Abstract

Propagation losses in transmission media limit the transmission distance of optical signals. In the case where the signal is made up of quantum optical states, conventional deterministic optical amplification schemes cannot be used to increase the transmission distance as the copying of an arbitrary and unknown quantum state is forbidden. One strategy that can offset propagation loss is the use of probabilistic, or non-deterministic, amplification schemes - an example of which is the state comparison amplifier. Here we report a state comparison amplifier implemented in a compact, fiber-coupled femtosecond laser-written waveguide chip as opposed to the large, bulk-optical components of previous designs. This pathfinder on-chip implementation of the quantum amplifier has resulted in several performance improvements: the polarization integrity of the written waveguides has resulted in improved visibility of the amplifier interferometers; the potential of substantially-reduced losses throughout the amplifier configuration; and a more compact and environmentally-stable amplifier which is scalable to more complex networks.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Quantum enhancement of signal-to-noise ratio with a heralded linear amplifier

Jie Zhao, Josephine Dias, Jing Yan Haw, Thomas Symul, Mark Bradshaw, Rémi Blandino, Timothy Ralph, Syed M. Assad, and Ping Koy Lam
Optica 4(11) 1421-1428 (2017)

Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system

Cong Cao, Yu-Wen Duan, Xi Chen, Ru Zhang, Tie-Jun Wang, and Chuan Wang
Opt. Express 25(15) 16931-16946 (2017)

Chip-to-chip quantum photonic interconnect by path-polarization interconversion

Jianwei Wang, Damien Bonneau, Matteo Villa, Joshua W. Silverstone, Raffaele Santagati, Shigehito Miki, Taro Yamashita, Mikio Fujiwara, Masahide Sasaki, Hirotaka Terai, Michael G. Tanner, Chandra M. Natarajan, Robert H. Hadfield, Jeremy L. O’Brien, and Mark G. Thompson
Optica 3(4) 407-413 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. Wootters and W. Zurek, “A Single Quantum Cannot Be Cloned,” Nature 299(5886), 802–803 (1982).
    [Crossref]
  2. C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26(8), 1817–1839 (1982).
    [Crossref]
  3. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
    [Crossref]
  4. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [Crossref]
  5. S. Pandey, Z. Jiang, J. Combes, and C. M. Caves, “Quantum limits on probabilistic amplifiers,” Phys. Rev. A 88(3), 033852 (2013).
    [Crossref]
  6. T. C. Ralph and A. P. Lund, “Nondeterministic Noiseless Linear Amplification of Quantum Systems,” in AIP Conf. Proc., vol. 1110 (2009), pp. 155–160.
  7. D. T. Pegg, L. S. Phillips, and S. M. Barnett, “Optical State Truncation by Projection Synthesis,” Phys. Rev. Lett. 81(8), 1604–1606 (1998).
    [Crossref]
  8. G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk, and G. J. Pryde, “Heralded noiseless linear amplification and distillation of entanglement,” Nat. Photonics 4(5), 316–319 (2010).
    [Crossref]
  9. F. Ferreyrol, M. Barbieri, R. Blandino, S. Fossier, R. Tualle-Brouri, and P. Grangier, “Implementation of a Nondeterministic Optical Noiseless Amplifier,” Phys. Rev. Lett. 104(12), 123603 (2010).
    [Crossref]
  10. J. Jeffers, “Nondeterministic amplifier for two-photon superpositions,” Phys. Rev. A 82(6), 063828 (2010).
    [Crossref]
  11. N. Gisin, S. Pironio, and N. Sangouard, “Proposal for Implementing Device-Independent Quantum Key Distribution Based on a Heralded Qubit Amplifier,” Phys. Rev. Lett. 105(7), 070501 (2010).
    [Crossref]
  12. C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A 86(2), 023815 (2012).
    [Crossref]
  13. S. Kocsis, G. Y. Xiang, T. C. Ralph, and G. J. Pryde, “Heralded noiseless amplification of a photon polarization qubit,” Nat. Phys. 9(1), 23–28 (2013).
    [Crossref]
  14. N. Bruno, V. Pini, A. Martin, and R. T. Thew, “A complete characterization of the heralded noiseless amplification of photons,” New J. Phys. 15(9), 093002 (2013).
    [Crossref]
  15. J. Fiurášek, “Engineering quantum operations on traveling light beams by multiple photon addition and subtraction,” Phys. Rev. A 80(5), 053822 (2009).
    [Crossref]
  16. P. Marek and R. Filip, “Coherent-state phase concentration by quantum probabilistic amplification,” Phys. Rev. A 81(2), 022302 (2010).
    [Crossref]
  17. A. Zavatta, J. Fiurášek, and M. Bellini, “A high-fidelity noiseless amplifier for quantum light states,” Nat. Photonics 5(1), 52–56 (2011).
    [Crossref]
  18. M. A. Usuga, C. R. Müller, C. Wittmann, P. Marek, R. Filip, C. Marquardt, G. Leuchs, and U. L. Andersen, “Noise-powered probabilistic concentration of phase information,” Nat. Phys. 6(10), 767–771 (2010).
    [Crossref]
  19. J. Jeffers, “Optical amplifier-powered quantum optical amplification,” Phys. Rev. A 83(5), 053818 (2011).
    [Crossref]
  20. D. Menzies and S. Croke, “Noiseless linear amplification via weak measurements,” arXiv:0903.4181 [quant-ph] (2009).
  21. J. Ho, A. Boston, M. Palsson, and G. Pryde, “Experimental noiseless linear amplification using weak measurements,” New J. Phys. 18(9), 093026 (2016).
    [Crossref]
  22. V. Dunjko and E. Andersson, “Truly noiseless probabilistic amplification,” Phys. Rev. A 86(4), 042322 (2012).
    [Crossref]
  23. E. Eleftheriadou, S. M. Barnett, and J. Jeffers, “Quantum Optical State Comparison Amplifier,” Phys. Rev. Lett. 111(21), 213601 (2013).
    [Crossref]
  24. R. J. Donaldson, R. J. Collins, E. Eleftheriadou, S. M. Barnett, J. Jeffers, and G. S. Buller, “Experimental Implementation of a Quantum Optical State Comparison Amplifier,” Phys. Rev. Lett. 114(12), 120505 (2015).
    [Crossref]
  25. R. J. Donaldson, L. Mazzarella, R. J. Collins, J. Jeffers, and G. S. Buller, “A high-gain and high-fidelity coherent state comparison amplifier,” Commun. Phys. 1(1), 54 (2018).
    [Crossref]
  26. M. Rosati, A. Mari, and V. Giovannetti, “Coherent-state discrimination via nonheralded probabilistic amplification,” Phys. Rev. A 93(6), 062315 (2016).
    [Crossref]
  27. S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, and D. Ostrowsky, “On the genesis and evolution of Integrated Quantum Optics,” Laser Photonics Rev. 6(1), 115–143 (2012).
    [Crossref]
  28. A. Orieux and E. Diamanti, “Recent advances on integrated quantum communications,” J. Opt. 18(8), 083002 (2016).
    [Crossref]
  29. F. Flamini, N. Spagnolo, and F. Sciarrino, “Photonic quantum information processing: a review,” Rep. Prog. Phys. 82(1), 016001 (2019).
    [Crossref]
  30. L. Vivien and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2016).
  31. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [Crossref]
  32. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  33. D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
    [Crossref]
  34. J. Bryant, R. R. Thomson, and M. J. Withford, “Focus issue introduction: recent advances in astrophotonics,” Opt. Express 25(17), 19966–19967 (2017).
    [Crossref]
  35. M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photonics 7(7), 540–544 (2013).
    [Crossref]
  36. S. Mukherjee, D. Mogilevtsev, G. Y. Slepyan, T. H. Doherty, R. R. Thomson, and N. Korolkova, “Dissipatively coupled waveguide networks for coherent diffusive photonics,” Nat. Commun. 8(1), 1909 (2017).
    [Crossref]
  37. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica,” Opt. Express 19(13), 11992–11999 (2011).
    [Crossref]
  38. A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett. 26(1), 42–43 (2001).
    [Crossref]
  39. G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5(1), 4249 (2014).
    [Crossref]
  40. R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, “Arbitrary photonic wave plate operations on chip: Realizing Hadamard, Pauli-X, and rotation gates for polarisation qubits,” Sci. Rep. 4(1), 4118 (2015).
    [Crossref]
  41. A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photonics 7(4), 322–328 (2013).
    [Crossref]
  42. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt. Express 20(22), 24103–24114 (2012).
    [Crossref]
  43. A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2(1), 566 (2011).
    [Crossref]
  44. G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated Optical Memory Based on Laser-Written Waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
    [Crossref]
  45. M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005).
    [Crossref]
  46. Y. Wang, L. Hermann Negri, I. Chiamenti, I. Abe, and H. J. Kalinowski, “Automated System for Femtosecond Laser Writing of Photonic Structures,” J. Control. Autom. Electr. Syst. 29(2), 153–162 (2018).
    [Crossref]
  47. R. J. Hughes, G. L. Morgan, and C. G. Peterson, “Quantum key distribution over a 48 km optical fibre network,” J. Mod. Opt. 47(2-3), 533–547 (2000).
    [Crossref]
  48. R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, E. Andersson, G. S. Buller, and M. Sasaki, “Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system,” Opt. Lett. 41(21), 4883–4886 (2016).
    [Crossref]
  49. R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, M. Sasaki, E. Andersson, and G. S. Buller, “Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution,” Sci. Rep. 7(1), 3235 (2017).
    [Crossref]
  50. R. J. Donaldson, L. Mazzarella, U. Zanforlin, R. J. Collins, J. Jeffers, and G. S. Buller, “Quantum state correction using a measurement-based feedforward mechanism,” Phys. Rev. A 100(2), 023840 (2019).
    [Crossref]
  51. J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
    [Crossref]
  52. F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
    [Crossref]
  53. U. Zanforlin, R. J. Donaldson, R. J. Collins, and G. S. Buller, “Analysis of the effects of imperfections in an optical heterodyne quantum random-number generator,” Phys. Rev. A 99(5), 052305 (2019).
    [Crossref]
  54. D. Malik, G. Kaushik, and A. Wason, “Performance evaluation of hybrid optical amplifiers in WDM system,” J. Opt. 47(3), 396–404 (2018).
    [Crossref]

