.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, Li. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Wevers, L. S.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Williams, K. J.

K. J. Williams, “Signal Processing Subsystems for RF Photonics,” in Optical fiber communication conference (2017), W4B.1.

Wörhoff, K.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

Xavier, S.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. D. Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3(1), 1075 (2012).
[Crossref]

Xiao, X.

Xu, M.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, Li. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Xu, Y.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, Li. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Y. Xu, H. Peng, R. Guo, H. Du, G. Hu, L. Zhu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on a single-bandpass microwave photonic filter and a recirculating delay line,” Chin. Opt. Lett. 16(11), 110602 (2018).
[Crossref]

Yan, L.

X. Zou, F. Zou, Z. Cao, B. Lu, X. Yan, G. Yu, X. Deng, B. Luo, L. Yan, W. Pan, J. Yao, and A. M. J. Koonen, “A Multifunctional Photonic Integrated Circuit for Diverse Microwave Signal Generation, Transmission, and Processing,” Laser Photonics Rev. 13(6), 1800240 (2019).
[Crossref]

Yan, X.

X. Zou, F. Zou, Z. Cao, B. Lu, X. Yan, G. Yu, X. Deng, B. Luo, L. Yan, W. Pan, J. Yao, and A. M. J. Koonen, “A Multifunctional Photonic Integrated Circuit for Diverse Microwave Signal Generation, Transmission, and Processing,” Laser Photonics Rev. 13(6), 1800240 (2019).
[Crossref]

Yang, W.

W. Yang, X. Yi, S. Song, S. X. Chew, L. Li, and L. Nguyen, “Tunable single bandpass microwave photonic filter based on phase compensated silicon-on-insulator microring resonator,” in 2016 21st Opto Electronics and Communications Conference held jointly with 2016 International Conference on Photonics in Switching (IEEE2016), pp. 1–3.

Yao, J.

X. Zou, F. Zou, Z. Cao, B. Lu, X. Yan, G. Yu, X. Deng, B. Luo, L. Yan, W. Pan, J. Yao, and A. M. J. Koonen, “A Multifunctional Photonic Integrated Circuit for Diverse Microwave Signal Generation, Transmission, and Processing,” Laser Photonics Rev. 13(6), 1800240 (2019).
[Crossref]

W. Zhang and J. Yao, “Silicon-based integrated microwave photonics,” IEEE J. Quantum Electron. 52(1), 1–12 (2016).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

N. Ehteshami, W. Zhang, and J. Yao, “Optically tunable single passband microwave photonic filter based on phase-modulation to intensity modulation conversion in a silicon-on-insulator microring resonator,” in Proc. Int. Top. Meet. IEEE Microw. Photon, 2015, pp. 1–4.

W. Zhang and J. Yao, “Integrated Frequency-Tunable Microwave Photonic Bandpass Filter on a Silicon Photonic Chip,” in Proceeding of Optical Fiber Communication Conference, 2018, M1H.5.

Yao, J. P.

D. Marpaung, J. P. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13(2), 80–90 (2019).
[Crossref]

Yao, Y.

Yi, X.

W. Yang, X. Yi, S. Song, S. X. Chew, L. Li, and L. Nguyen, “Tunable single bandpass microwave photonic filter based on phase compensated silicon-on-insulator microring resonator,” in 2016 21st Opto Electronics and Communications Conference held jointly with 2016 International Conference on Photonics in Switching (IEEE2016), pp. 1–3.

Yu, G.

X. Zou, F. Zou, Z. Cao, B. Lu, X. Yan, G. Yu, X. Deng, B. Luo, L. Yan, W. Pan, J. Yao, and A. M. J. Koonen, “A Multifunctional Photonic Integrated Circuit for Diverse Microwave Signal Generation, Transmission, and Processing,” Laser Photonics Rev. 13(6), 1800240 (2019).
[Crossref]

Yu, S.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, Li. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Yu, Y.

Yun, B.

Zhang, D.

D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photonics Technol. Lett. 24(17), 1502–1505 (2012).
[Crossref]

Zhang, M.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Lončar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

Zhang, R.

Zhang, W.

W. Zhang and J. Yao, “Silicon-based integrated microwave photonics,” IEEE J. Quantum Electron. 52(1), 1–12 (2016).
[Crossref]

N. Ehteshami, W. Zhang, and J. Yao, “Optically tunable single passband microwave photonic filter based on phase-modulation to intensity modulation conversion in a silicon-on-insulator microring resonator,” in Proc. Int. Top. Meet. IEEE Microw. Photon, 2015, pp. 1–4.

W. Zhang and J. Yao, “Integrated Frequency-Tunable Microwave Photonic Bandpass Filter on a Silicon Photonic Chip,” in Proceeding of Optical Fiber Communication Conference, 2018, M1H.5.

Zhang, X.

Zhang, Y.

