Abstract

The sampling patterns of the light field microscope (LFM) are highly depth-dependent, which implies non-uniform recoverable lateral resolution across depth. Moreover, reconstructions using state-of-the-art approaches suffer from strong artifacts at axial ranges, where the LFM samples the light field at a coarse rate. In this work, we analyze the sampling patterns of the LFM, and introduce a flexible light field point spread function model (LFPSF) to cope with arbitrary LFM designs. We then propose a novel aliasing-aware deconvolution scheme to address the sampling artifacts. We demonstrate the high potential of the proposed method on real experimental data.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wave optics theory and 3-D deconvolution for the light field microscope

Michael Broxton, Logan Grosenick, Samuel Yang, Noy Cohen, Aaron Andalman, Karl Deisseroth, and Marc Levoy
Opt. Express 21(21) 25418-25439 (2013)

Fourier light-field microscopy

Changliang Guo, Wenhao Liu, Xuanwen Hua, Haoyu Li, and Shu Jia
Opt. Express 27(18) 25573-25594 (2019)

Phase-space deconvolution for light field microscopy

Zhi Lu, Jiamin Wu, Hui Qiao, You Zhou, Tao Yan, Zijing Zhou, Xu Zhang, Jingtao Fan, and Qionghai Dai
Opt. Express 27(13) 18131-18145 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924 (2006).
    [Crossref]
  2. H. Li, C. Guo, D. Kim-Holzapfel, W. Li, Y. Altshuller, B. Schroeder, W. Liu, Y. Meng, J. B. French, K.-I. Takamaru, M. A. Frohman, and S. Jia, “Fast, volumetric live-cell imaging using high-resolution light-field microscopy,” Biomed. Opt. Express 10(1), 29–49 (2019).
    [Crossref]
  3. R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
    [Crossref]
  4. L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
    [Crossref]
  5. N. Wagner, N. Norlin, J. Gierten, G. de Medeiros, B. Balázs, J. Wittbrodt, L. Hufnagel, and R. Prevedel, “Instantaneous isotropic volumetric imaging of fast biological processes,” Nat. Methods 16(6), 497–500 (2019).
    [Crossref]
  6. G. Lippmann, “Épreuves réversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
    [Crossref]
  7. E. H. Adelson and J. Y. A. Wang, “Single Lens Stereo with a Plenoptic Camera,” IEEE Transactions on Pattern Analysis Mach. Intell. 14(2), 99–106 (1992).
    [Crossref]
  8. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light Field Photography with a Hand-Held Plenoptic Camera,” Tech. Rep. Stanford CTSR 02 (2005).
  9. R. Ng, “Fourier slice photography,” in ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 24 (2005), pp. 735–744.
  10. D. G. Dansereau, O. Pizarro, and S. B. Williams, “Decoding, Calibration and Rectification for Lenselet-Based Plenoptic Cameras,” in 2013 IEEE Conference on Computer Vision and Pattern Recognition, (2013).
  11. M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
    [Crossref]
  12. A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing,” ACM Trans. Graph. 26(3), 69 (2007).
    [Crossref]
  13. N. Cohen, S. Yang, A. Andalman, M. Broxton, L. Grosenick, K. Deisseroth, M. Horowitz, and M. Levoy, “Enhancing the performance of the light field microscope using wavefront coding,” Opt. Express 22(20), 24817–24839 (2014).
    [Crossref]
  14. S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and challenges in super-resolution,” Int. J. Imaging Syst. Technol. 14(2), 47–57 (2004).
    [Crossref]
  15. S. C. Park, M. K. Park, and M. G. Kang, “IEEE Signal Process. Mag.,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
    [Crossref]
  16. M. Rossi and P. Frossard, “Geometry-Consistent Light Field Super-Resolution via Graph-Based Regularization,” IEEE Trans. Image Processing 27(9), 4207–4218 (2018).
    [Crossref]