2019 (3)

F. Flamini, N. Spagnolo, and F. Sciarrino, “Photonic quantum information processing: a review,” Rep. Prog. Phys. 82(1), 016001 (2019).
[Crossref]

R. J. Donaldson, L. Mazzarella, U. Zanforlin, R. J. Collins, J. Jeffers, and G. S. Buller, “Quantum state correction using a measurement-based feedforward mechanism,” Phys. Rev. A 100(2), 023840 (2019).
[Crossref]

U. Zanforlin, R. J. Donaldson, R. J. Collins, and G. S. Buller, “Analysis of the effects of imperfections in an optical heterodyne quantum random-number generator,” Phys. Rev. A 99(5), 052305 (2019).
[Crossref]

2018 (3)

D. Malik, G. Kaushik, and A. Wason, “Performance evaluation of hybrid optical amplifiers in WDM system,” J. Opt. 47(3), 396–404 (2018).
[Crossref]

Y. Wang, L. Hermann Negri, I. Chiamenti, I. Abe, and H. J. Kalinowski, “Automated System for Femtosecond Laser Writing of Photonic Structures,” J. Control. Autom. Electr. Syst. 29(2), 153–162 (2018).
[Crossref]

R. J. Donaldson, L. Mazzarella, R. J. Collins, J. Jeffers, and G. S. Buller, “A high-gain and high-fidelity coherent state comparison amplifier,” Commun. Phys. 1(1), 54 (2018).
[Crossref]

2017 (3)

S. Mukherjee, D. Mogilevtsev, G. Y. Slepyan, T. H. Doherty, R. R. Thomson, and N. Korolkova, “Dissipatively coupled waveguide networks for coherent diffusive photonics,” Nat. Commun. 8(1), 1909 (2017).
[Crossref]

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, M. Sasaki, E. Andersson, and G. S. Buller, “Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution,” Sci. Rep. 7(1), 3235 (2017).
[Crossref]

J. Bryant, R. R. Thomson, and M. J. Withford, “Focus issue introduction: recent advances in astrophotonics,” Opt. Express 25(17), 19966–19967 (2017).
[Crossref]

2016 (5)

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, E. Andersson, G. S. Buller, and M. Sasaki, “Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system,” Opt. Lett. 41(21), 4883–4886 (2016).
[Crossref]

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated Optical Memory Based on Laser-Written Waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

M. Rosati, A. Mari, and V. Giovannetti, “Coherent-state discrimination via nonheralded probabilistic amplification,” Phys. Rev. A 93(6), 062315 (2016).
[Crossref]

A. Orieux and E. Diamanti, “Recent advances on integrated quantum communications,” J. Opt. 18(8), 083002 (2016).
[Crossref]

J. Ho, A. Boston, M. Palsson, and G. Pryde, “Experimental noiseless linear amplification using weak measurements,” New J. Phys. 18(9), 093026 (2016).
[Crossref]

2015 (3)

R. J. Donaldson, R. J. Collins, E. Eleftheriadou, S. M. Barnett, J. Jeffers, and G. S. Buller, “Experimental Implementation of a Quantum Optical State Comparison Amplifier,” Phys. Rev. Lett. 114(12), 120505 (2015).
[Crossref]

R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, “Arbitrary photonic wave plate operations on chip: Realizing Hadamard, Pauli-X, and rotation gates for polarisation qubits,” Sci. Rep. 4(1), 4118 (2015).
[Crossref]

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

2014 (2)

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5(1), 4249 (2014).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

2013 (6)

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photonics 7(7), 540–544 (2013).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photonics 7(4), 322–328 (2013).
[Crossref]

E. Eleftheriadou, S. M. Barnett, and J. Jeffers, “Quantum Optical State Comparison Amplifier,” Phys. Rev. Lett. 111(21), 213601 (2013).
[Crossref]

S. Pandey, Z. Jiang, J. Combes, and C. M. Caves, “Quantum limits on probabilistic amplifiers,” Phys. Rev. A 88(3), 033852 (2013).
[Crossref]

S. Kocsis, G. Y. Xiang, T. C. Ralph, and G. J. Pryde, “Heralded noiseless amplification of a photon polarization qubit,” Nat. Phys. 9(1), 23–28 (2013).
[Crossref]

N. Bruno, V. Pini, A. Martin, and R. T. Thew, “A complete characterization of the heralded noiseless amplification of photons,” New J. Phys. 15(9), 093002 (2013).
[Crossref]

2012 (4)

C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A 86(2), 023815 (2012).
[Crossref]

V. Dunjko and E. Andersson, “Truly noiseless probabilistic amplification,” Phys. Rev. A 86(4), 042322 (2012).
[Crossref]

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, and D. Ostrowsky, “On the genesis and evolution of Integrated Quantum Optics,” Laser Photonics Rev. 6(1), 115–143 (2012).
[Crossref]

L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt. Express 20(22), 24103–24114 (2012).
[Crossref]

2011 (5)

L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Femtosecond laser fabrication of birefringent directional couplers as polarization beam splitters in fused silica,” Opt. Express 19(13), 11992–11999 (2011).
[Crossref]

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

J. Jeffers, “Optical amplifier-powered quantum optical amplification,” Phys. Rev. A 83(5), 053818 (2011).
[Crossref]

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2(1), 566 (2011).
[Crossref]

A. Zavatta, J. Fiurášek, and M. Bellini, “A high-fidelity noiseless amplifier for quantum light states,” Nat. Photonics 5(1), 52–56 (2011).
[Crossref]

2010 (6)

M. A. Usuga, C. R. Müller, C. Wittmann, P. Marek, R. Filip, C. Marquardt, G. Leuchs, and U. L. Andersen, “Noise-powered probabilistic concentration of phase information,” Nat. Phys. 6(10), 767–771 (2010).
[Crossref]

P. Marek and R. Filip, “Coherent-state phase concentration by quantum probabilistic amplification,” Phys. Rev. A 81(2), 022302 (2010).
[Crossref]

G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk, and G. J. Pryde, “Heralded noiseless linear amplification and distillation of entanglement,” Nat. Photonics 4(5), 316–319 (2010).
[Crossref]