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Lončar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, and X. Zhang, “A continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator,” J. Lightwave Technol. 36(19), 4312–4318 (2018).
[Crossref]

Zhang, Z.

Z. Zhang, B. Huang, Z. Zhang, C. Cheng, and H. Chen, “Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator,” Opt. Eng. 52(12), 127102 (2013).
[Crossref]

Z. Zhang, B. Huang, Z. Zhang, C. Cheng, and H. Chen, “Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator,” Opt. Eng. 52(12), 127102 (2013).
[Crossref]

Zheng, P.

Zhou, F.

Zhou, Li.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, Li. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Zhou, Qi.

Zhu, L.

Zhu, Z.

Zhuang, L.

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

L. Zhuang, C. G. Roeloffzen, M. Hoekman, K. J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2(10), 854–859 (2015).
[Crossref]

Zou, F.

X. Zou, F. Zou, Z. Cao, B. Lu, X. Yan, G. Yu, X. Deng, B. Luo, L. Yan, W. Pan, J. Yao, and A. M. J. Koonen, “A Multifunctional Photonic Integrated Circuit for Diverse Microwave Signal Generation, Transmission, and Processing,” Laser Photonics Rev. 13(6), 1800240 (2019).
[Crossref]

Zou, X.

X. Zou, F. Zou, Z. Cao, B. Lu, X. Yan, G. Yu, X. Deng, B. Luo, L. Yan, W. Pan, J. Yao, and A. M. J. Koonen, “A Multifunctional Photonic Integrated Circuit for Diverse Microwave Signal Generation, Transmission, and Processing,” Laser Photonics Rev. 13(6), 1800240 (2019).
[Crossref]

Appl. Phys. Lett. (1)

M. S. Nawrockaa, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Appl. Sci. (1)

M.A. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J.E. Bowers, “Ultra-Low-Loss Silicon Waveguides for Heterogeneously Integrated Silicon/III-V Photonics,” Appl. Sci. 8(7), 1139–1150 (2018).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

W. Zhang and J. Yao, “Silicon-based integrated microwave photonics,” IEEE J. Quantum Electron. 52(1), 1–12 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. G. H. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, R. Grootjans, A. van Rees, R. M. Oldenbeuving, J. P. Epping, R. G. Heideman, K. Wörhoff, A. Leinse, D. Geuzebroek, E. Schreuder, P. W. L. van Dijk, I. Visscher, C. Taddei, Y. Fan, C. Taballione, Y. Liu, D. Marpaung, L. Zhuang, M. Benelajla, and K.-J. Boller, “Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview,” IEEE J. Sel. Top. Quantum Electron. 24(4), 1–21 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (4)

T. Ren, M. Zhang, C. Wang, L. Shao, C. Reimer, Y. Zhang, O. King, R. Esman, T. Cullen, and M. Lončar, “An Integrated Low-Voltage Broadband Lithium Niobate Phase Modulator,” IEEE Photonics Technol. Lett. 31(11), 889–892 (2019).
[Crossref]

D. Zhang, X. Feng, and Y. Huang, “Tunable and reconfigurable bandpass microwave photonic filters utilizing integrated optical processor on silicon-on-insulator substrate,” IEEE Photonics Technol. Lett. 24(17), 1502–1505 (2012).
[Crossref]

J. Palaci, G. E. Villanueva, J. V. Galan, J. Marti, and B. Vidal, “Single bandpass photonic microwave filter based on a notch ring resonator,” IEEE Photonics Technol. Lett. 22(17), 1276–1278 (2010).
[Crossref]

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photonics Technol. Lett. 19(5), 312–314 (2007).
[Crossref]

J. Lightwave Technol. (5)

Laser Photonics Rev. (2)

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

X. Zou, F. Zou, Z. Cao, B. Lu, X. Yan, G. Yu, X. Deng, B. Luo, L. Yan, W. Pan, J. Yao, and A. M. J. Koonen, “A Multifunctional Photonic Integrated Circuit for Diverse Microwave Signal Generation, Transmission, and Processing,” Laser Photonics Rev. 13(6), 1800240 (2019).
[Crossref]

Nanophotonics (1)

K. Padmaraju and K. Bergman, “Resolving the thermal challenges for silicon microring resonator devices,” Nanophotonics 3(4-5), 269–281 (2014).
[Crossref]

Nat. Commun. (1)

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. D. Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun. 3(1), 1075 (2012).
[Crossref]

Nat. Photonics (3)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

D. Marpaung, J. P. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics 13(2), 80–90 (2019).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, Li. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond,” Nat. Photonics 13(5), 359–364 (2019).
[Crossref]

Opt. Eng. (1)

Z. Zhang, B. Huang, Z. Zhang, C. Cheng, and H. Chen, “Microwave photonic filter with reconfigurable and tunable bandpass response using integrated optical signal processor based on microring resonator,” Opt. Eng. 52(12), 127102 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Optica (1)

Other (5)

N. Ehteshami, W. Zhang, and J. Yao, “Optically tunable single passband microwave photonic filter based on phase-modulation to intensity modulation conversion in a silicon-on-insulator microring resonator,” in Proc. Int. Top. Meet. IEEE Microw. Photon, 2015, pp. 1–4.