  17. S. Wanner and B. Goldluecke, “Variational light field analysis for disparity estimation and super-resolution,” IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 606–619 (2014).
    [Crossref]
  18. T. E. Bishop, S. Zanetti, and P. Favaro, “Light field superresolution,” in 2009 IEEE International Conference on Computational Photography, ICCP 09, (2009).
  19. T. E. Bishop and P. Favaro, “The light field camera: Extended depth of field, aliasing, and superresolution,” IEEE Transactions on Pattern Analysis Mach. Intell. 34(5), 972–986 (2012).
    [Crossref]
  20. C.-K. Liang and R. Ramamoorthi, “A Light Transport Framework for Lenslet Light Field Cameras,” ACM Trans. Graph. 34(2), 1–19 (2015).
    [Crossref]
  21. S. A. Shroff and K. Berkner, “Image formation analysis and high resolution image reconstruction for plenoptic imaging systems,” Appl. Opt. 52(10), D22–D31 (2013).
    [Crossref]
  22. M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
    [Crossref]
  23. P. Fei, Z. Wang, H. Zhang, Y. Yang, Y. Li, and S. Gao, “Deep learning light field microscopy for rapid four-dimensional imaging of behaving animals,” bioRxiv 34, 432807 (2018).
    [Crossref]
  24. M. Levoy and P. Hanrahan, “Light Field Rendering,” in Proc. ACM Siggraph, (1996) pp. 31–42.
  25. J.-X. Chai, S.-C. Chan, H.-Y. Shum, and X. Tong, “Plenoptic sampling,” in Proc. ACM Siggraph, (2000), 307–318.
  26. J. Stewart, J. Yu, S. Gortler, and L. McMillan, “A new reconstruction filter for undersampled light fields,” Proc. 14th Eurographics Work. Render. pp. 150–156(2003).
  27. Z. Xiao, Q. Wang, G. Zhou, and J. Yu, “Aliasing detection and reduction in plenoptic imaging,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2014), pp. 3326–3333.
  28. T. Georgiev and A. Lumsdaine, “Depth of Field in Plenoptic Cameras,” Eurographics 2009, 5–8 (2009).
  29. L.-Y. Wei, C.-K. Liang, G. Myhre, C. Pitts, and K. Akeley, “Improving light field camera sample design with irregularity and aberration,” ACM Trans. Graph. 34(4), 1–11 (2015).
    [Crossref]
  30. A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in 2009 IEEE International Conference on Computational Photography, ICCP 09, (IEEE, 2009), pp. 1–8.
  31. C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
    [Crossref]
  32. G. Wolberg, “Sampling, Reconstruction, and Antialiasing,” in Digital Image Warping, (CRC, 2004), pp. 1–32.
  33. M. Gu, Advanced Optical Imaging Theory, vol. 75 (Springer, 1999).
  34. D. G. Voelz and M. C. Roggemann, “Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences,” Appl. Opt. 48(32), 6132 (2009).
    [Crossref]
  35. D. G. Voelz, Computational Fourier Optics: A MATLAB® Tutorial (SPIE, 2011).
  36. W. H. Richardson, “Bayesian-Based Iterative Method of Image Restoration,” J. Opt. Soc. Am. 62(1), 55 (1972).
    [Crossref]
  37. B. W. Silverman, M. C. Jones, J. D. Wilson, and D. W. Nychka, “A Smoothed Em Approach to Indirect Estimation Problems, with Particular Reference to Stereology and Emission Tomography,” J. Royal Stat. Soc. Ser. B (Methodological) 52, 271–303 (1990).
    [Crossref]
  38. T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” Eurographics Symposium on Rendering (EGSR), pp. 263–272, (2006).
  39. T. Georgiev and A. Lumsdaine, “The multifocus plenoptic camera,” Proc. SPIE 8299, 829908 (2012).
    [Crossref]
  40. A. Levin, S. W. Hasinoff, P. Green, F. Durand, and W. T. Freeman, “4D frequency analysis of computational cameras for depth of field extension,” ACM Trans. Graph. 28(3), 1–97 (2009)..
    [Crossref]
  41. P. Favaro, “A split-sensor light field camera for extended depth of field and superresolution,” Proc. SPIE 8436, 843602 (2012).
    [Crossref]
  42. C.-H. Lu, S. Muenzel, and J. Fleischer, “High-Resolution Light-Field Microscopy,” in Imaging and Applied Optics (Optical Society of America, 2013), p. CTh3B.2.