F. Ferreyrol, M. Barbieri, R. Blandino, S. Fossier, R. Tualle-Brouri, and P. Grangier, “Implementation of a Nondeterministic Optical Noiseless Amplifier,” Phys. Rev. Lett. 104(12), 123603 (2010).
[Crossref]

J. Jeffers, “Nondeterministic amplifier for two-photon superpositions,” Phys. Rev. A 82(6), 063828 (2010).
[Crossref]

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for Implementing Device-Independent Quantum Key Distribution Based on a Heralded Qubit Amplifier,” Phys. Rev. Lett. 105(7), 070501 (2010).
[Crossref]

2009 (2)

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

J. Fiurášek, “Engineering quantum operations on traveling light beams by multiple photon addition and subtraction,” Phys. Rev. A 80(5), 053822 (2009).
[Crossref]

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2005 (1)

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

2001 (1)

2000 (1)

R. J. Hughes, G. L. Morgan, and C. G. Peterson, “Quantum key distribution over a 48 km optical fibre network,” J. Mod. Opt. 47(2-3), 533–547 (2000).
[Crossref]

1998 (1)

D. T. Pegg, L. S. Phillips, and S. M. Barnett, “Optical State Truncation by Projection Synthesis,” Phys. Rev. Lett. 81(8), 1604–1606 (1998).
[Crossref]

1996 (1)

1982 (2)

W. Wootters and W. Zurek, “A Single Quantum Cannot Be Cloned,” Nature 299(5886), 802–803 (1982).
[Crossref]

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26(8), 1817–1839 (1982).
[Crossref]

Abe, I.

Y. Wang, L. Hermann Negri, I. Chiamenti, I. Abe, and H. J. Kalinowski, “Automated System for Femtosecond Laser Writing of Photonic Structures,” J. Control. Autom. Electr. Syst. 29(2), 153–162 (2018).
[Crossref]

Aitchison, J. S.

Alibart, O.

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, and D. Ostrowsky, “On the genesis and evolution of Integrated Quantum Optics,” Laser Photonics Rev. 6(1), 115–143 (2012).
[Crossref]

Amiri, R.

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, M. Sasaki, E. Andersson, and G. S. Buller, “Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution,” Sci. Rep. 7(1), 3235 (2017).
[Crossref]

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, E. Andersson, G. S. Buller, and M. Sasaki, “Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system,” Opt. Lett. 41(21), 4883–4886 (2016).
[Crossref]

Ams, M.

Andersen, U. L.

M. A. Usuga, C. R. Müller, C. Wittmann, P. Marek, R. Filip, C. Marquardt, G. Leuchs, and U. L. Andersen, “Noise-powered probabilistic concentration of phase information,” Nat. Phys. 6(10), 767–771 (2010).
[Crossref]

Andersson, E.

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, M. Sasaki, E. Andersson, and G. S. Buller, “Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution,” Sci. Rep. 7(1), 3235 (2017).
[Crossref]

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, E. Andersson, G. S. Buller, and M. Sasaki, “Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system,” Opt. Lett. 41(21), 4883–4886 (2016).
[Crossref]

V. Dunjko and E. Andersson, “Truly noiseless probabilistic amplification,” Phys. Rev. A 86(4), 042322 (2012).
[Crossref]

Assefa, S.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Barbieri, M.

F. Ferreyrol, M. Barbieri, R. Blandino, S. Fossier, R. Tualle-Brouri, and P. Grangier, “Implementation of a Nondeterministic Optical Noiseless Amplifier,” Phys. Rev. Lett. 104(12), 123603 (2010).
[Crossref]

Barnett, S. M.

R. J. Donaldson, R. J. Collins, E. Eleftheriadou, S. M. Barnett, J. Jeffers, and G. S. Buller, “Experimental Implementation of a Quantum Optical State Comparison Amplifier,” Phys. Rev. Lett. 114(12), 120505 (2015).
[Crossref]

E. Eleftheriadou, S. M. Barnett, and J. Jeffers, “Quantum Optical State Comparison Amplifier,” Phys. Rev. Lett. 111(21), 213601 (2013).
[Crossref]

D. T. Pegg, L. S. Phillips, and S. M. Barnett, “Optical State Truncation by Projection Synthesis,” Phys. Rev. Lett. 81(8), 1604–1606 (1998).
[Crossref]

Bechmann-Pasquinucci, H.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Bellei, F.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Bellini, M.

A. Zavatta, J. Fiurášek, and M. Bellini, “A high-fidelity noiseless amplifier for quantum light states,” Nat. Photonics 5(1), 52–56 (2011).
[Crossref]

Berggren, K. K.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Blandino, R.

F. Ferreyrol, M. Barbieri, R. Blandino, S. Fossier, R. Tualle-Brouri, and P. Grangier, “Implementation of a Nondeterministic Optical Noiseless Amplifier,” Phys. Rev. Lett. 104(12), 123603 (2010).
[Crossref]

Bongioanni, I.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2(1), 566 (2011).
[Crossref]

Borrelli, N. F.

Boston, A.

J. Ho, A. Boston, M. Palsson, and G. Pryde, “Experimental noiseless linear amplification using weak measurements,” New J. Phys. 18(9), 093026 (2016).
[Crossref]

Bruno, N.

N. Bruno, V. Pini, A. Martin, and R. T. Thew, “A complete characterization of the heralded noiseless amplification of photons,” New J. Phys. 15(9), 093002 (2013).
[Crossref]

C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A 86(2), 023815 (2012).
[Crossref]

Bryant, J.

Buller, G. S.

R. J. Donaldson, L. Mazzarella, U. Zanforlin, R. J. Collins, J. Jeffers, and G. S. Buller, “Quantum state correction using a measurement-based feedforward mechanism,” Phys. Rev. A 100(2), 023840 (2019).
[Crossref]

U. Zanforlin, R. J. Donaldson, R. J. Collins, and G. S. Buller, “Analysis of the effects of imperfections in an optical heterodyne quantum random-number generator,” Phys. Rev. A 99(5), 052305 (2019).
[Crossref]

R. J. Donaldson, L. Mazzarella, R. J. Collins, J. Jeffers, and G. S. Buller, “A high-gain and high-fidelity coherent state comparison amplifier,” Commun. Phys. 1(1), 54 (2018).
[Crossref]

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, M. Sasaki, E. Andersson, and G. S. Buller, “Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution,” Sci. Rep. 7(1), 3235 (2017).
[Crossref]

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, E. Andersson, G. S. Buller, and M. Sasaki, “Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system,” Opt. Lett. 41(21), 4883–4886 (2016).
[Crossref]

R. J. Donaldson, R. J. Collins, E. Eleftheriadou, S. M. Barnett, J. Jeffers, and G. S. Buller, “Experimental Implementation of a Quantum Optical State Comparison Amplifier,” Phys. Rev. Lett. 114(12), 120505 (2015).
[Crossref]

Caves, C. M.

S. Pandey, Z. Jiang, J. Combes, and C. M. Caves, “Quantum limits on probabilistic amplifiers,” Phys. Rev. A 88(3), 033852 (2013).
[Crossref]

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26(8), 1817–1839 (1982).
[Crossref]

Cerf, N. J.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Chiamenti, I.

Y. Wang, L. Hermann Negri, I. Chiamenti, I. Abe, and H. J. Kalinowski, “Automated System for Femtosecond Laser Writing of Photonic Structures,” J. Control. Autom. Electr. Syst. 29(2), 153–162 (2018).
[Crossref]

Choudhury, D.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Collins, R. J.