W. Yang, X. Yi, S. Song, S. X. Chew, L. Li, and L. Nguyen, “Tunable single bandpass microwave photonic filter based on phase compensated silicon-on-insulator microring resonator,” in 2016 21st Opto Electronics and Communications Conference held jointly with 2016 International Conference on Photonics in Switching (IEEE2016), pp. 1–3.

Y. Liu, A. Choudhary, G. Ren, K. Vu, B. Morrison, A. C. Bedoy, T. G. Nguyen, D. Y. Choi, A. Mitchell, S. J. Madden, D. Marpaung, and B. J. Eggleton, “Integrating Brillouin processing with functional circuits for enhanced RF photonic processing,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2018), 18306286.

W. Zhang and J. Yao, “Integrated Frequency-Tunable Microwave Photonic Bandpass Filter on a Silicon Photonic Chip,” in Proceeding of Optical Fiber Communication Conference, 2018, M1H.5.

K. J. Williams, “Signal Processing Subsystems for RF Photonics,” in Optical fiber communication conference (2017), W4B.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. The operating principle of the proposed MPBPF based on one ring resonator.
Fig. 2.
Fig. 2. (a) RF gain for OC and UC ring resonator based microwave photonic band pass filter as a function of ring extinction ratio with a Q-factor of 1.12×106 at critical coupling. (b) FWHM for OC and UC ring resonator based microwave photonic band pass filter as a function of ring extinction ratio with a Q-factor of 1.12×106 at critical coupling.
Fig. 3.
Fig. 3. Ratio between G and FWHM for OC and UC ring resonator based microwave photonic band pass filter as a function of ring extinction ratio.
Fig. 4.
Fig. 4. The operating principle of the proposed MPBPF based on two cascaded ring resonators.
Fig. 5.
Fig. 5. Gain improvement as a function of optical carrier suppression ratio.
Fig. 6.
Fig. 6. Schematic of the experimental setup. PM, phase modulator; PC, polarization control; OC, over-coupled; UC, under-coupled; LN-EDFA, low noise erbium-doped fiber amplifier; WA, wave analyzer; PD, photodetector; VNA, vector network analyzer.
Fig. 7.
Fig. 7. Spectra of MPBPF based on two cascaded ring resonators at various RF frequencies.
Fig. 8.
Fig. 8. Performance comparison between two cascaded ring resonators based MPBPF and OC ring resonator based filter, (a) RF gain and noise PSD; (b) Noise figure.
Fig. 9.
Fig. 9. (a) Measured SFDR at 11 GHz for OC ring resonator based MPBPF, (b) Measured SFDR at 11 GHz for two cascaded ring resonators based MPBPF, and (c) Measured SFDR for both schemes over the entire tuning range.
Fig. 10.
Fig. 10. Measured spectra of the two channels MPBPF with central frequencies centered at (a) 3 and 5 GHz, (b) 7 and 9 GHz, (c) 9 and 11 GHz; and with different frequency interval (d) 0.8 GHz, (e) 4 GHz, (f) 6 GHz.
Fig. 11.
Fig. 11. Demonstration of MPBPF with interference signal.

Tables (1)

Tables Icon

Table 1. Performance Comparison of MPBPF With Various Technology

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E R = ( a + r 1 + a r ) 2 ( a r 1 a r ) 2
I ( t ) = 2 I a v e J 0 ( m ) J 1 ( m ) [ 1 e j ( π + ϕ ) a r e j ϕ 1 r a e j ϕ ] cos ( ω R F t π 2 )
G = π 2 V π 2 I a v e 2 ( 1 + a r 1 a r ) 2 Z i n Z o u t
F W H M = F S R π a r c cos [ A ( 1 + r 2 a 2 ) ( 1 + a 2 ) ( 1 r ) 2 2 A r a + a ( 1 r ) 2 ]
A = 1 4 [ ( 1 + a r 1 a r ) 2 + ( 1 a + r 1 + a r ) 2 ]
P 1 r = P c + P s + 1 E R P s
P 2 r = ( 10 β / 10 P c + P s + 1 E R P s ) G e d f a
G e d f a = R c s + 1 10 β / 10 R c s + 1
R c s = P c P s ( 1 + 1 E R )
Δ G = G t w o r i n g s G o n e r i n g = 10 β / 10 G e d f a 2 = 10 β / 10 ( R c s + 1 10 β / 10 R c s + 1 ) 2

Metrics