U. Zanforlin, R. J. Donaldson, R. J. Collins, and G. S. Buller, “Analysis of the effects of imperfections in an optical heterodyne quantum random-number generator,” Phys. Rev. A 99(5), 052305 (2019).
[Crossref]

R. J. Donaldson, L. Mazzarella, U. Zanforlin, R. J. Collins, J. Jeffers, and G. S. Buller, “Quantum state correction using a measurement-based feedforward mechanism,” Phys. Rev. A 100(2), 023840 (2019).
[Crossref]

R. J. Donaldson, L. Mazzarella, R. J. Collins, J. Jeffers, and G. S. Buller, “A high-gain and high-fidelity coherent state comparison amplifier,” Commun. Phys. 1(1), 54 (2018).
[Crossref]

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, M. Sasaki, E. Andersson, and G. S. Buller, “Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution,” Sci. Rep. 7(1), 3235 (2017).
[Crossref]

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, E. Andersson, G. S. Buller, and M. Sasaki, “Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system,” Opt. Lett. 41(21), 4883–4886 (2016).
[Crossref]

R. J. Donaldson, R. J. Collins, E. Eleftheriadou, S. M. Barnett, J. Jeffers, and G. S. Buller, “Experimental Implementation of a Quantum Optical State Comparison Amplifier,” Phys. Rev. Lett. 114(12), 120505 (2015).
[Crossref]

Combes, J.

S. Pandey, Z. Jiang, J. Combes, and C. M. Caves, “Quantum limits on probabilistic amplifiers,” Phys. Rev. A 88(3), 033852 (2013).
[Crossref]

Corrielli, G.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated Optical Memory Based on Laser-Written Waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5(1), 4249 (2014).
[Crossref]

Crespi, A.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5(1), 4249 (2014).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photonics 7(4), 322–328 (2013).
[Crossref]

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2(1), 566 (2011).
[Crossref]

Croke, S.

D. Menzies and S. Croke, “Noiseless linear amplification via weak measurements,” arXiv:0903.4181 [quant-ph] (2009).

Dakic, B.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photonics 7(7), 540–544 (2013).
[Crossref]

Dane, A.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Davis, K. M.

De Micheli, M.

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, and D. Ostrowsky, “On the genesis and evolution of Integrated Quantum Optics,” Laser Photonics Rev. 6(1), 115–143 (2012).
[Crossref]

De Nicola, F.

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photonics 7(4), 322–328 (2013).
[Crossref]

de Riedmatten, H.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated Optical Memory Based on Laser-Written Waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

Diamanti, E.

A. Orieux and E. Diamanti, “Recent advances on integrated quantum communications,” J. Opt. 18(8), 083002 (2016).
[Crossref]

Doherty, T. H.

S. Mukherjee, D. Mogilevtsev, G. Y. Slepyan, T. H. Doherty, R. R. Thomson, and N. Korolkova, “Dissipatively coupled waveguide networks for coherent diffusive photonics,” Nat. Commun. 8(1), 1909 (2017).
[Crossref]

Donaldson, R. J.

R. J. Donaldson, L. Mazzarella, U. Zanforlin, R. J. Collins, J. Jeffers, and G. S. Buller, “Quantum state correction using a measurement-based feedforward mechanism,” Phys. Rev. A 100(2), 023840 (2019).
[Crossref]

U. Zanforlin, R. J. Donaldson, R. J. Collins, and G. S. Buller, “Analysis of the effects of imperfections in an optical heterodyne quantum random-number generator,” Phys. Rev. A 99(5), 052305 (2019).
[Crossref]

R. J. Donaldson, L. Mazzarella, R. J. Collins, J. Jeffers, and G. S. Buller, “A high-gain and high-fidelity coherent state comparison amplifier,” Commun. Phys. 1(1), 54 (2018).
[Crossref]

R. J. Donaldson, R. J. Collins, E. Eleftheriadou, S. M. Barnett, J. Jeffers, and G. S. Buller, “Experimental Implementation of a Quantum Optical State Comparison Amplifier,” Phys. Rev. Lett. 114(12), 120505 (2015).
[Crossref]

Dubs, C.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Dunjko, V.

V. Dunjko and E. Andersson, “Truly noiseless probabilistic amplification,” Phys. Rev. A 86(4), 042322 (2012).
[Crossref]

Dušek, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Eleftheriadou, E.

R. J. Donaldson, R. J. Collins, E. Eleftheriadou, S. M. Barnett, J. Jeffers, and G. S. Buller, “Experimental Implementation of a Quantum Optical State Comparison Amplifier,” Phys. Rev. Lett. 114(12), 120505 (2015).
[Crossref]

E. Eleftheriadou, S. M. Barnett, and J. Jeffers, “Quantum Optical State Comparison Amplifier,” Phys. Rev. Lett. 111(21), 213601 (2013).
[Crossref]

Englund, D.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Fazio, R.

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photonics 7(4), 322–328 (2013).
[Crossref]

Fernandes, L. A.

Ferreyrol, F.

F. Ferreyrol, M. Barbieri, R. Blandino, S. Fossier, R. Tualle-Brouri, and P. Grangier, “Implementation of a Nondeterministic Optical Noiseless Amplifier,” Phys. Rev. Lett. 104(12), 123603 (2010).
[Crossref]

Filip, R.

M. A. Usuga, C. R. Müller, C. Wittmann, P. Marek, R. Filip, C. Marquardt, G. Leuchs, and U. L. Andersen, “Noise-powered probabilistic concentration of phase information,” Nat. Phys. 6(10), 767–771 (2010).
[Crossref]

P. Marek and R. Filip, “Coherent-state phase concentration by quantum probabilistic amplification,” Phys. Rev. A 81(2), 022302 (2010).
[Crossref]

Fiurášek, J.

A. Zavatta, J. Fiurášek, and M. Bellini, “A high-fidelity noiseless amplifier for quantum light states,” Nat. Photonics 5(1), 52–56 (2011).
[Crossref]

J. Fiurášek, “Engineering quantum operations on traveling light beams by multiple photon addition and subtraction,” Phys. Rev. A 80(5), 053822 (2009).
[Crossref]

Flamini, F.

F. Flamini, N. Spagnolo, and F. Sciarrino, “Photonic quantum information processing: a review,” Rep. Prog. Phys. 82(1), 016001 (2019).
[Crossref]

Fossier, S.

F. Ferreyrol, M. Barbieri, R. Blandino, S. Fossier, R. Tualle-Brouri, and P. Grangier, “Implementation of a Nondeterministic Optical Noiseless Amplifier,” Phys. Rev. Lett. 104(12), 123603 (2010).
[Crossref]

Fujiwara, M.

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, M. Sasaki, E. Andersson, and G. S. Buller, “Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution,” Sci. Rep. 7(1), 3235 (2017).
[Crossref]

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, E. Andersson, G. S. Buller, and M. Sasaki, “Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system,” Opt. Lett. 41(21), 4883–4886 (2016).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Geremia, R.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5(1), 4249 (2014).
[Crossref]

Giovannetti, V.

M. Rosati, A. Mari, and V. Giovannetti, “Coherent-state discrimination via nonheralded probabilistic amplification,” Phys. Rev. A 93(6), 062315 (2016).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photonics 7(4), 322–328 (2013).
[Crossref]

Gisin, N.

C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A 86(2), 023815 (2012).
[Crossref]

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for Implementing Device-Independent Quantum Key Distribution Based on a Heralded Qubit Amplifier,” Phys. Rev. Lett. 105(7), 070501 (2010).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Gräfe, M.

R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, “Arbitrary photonic wave plate operations on chip: Realizing Hadamard, Pauli-X, and rotation gates for polarisation qubits,” Sci. Rep. 4(1), 4118 (2015).
[Crossref]

Grangier, P.

F. Ferreyrol, M. Barbieri, R. Blandino, S. Fossier, R. Tualle-Brouri, and P. Grangier, “Implementation of a Nondeterministic Optical Noiseless Amplifier,” Phys. Rev. Lett. 104(12), 123603 (2010).
[Crossref]

Grenier, J. R.

Harris, N. C.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Heilmann, R.

R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, “Arbitrary photonic wave plate operations on chip: Realizing Hadamard, Pauli-X, and rotation gates for polarisation qubits,” Sci. Rep. 4(1), 4118 (2015).
[Crossref]

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photonics 7(7), 540–544 (2013).
[Crossref]

Heinrich, M.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Herman, P. R.

Hermann Negri, L.

Y. Wang, L. Hermann Negri, I. Chiamenti, I. Abe, and H. J. Kalinowski, “Automated System for Femtosecond Laser Writing of Photonic Structures,” J. Control. Autom. Electr. Syst. 29(2), 153–162 (2018).
[Crossref]

Hilbert, V.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Hirao, K.

Ho, J.

J. Ho, A. Boston, M. Palsson, and G. Pryde, “Experimental noiseless linear amplification using weak measurements,” New J. Phys. 18(9), 093026 (2016).
[Crossref]

Honjo, T.

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, M. Sasaki, E. Andersson, and G. S. Buller, “Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution,” Sci. Rep. 7(1), 3235 (2017).
[Crossref]

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, E. Andersson, G. S. Buller, and M. Sasaki, “Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system,” Opt. Lett. 41(21), 4883–4886 (2016).
[Crossref]

Hu, X.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Hughes, R. J.

R. J. Hughes, G. L. Morgan, and C. G. Peterson, “Quantum key distribution over a 48 km optical fibre network,” J. Mod. Opt. 47(2-3), 533–547 (2000).
[Crossref]

Jeffers, J.

R. J. Donaldson, L. Mazzarella, U. Zanforlin, R. J. Collins, J. Jeffers, and G. S. Buller, “Quantum state correction using a measurement-based feedforward mechanism,” Phys. Rev. A 100(2), 023840 (2019).
[Crossref]

R. J. Donaldson, L. Mazzarella, R. J. Collins, J. Jeffers, and G. S. Buller, “A high-gain and high-fidelity coherent state comparison amplifier,” Commun. Phys. 1(1), 54 (2018).
[Crossref]

R. J. Donaldson, R. J. Collins, E. Eleftheriadou, S. M. Barnett, J. Jeffers, and G. S. Buller, “Experimental Implementation of a Quantum Optical State Comparison Amplifier,” Phys. Rev. Lett. 114(12), 120505 (2015).
[Crossref]

E. Eleftheriadou, S. M. Barnett, and J. Jeffers, “Quantum Optical State Comparison Amplifier,” Phys. Rev. Lett. 111(21), 213601 (2013).
[Crossref]

J. Jeffers, “Optical amplifier-powered quantum optical amplification,” Phys. Rev. A 83(5), 053818 (2011).
[Crossref]

J. Jeffers, “Nondeterministic amplifier for two-photon superpositions,” Phys. Rev. A 82(6), 063828 (2010).
[Crossref]

Jiang, Z.

S. Pandey, Z. Jiang, J. Combes, and C. M. Caves, “Quantum limits on probabilistic amplifiers,” Phys. Rev. A 88(3), 033852 (2013).
[Crossref]

Kaiser, F.

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, and D. Ostrowsky, “On the genesis and evolution of Integrated Quantum Optics,” Laser Photonics Rev. 6(1), 115–143 (2012).
[Crossref]

Kalinowski, H. J.

Y. Wang, L. Hermann Negri, I. Chiamenti, I. Abe, and H. J. Kalinowski, “Automated System for Femtosecond Laser Writing of Photonic Structures,” J. Control. Autom. Electr. Syst. 29(2), 153–162 (2018).
[Crossref]

Kar, A. K.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Kaushik, G.

D. Malik, G. Kaushik, and A. Wason, “Performance evaluation of hybrid optical amplifiers in WDM system,” J. Opt. 47(3), 396–404 (2018).
[Crossref]

Kharel, P.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Kocsis, S.

S. Kocsis, G. Y. Xiang, T. C. Ralph, and G. J. Pryde, “Heralded noiseless amplification of a photon polarization qubit,” Nat. Phys. 9(1), 23–28 (2013).
[Crossref]

Korolkova, N.

S. Mukherjee, D. Mogilevtsev, G. Y. Slepyan, T. H. Doherty, R. R. Thomson, and N. Korolkova, “Dissipatively coupled waveguide networks for coherent diffusive photonics,” Nat. Commun. 8(1), 1909 (2017).
[Crossref]

Lee, C.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Leuchs, G.

M. A. Usuga, C. R. Müller, C. Wittmann, P. Marek, R. Filip, C. Marquardt, G. Leuchs, and U. L. Andersen, “Noise-powered probabilistic concentration of phase information,” Nat. Phys. 6(10), 767–771 (2010).
[Crossref]

Lund, A. P.

G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk, and G. J. Pryde, “Heralded noiseless linear amplification and distillation of entanglement,” Nat. Photonics 4(5), 316–319 (2010).
[Crossref]

T. C. Ralph and A. P. Lund, “Nondeterministic Noiseless Linear Amplification of Quantum Systems,” in AIP Conf. Proc., vol. 1110 (2009), pp. 155–160.

Lütkenhaus, N.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Macdonald, J. R.

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Malik, D.

D. Malik, G. Kaushik, and A. Wason, “Performance evaluation of hybrid optical amplifiers in WDM system,” J. Opt. 47(3), 396–404 (2018).
[Crossref]

Marek, P.

M. A. Usuga, C. R. Müller, C. Wittmann, P. Marek, R. Filip, C. Marquardt, G. Leuchs, and U. L. Andersen, “Noise-powered probabilistic concentration of phase information,” Nat. Phys. 6(10), 767–771 (2010).
[Crossref]

P. Marek and R. Filip, “Coherent-state phase concentration by quantum probabilistic amplification,” Phys. Rev. A 81(2), 022302 (2010).
[Crossref]

Mari, A.

M. Rosati, A. Mari, and V. Giovannetti, “Coherent-state discrimination via nonheralded probabilistic amplification,” Phys. Rev. A 93(6), 062315 (2016).
[Crossref]

Marquardt, C.

M. A. Usuga, C. R. Müller, C. Wittmann, P. Marek, R. Filip, C. Marquardt, G. Leuchs, and U. L. Andersen, “Noise-powered probabilistic concentration of phase information,” Nat. Phys. 6(10), 767–771 (2010).
[Crossref]

Marques, P. V. S.

Marshall, G.

Marsili, F.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Martin, A.

N. Bruno, V. Pini, A. Martin, and R. T. Thew, “A complete characterization of the heralded noiseless amplification of photons,” New J. Phys. 15(9), 093002 (2013).
[Crossref]

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, and D. Ostrowsky, “On the genesis and evolution of Integrated Quantum Optics,” Laser Photonics Rev. 6(1), 115–143 (2012).
[Crossref]

Mataloni, P.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5(1), 4249 (2014).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photonics 7(4), 322–328 (2013).
[Crossref]

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2(1), 566 (2011).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Mazzarella, L.

R. J. Donaldson, L. Mazzarella, U. Zanforlin, R. J. Collins, J. Jeffers, and G. S. Buller, “Quantum state correction using a measurement-based feedforward mechanism,” Phys. Rev. A 100(2), 023840 (2019).
[Crossref]

R. J. Donaldson, L. Mazzarella, R. J. Collins, J. Jeffers, and G. S. Buller, “A high-gain and high-fidelity coherent state comparison amplifier,” Commun. Phys. 1(1), 54 (2018).
[Crossref]

Mazzera, M.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated Optical Memory Based on Laser-Written Waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

Menzies, D.

D. Menzies and S. Croke, “Noiseless linear amplification via weak measurements,” arXiv:0903.4181 [quant-ph] (2009).

Miura, K.

Mogilevtsev, D.

S. Mukherjee, D. Mogilevtsev, G. Y. Slepyan, T. H. Doherty, R. R. Thomson, and N. Korolkova, “Dissipatively coupled waveguide networks for coherent diffusive photonics,” Nat. Commun. 8(1), 1909 (2017).
[Crossref]

Morgan, G. L.

R. J. Hughes, G. L. Morgan, and C. G. Peterson, “Quantum key distribution over a 48 km optical fibre network,” J. Mod. Opt. 47(2-3), 533–547 (2000).
[Crossref]

Mower, J.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Mukherjee, S.

S. Mukherjee, D. Mogilevtsev, G. Y. Slepyan, T. H. Doherty, R. R. Thomson, and N. Korolkova, “Dissipatively coupled waveguide networks for coherent diffusive photonics,” Nat. Commun. 8(1), 1909 (2017).
[Crossref]

Müller, C. R.

M. A. Usuga, C. R. Müller, C. Wittmann, P. Marek, R. Filip, C. Marquardt, G. Leuchs, and U. L. Andersen, “Noise-powered probabilistic concentration of phase information,” Nat. Phys. 6(10), 767–771 (2010).
[Crossref]

Najafi, F.

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

Nolte, S.

R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, “Arbitrary photonic wave plate operations on chip: Realizing Hadamard, Pauli-X, and rotation gates for polarisation qubits,” Sci. Rep. 4(1), 4118 (2015).
[Crossref]

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photonics 7(7), 540–544 (2013).
[Crossref]

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Orieux, A.

A. Orieux and E. Diamanti, “Recent advances on integrated quantum communications,” J. Opt. 18(8), 083002 (2016).
[Crossref]

Osellame, R.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated Optical Memory Based on Laser-Written Waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5(1), 4249 (2014).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photonics 7(4), 322–328 (2013).
[Crossref]

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2(1), 566 (2011).
[Crossref]

Osorio, C. I.

C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A 86(2), 023815 (2012).
[Crossref]

Ostrowsky, D.

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, and D. Ostrowsky, “On the genesis and evolution of Integrated Quantum Optics,” Laser Photonics Rev. 6(1), 115–143 (2012).
[Crossref]

Palsson, M.

J. Ho, A. Boston, M. Palsson, and G. Pryde, “Experimental noiseless linear amplification using weak measurements,” New J. Phys. 18(9), 093026 (2016).
[Crossref]

Pandey, S.

S. Pandey, Z. Jiang, J. Combes, and C. M. Caves, “Quantum limits on probabilistic amplifiers,” Phys. Rev. A 88(3), 033852 (2013).
[Crossref]

Pavesi, L.

L. Vivien and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2016).

Peev, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Pegg, D. T.

D. T. Pegg, L. S. Phillips, and S. M. Barnett, “Optical State Truncation by Projection Synthesis,” Phys. Rev. Lett. 81(8), 1604–1606 (1998).
[Crossref]

Peterson, C. G.

R. J. Hughes, G. L. Morgan, and C. G. Peterson, “Quantum key distribution over a 48 km optical fibre network,” J. Mod. Opt. 47(2-3), 533–547 (2000).
[Crossref]

Phillips, L. S.

D. T. Pegg, L. S. Phillips, and S. M. Barnett, “Optical State Truncation by Projection Synthesis,” Phys. Rev. Lett. 81(8), 1604–1606 (1998).
[Crossref]

Pini, V.

N. Bruno, V. Pini, A. Martin, and R. T. Thew, “A complete characterization of the heralded noiseless amplification of photons,” New J. Phys. 15(9), 093002 (2013).
[Crossref]

Pironio, S.

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for Implementing Device-Independent Quantum Key Distribution Based on a Heralded Qubit Amplifier,” Phys. Rev. Lett. 105(7), 070501 (2010).
[Crossref]

Pryde, G.

J. Ho, A. Boston, M. Palsson, and G. Pryde, “Experimental noiseless linear amplification using weak measurements,” New J. Phys. 18(9), 093026 (2016).
[Crossref]

Pryde, G. J.

S. Kocsis, G. Y. Xiang, T. C. Ralph, and G. J. Pryde, “Heralded noiseless amplification of a photon polarization qubit,” Nat. Phys. 9(1), 23–28 (2013).
[Crossref]

G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk, and G. J. Pryde, “Heralded noiseless linear amplification and distillation of entanglement,” Nat. Photonics 4(5), 316–319 (2010).
[Crossref]

Rademaker, K.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Ralph, T. C.

S. Kocsis, G. Y. Xiang, T. C. Ralph, and G. J. Pryde, “Heralded noiseless amplification of a photon polarization qubit,” Nat. Phys. 9(1), 23–28 (2013).
[Crossref]

G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk, and G. J. Pryde, “Heralded noiseless linear amplification and distillation of entanglement,” Nat. Photonics 4(5), 316–319 (2010).
[Crossref]

T. C. Ralph and A. P. Lund, “Nondeterministic Noiseless Linear Amplification of Quantum Systems,” in AIP Conf. Proc., vol. 1110 (2009), pp. 155–160.

Ramponi, R.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5(1), 4249 (2014).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photonics 7(4), 322–328 (2013).
[Crossref]

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2(1), 566 (2011).
[Crossref]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Riedel, R.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Ringleb, S.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Rosati, M.

M. Rosati, A. Mari, and V. Giovannetti, “Coherent-state discrimination via nonheralded probabilistic amplification,” Phys. Rev. A 93(6), 062315 (2016).
[Crossref]

Ruske, J.-P.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Sangouard, N.

C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A 86(2), 023815 (2012).
[Crossref]

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for Implementing Device-Independent Quantum Key Distribution Based on a Heralded Qubit Amplifier,” Phys. Rev. Lett. 105(7), 070501 (2010).
[Crossref]

Sansoni, L.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5(1), 4249 (2014).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photonics 7(4), 322–328 (2013).
[Crossref]

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2(1), 566 (2011).
[Crossref]

Santinelli, A.

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5(1), 4249 (2014).
[Crossref]

Sasaki, M.

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, M. Sasaki, E. Andersson, and G. S. Buller, “Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution,” Sci. Rep. 7(1), 3235 (2017).
[Crossref]

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, E. Andersson, G. S. Buller, and M. Sasaki, “Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system,” Opt. Lett. 41(21), 4883–4886 (2016).
[Crossref]

Scarani, V.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

Sciarrino, F.

F. Flamini, N. Spagnolo, and F. Sciarrino, “Photonic quantum information processing: a review,” Rep. Prog. Phys. 82(1), 016001 (2019).
[Crossref]

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5(1), 4249 (2014).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photonics 7(4), 322–328 (2013).
[Crossref]

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2(1), 566 (2011).
[Crossref]

Seri, A.

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated Optical Memory Based on Laser-Written Waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

Shimizu, K.

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, M. Sasaki, E. Andersson, and G. S. Buller, “Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution,” Sci. Rep. 7(1), 3235 (2017).
[Crossref]

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, E. Andersson, G. S. Buller, and M. Sasaki, “Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system,” Opt. Lett. 41(21), 4883–4886 (2016).
[Crossref]

Slepyan, G. Y.

S. Mukherjee, D. Mogilevtsev, G. Y. Slepyan, T. H. Doherty, R. R. Thomson, and N. Korolkova, “Dissipatively coupled waveguide networks for coherent diffusive photonics,” Nat. Commun. 8(1), 1909 (2017).
[Crossref]

Spagnolo, N.

F. Flamini, N. Spagnolo, and F. Sciarrino, “Photonic quantum information processing: a review,” Rep. Prog. Phys. 82(1), 016001 (2019).
[Crossref]

Spence, D.

Streltsov, A. M.

Sugimoto, N.

Szameit, A.

R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, “Arbitrary photonic wave plate operations on chip: Realizing Hadamard, Pauli-X, and rotation gates for polarisation qubits,” Sci. Rep. 4(1), 4118 (2015).
[Crossref]

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photonics 7(7), 540–544 (2013).
[Crossref]

Takeoka, M.

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, M. Sasaki, E. Andersson, and G. S. Buller, “Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution,” Sci. Rep. 7(1), 3235 (2017).
[Crossref]

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, E. Andersson, G. S. Buller, and M. Sasaki, “Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system,” Opt. Lett. 41(21), 4883–4886 (2016).
[Crossref]

Tamaki, K.

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, M. Sasaki, E. Andersson, and G. S. Buller, “Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution,” Sci. Rep. 7(1), 3235 (2017).
[Crossref]

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, E. Andersson, G. S. Buller, and M. Sasaki, “Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system,” Opt. Lett. 41(21), 4883–4886 (2016).
[Crossref]

Tanzilli, S.

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, and D. Ostrowsky, “On the genesis and evolution of Integrated Quantum Optics,” Laser Photonics Rev. 6(1), 115–143 (2012).
[Crossref]

Thew, R. T.

N. Bruno, V. Pini, A. Martin, and R. T. Thew, “A complete characterization of the heralded noiseless amplification of photons,” New J. Phys. 15(9), 093002 (2013).
[Crossref]

C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A 86(2), 023815 (2012).
[Crossref]

Thomas, J.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Thomson, R. R.

J. Bryant, R. R. Thomson, and M. J. Withford, “Focus issue introduction: recent advances in astrophotonics,” Opt. Express 25(17), 19966–19967 (2017).
[Crossref]

S. Mukherjee, D. Mogilevtsev, G. Y. Slepyan, T. H. Doherty, R. R. Thomson, and N. Korolkova, “Dissipatively coupled waveguide networks for coherent diffusive photonics,” Nat. Commun. 8(1), 1909 (2017).
[Crossref]

Tillmann, M.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photonics 7(7), 540–544 (2013).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Tualle-Brouri, R.

F. Ferreyrol, M. Barbieri, R. Blandino, S. Fossier, R. Tualle-Brouri, and P. Grangier, “Implementation of a Nondeterministic Optical Noiseless Amplifier,” Phys. Rev. Lett. 104(12), 123603 (2010).
[Crossref]

Tünnermann, A.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Usuga, M. A.

M. A. Usuga, C. R. Müller, C. Wittmann, P. Marek, R. Filip, C. Marquardt, G. Leuchs, and U. L. Andersen, “Noise-powered probabilistic concentration of phase information,” Nat. Phys. 6(10), 767–771 (2010).
[Crossref]

Vallone, G.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2(1), 566 (2011).
[Crossref]

Vivien, L.

L. Vivien and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2016).

Walk, N.

G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk, and G. J. Pryde, “Heralded noiseless linear amplification and distillation of entanglement,” Nat. Photonics 4(5), 316–319 (2010).
[Crossref]

Walther, P.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photonics 7(7), 540–544 (2013).
[Crossref]

Wang, Y.

Y. Wang, L. Hermann Negri, I. Chiamenti, I. Abe, and H. J. Kalinowski, “Automated System for Femtosecond Laser Writing of Photonic Structures,” J. Control. Autom. Electr. Syst. 29(2), 153–162 (2018).
[Crossref]

Wason, A.

D. Malik, G. Kaushik, and A. Wason, “Performance evaluation of hybrid optical amplifiers in WDM system,” J. Opt. 47(3), 396–404 (2018).
[Crossref]

Withford, M.

Withford, M. J.

Wittmann, C.

M. A. Usuga, C. R. Müller, C. Wittmann, P. Marek, R. Filip, C. Marquardt, G. Leuchs, and U. L. Andersen, “Noise-powered probabilistic concentration of phase information,” Nat. Phys. 6(10), 767–771 (2010).
[Crossref]

Wootters, W.

W. Wootters and W. Zurek, “A Single Quantum Cannot Be Cloned,” Nature 299(5886), 802–803 (1982).
[Crossref]

Xiang, G. Y.

S. Kocsis, G. Y. Xiang, T. C. Ralph, and G. J. Pryde, “Heralded noiseless amplification of a photon polarization qubit,” Nat. Phys. 9(1), 23–28 (2013).
[Crossref]

G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk, and G. J. Pryde, “Heralded noiseless linear amplification and distillation of entanglement,” Nat. Photonics 4(5), 316–319 (2010).
[Crossref]

Zanforlin, U.

U. Zanforlin, R. J. Donaldson, R. J. Collins, and G. S. Buller, “Analysis of the effects of imperfections in an optical heterodyne quantum random-number generator,” Phys. Rev. A 99(5), 052305 (2019).
[Crossref]

R. J. Donaldson, L. Mazzarella, U. Zanforlin, R. J. Collins, J. Jeffers, and G. S. Buller, “Quantum state correction using a measurement-based feedforward mechanism,” Phys. Rev. A 100(2), 023840 (2019).
[Crossref]

Zavatta, A.

A. Zavatta, J. Fiurášek, and M. Bellini, “A high-fidelity noiseless amplifier for quantum light states,” Nat. Photonics 5(1), 52–56 (2011).
[Crossref]

Zbinden, H.

C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A 86(2), 023815 (2012).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Zeil, P.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Zurek, W.

W. Wootters and W. Zurek, “A Single Quantum Cannot Be Cloned,” Nature 299(5886), 802–803 (1982).
[Crossref]

Commun. Phys. (1)

R. J. Donaldson, L. Mazzarella, R. J. Collins, J. Jeffers, and G. S. Buller, “A high-gain and high-fidelity coherent state comparison amplifier,” Commun. Phys. 1(1), 54 (2018).
[Crossref]

J. Control. Autom. Electr. Syst. (1)

Y. Wang, L. Hermann Negri, I. Chiamenti, I. Abe, and H. J. Kalinowski, “Automated System for Femtosecond Laser Writing of Photonic Structures,” J. Control. Autom. Electr. Syst. 29(2), 153–162 (2018).
[Crossref]

J. Mod. Opt. (1)

R. J. Hughes, G. L. Morgan, and C. G. Peterson, “Quantum key distribution over a 48 km optical fibre network,” J. Mod. Opt. 47(2-3), 533–547 (2000).
[Crossref]

J. Opt. (2)

D. Malik, G. Kaushik, and A. Wason, “Performance evaluation of hybrid optical amplifiers in WDM system,” J. Opt. 47(3), 396–404 (2018).
[Crossref]

A. Orieux and E. Diamanti, “Recent advances on integrated quantum communications,” J. Opt. 18(8), 083002 (2016).
[Crossref]

Laser Photonics Rev. (2)

S. Tanzilli, A. Martin, F. Kaiser, M. De Micheli, O. Alibart, and D. Ostrowsky, “On the genesis and evolution of Integrated Quantum Optics,” Laser Photonics Rev. 6(1), 115–143 (2012).
[Crossref]

D. Choudhury, J. R. Macdonald, and A. K. Kar, “Ultrafast laser inscription: perspectives on future integrated applications,” Laser Photonics Rev. 8(6), 827–846 (2014).
[Crossref]

Nat. Commun. (4)

F. Najafi, J. Mower, N. C. Harris, F. Bellei, A. Dane, C. Lee, X. Hu, P. Kharel, F. Marsili, S. Assefa, K. K. Berggren, and D. Englund, “On-chip detection of non-classical light by scalable integration of single-photon detectors,” Nat. Commun. 6(1), 5873 (2015).
[Crossref]

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat. Commun. 2(1), 566 (2011).
[Crossref]

S. Mukherjee, D. Mogilevtsev, G. Y. Slepyan, T. H. Doherty, R. R. Thomson, and N. Korolkova, “Dissipatively coupled waveguide networks for coherent diffusive photonics,” Nat. Commun. 8(1), 1909 (2017).
[Crossref]

G. Corrielli, A. Crespi, R. Geremia, R. Ramponi, L. Sansoni, A. Santinelli, P. Mataloni, F. Sciarrino, and R. Osellame, “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5(1), 4249 (2014).
[Crossref]

Nat. Photonics (5)

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photonics 7(4), 322–328 (2013).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photonics 7(7), 540–544 (2013).
[Crossref]

A. Zavatta, J. Fiurášek, and M. Bellini, “A high-fidelity noiseless amplifier for quantum light states,” Nat. Photonics 5(1), 52–56 (2011).
[Crossref]

G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk, and G. J. Pryde, “Heralded noiseless linear amplification and distillation of entanglement,” Nat. Photonics 4(5), 316–319 (2010).
[Crossref]

Nat. Phys. (2)

S. Kocsis, G. Y. Xiang, T. C. Ralph, and G. J. Pryde, “Heralded noiseless amplification of a photon polarization qubit,” Nat. Phys. 9(1), 23–28 (2013).
[Crossref]

M. A. Usuga, C. R. Müller, C. Wittmann, P. Marek, R. Filip, C. Marquardt, G. Leuchs, and U. L. Andersen, “Noise-powered probabilistic concentration of phase information,” Nat. Phys. 6(10), 767–771 (2010).
[Crossref]

Nature (1)

W. Wootters and W. Zurek, “A Single Quantum Cannot Be Cloned,” Nature 299(5886), 802–803 (1982).
[Crossref]

New J. Phys. (2)

N. Bruno, V. Pini, A. Martin, and R. T. Thew, “A complete characterization of the heralded noiseless amplification of photons,” New J. Phys. 15(9), 093002 (2013).
[Crossref]

J. Ho, A. Boston, M. Palsson, and G. Pryde, “Experimental noiseless linear amplification using weak measurements,” New J. Phys. 18(9), 093026 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. A (10)

M. Rosati, A. Mari, and V. Giovannetti, “Coherent-state discrimination via nonheralded probabilistic amplification,” Phys. Rev. A 93(6), 062315 (2016).
[Crossref]

V. Dunjko and E. Andersson, “Truly noiseless probabilistic amplification,” Phys. Rev. A 86(4), 042322 (2012).
[Crossref]

J. Jeffers, “Optical amplifier-powered quantum optical amplification,” Phys. Rev. A 83(5), 053818 (2011).
[Crossref]

J. Fiurášek, “Engineering quantum operations on traveling light beams by multiple photon addition and subtraction,” Phys. Rev. A 80(5), 053822 (2009).
[Crossref]

P. Marek and R. Filip, “Coherent-state phase concentration by quantum probabilistic amplification,” Phys. Rev. A 81(2), 022302 (2010).
[Crossref]

J. Jeffers, “Nondeterministic amplifier for two-photon superpositions,” Phys. Rev. A 82(6), 063828 (2010).
[Crossref]

C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A 86(2), 023815 (2012).
[Crossref]

S. Pandey, Z. Jiang, J. Combes, and C. M. Caves, “Quantum limits on probabilistic amplifiers,” Phys. Rev. A 88(3), 033852 (2013).
[Crossref]

R. J. Donaldson, L. Mazzarella, U. Zanforlin, R. J. Collins, J. Jeffers, and G. S. Buller, “Quantum state correction using a measurement-based feedforward mechanism,” Phys. Rev. A 100(2), 023840 (2019).
[Crossref]

U. Zanforlin, R. J. Donaldson, R. J. Collins, and G. S. Buller, “Analysis of the effects of imperfections in an optical heterodyne quantum random-number generator,” Phys. Rev. A 99(5), 052305 (2019).
[Crossref]

Phys. Rev. Appl. (1)

G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de Riedmatten, “Integrated Optical Memory Based on Laser-Written Waveguides,” Phys. Rev. Appl. 5(5), 054013 (2016).
[Crossref]

Phys. Rev. D (1)

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D 26(8), 1817–1839 (1982).
[Crossref]

Phys. Rev. Lett. (5)

F. Ferreyrol, M. Barbieri, R. Blandino, S. Fossier, R. Tualle-Brouri, and P. Grangier, “Implementation of a Nondeterministic Optical Noiseless Amplifier,” Phys. Rev. Lett. 104(12), 123603 (2010).
[Crossref]

D. T. Pegg, L. S. Phillips, and S. M. Barnett, “Optical State Truncation by Projection Synthesis,” Phys. Rev. Lett. 81(8), 1604–1606 (1998).
[Crossref]

N. Gisin, S. Pironio, and N. Sangouard, “Proposal for Implementing Device-Independent Quantum Key Distribution Based on a Heralded Qubit Amplifier,” Phys. Rev. Lett. 105(7), 070501 (2010).
[Crossref]

E. Eleftheriadou, S. M. Barnett, and J. Jeffers, “Quantum Optical State Comparison Amplifier,” Phys. Rev. Lett. 111(21), 213601 (2013).
[Crossref]

R. J. Donaldson, R. J. Collins, E. Eleftheriadou, S. M. Barnett, J. Jeffers, and G. S. Buller, “Experimental Implementation of a Quantum Optical State Comparison Amplifier,” Phys. Rev. Lett. 114(12), 120505 (2015).
[Crossref]

Phys. Status Solidi A (1)

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J.-P. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A 208(2), 276–283 (2011).
[Crossref]

Rep. Prog. Phys. (1)

F. Flamini, N. Spagnolo, and F. Sciarrino, “Photonic quantum information processing: a review,” Rep. Prog. Phys. 82(1), 016001 (2019).
[Crossref]

Rev. Mod. Phys. (2)

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81(3), 1301–1350 (2009).
[Crossref]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Sci. Rep. (2)

R. J. Collins, R. Amiri, M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, M. Takeoka, M. Sasaki, E. Andersson, and G. S. Buller, “Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution,” Sci. Rep. 7(1), 3235 (2017).
[Crossref]

R. Heilmann, M. Gräfe, S. Nolte, and A. Szameit, “Arbitrary photonic wave plate operations on chip: Realizing Hadamard, Pauli-X, and rotation gates for polarisation qubits,” Sci. Rep. 4(1), 4118 (2015).
[Crossref]

Other (3)

T. C. Ralph and A. P. Lund, “Nondeterministic Noiseless Linear Amplification of Quantum Systems,” in AIP Conf. Proc., vol. 1110 (2009), pp. 155–160.

L. Vivien and L. Pavesi, Handbook of Silicon Photonics (Taylor & Francis, 2016).

D. Menzies and S. Croke, “Noiseless linear amplification via weak measurements,” arXiv:0903.4181 [quant-ph] (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic representation of the standard SCAMP. When the phase of the input is guessed correctly the output of the SCAMP is the input state perfectly amplified by the nominal gain, $g=\tfrac {t_2}{r_1}$. The output is post-selected based on D$_0$ registering no click and D$_1$ registering a click to indicate the likelihood that the guess was correct.
Fig. 2.
Fig. 2. Illustration of the FLW process for the waveguide chip used in this experiment. The two on-chip directional couplers are used as the implementation of the two beamsplitters, B$_\textrm{SC}$ and B$_\textrm{PS}$, shown in Fig. 1. The symmetry of the waveguide structure allows for the chip to be integrated in two orientations.
Fig. 3.
Fig. 3. Estimations of the cosine of the interferometric phase mismatch of the inner MZI. This quantity is interpreted as the visibility of the system and would equal one in a perfect system. The red triangles (blue squares) represent orientation 1 (orientation 2) of the waveguide chip. The black circles show the same quantity from a similar bulk optical experiment previously published in [25] for comparison. Each data point is the mean of 25 measurements and uncertainties were estimated by propagation of the standard error of the mean. Uncertainties are plotted for each data point but are in most cases smaller than the data point itself.
Fig. 4.
Fig. 4. Figures of merit for the SCAMP with four-dimensional ($N=4$) phase alphabet. (a) success rate; the rate at which both of the success criteria are met. (b) correct state fraction; weighting of the target state in the output ensemble. (c) fidelity; the overlap of the output mixture with the target state. (d) effective intensity gain; the nominal intensity gain ($g^2=t^2_2/r^2_1$, shown by the dotted lines) suppressed by losses and imperfect visibility. The filled shapes represent the entirely on-chip gain omitting the loss incurred in taking the signal on- and off-chip. The empty shapes show the gain when accounting for on-/off-chip loss. Equivalent values for a previously published bulk optical implementation are shown for comparison [25]. In all four plots the red triangles (blue squares) represent orientation 1 (orientation 2) of the waveguide chip. In (a), (b), and (c) the dashed lines show the theoretical predictions for the associated values using the theory of [23] assuming unity detection efficiency. Data points and uncertainties are calculated as described in Fig. 3
Fig. 5.
Fig. 5. A schematic representation of the experimental setup used in the partially on-chip SCAMP experiment. Note the symmetry of the chip on rotation by 180 degrees. By reversing the input and output ports of the chip it is possible to implement a SCAMP with a different nominal gain.
Fig. 6.
Fig. 6. Figures of merit for the SCAMP with binary ($N=2$) phase alphabet. Conventions are the same as in Figs. 4(a)–4(d). Data points and uncertainties are calculated as described in Fig. 3

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

|βϕ=|t1eiϕα/r1withϕAN
|ρϕ=|(r12+t12ei(ϕϕn))gαeiϕn
ρ^S=ϕANpϕ|S|ρϕρϕ|
pϕ|S=pS|ϕpϕϕANpS|ϕpϕ,
pS|ϕ=(1C~ϕ0Rϕ)C~ϕ1Rϕ
C~ϕ=Rϕ[1(RϕCϕRϕ)1L]
|Dϕ2|=ln(RϕRϕC~ϕ)
|α|2=12Nt12ϕAN|Dϕ0|2
|βϕ=|t1r1exp{i(ϕ+χ)}α
Visibility=cos(χ)=|Dπ0|2|D00|2|Dπ0|2+|D00|2
Success Rate =ϕANRϕpS|ϕ,
p0|S=N0ϕANNϕ,
F=ϕANNϕϕANNϕ|gα|ρϕ|2,
geff2=g2LSCAMP[t14+r14+2t12r12cos(χ)]