2019 (2)

N. Wagner, N. Norlin, J. Gierten, G. de Medeiros, B. Balázs, J. Wittbrodt, L. Hufnagel, and R. Prevedel, “Instantaneous isotropic volumetric imaging of fast biological processes,” Nat. Methods 16(6), 497–500 (2019).
[Crossref]

H. Li, C. Guo, D. Kim-Holzapfel, W. Li, Y. Altshuller, B. Schroeder, W. Liu, Y. Meng, J. B. French, K.-I. Takamaru, M. A. Frohman, and S. Jia, “Fast, volumetric live-cell imaging using high-resolution light-field microscopy,” Biomed. Opt. Express 10(1), 29–49 (2019).
[Crossref]

2018 (2)

M. Rossi and P. Frossard, “Geometry-Consistent Light Field Super-Resolution via Graph-Based Regularization,” IEEE Trans. Image Processing 27(9), 4207–4218 (2018).
[Crossref]

P. Fei, Z. Wang, H. Zhang, Y. Yang, Y. Li, and S. Gao, “Deep learning light field microscopy for rapid four-dimensional imaging of behaving animals,” bioRxiv 34, 432807 (2018).
[Crossref]

2017 (1)

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref]

2015 (2)

L.-Y. Wei, C.-K. Liang, G. Myhre, C. Pitts, and K. Akeley, “Improving light field camera sample design with irregularity and aberration,” ACM Trans. Graph. 34(4), 1–11 (2015).
[Crossref]

C.-K. Liang and R. Ramamoorthi, “A Light Transport Framework for Lenslet Light Field Cameras,” ACM Trans. Graph. 34(2), 1–19 (2015).
[Crossref]

2014 (3)

S. Wanner and B. Goldluecke, “Variational light field analysis for disparity estimation and super-resolution,” IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 606–619 (2014).
[Crossref]

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

N. Cohen, S. Yang, A. Andalman, M. Broxton, L. Grosenick, K. Deisseroth, M. Horowitz, and M. Levoy, “Enhancing the performance of the light field microscope using wavefront coding,” Opt. Express 22(20), 24817–24839 (2014).
[Crossref]

2013 (2)

2012 (4)

T. Georgiev and A. Lumsdaine, “The multifocus plenoptic camera,” Proc. SPIE 8299, 829908 (2012).
[Crossref]

P. Favaro, “A split-sensor light field camera for extended depth of field and superresolution,” Proc. SPIE 8436, 843602 (2012).
[Crossref]

T. E. Bishop and P. Favaro, “The light field camera: Extended depth of field, aliasing, and superresolution,” IEEE Transactions on Pattern Analysis Mach. Intell. 34(5), 972–986 (2012).
[Crossref]

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
[Crossref]

2009 (4)

T. Georgiev and A. Lumsdaine, “Depth of Field in Plenoptic Cameras,” Eurographics 2009, 5–8 (2009).

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref]

A. Levin, S. W. Hasinoff, P. Green, F. Durand, and W. T. Freeman, “4D frequency analysis of computational cameras for depth of field extension,” ACM Trans. Graph. 28(3), 1–97 (2009)..
[Crossref]

D. G. Voelz and M. C. Roggemann, “Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences,” Appl. Opt. 48(32), 6132 (2009).
[Crossref]

2007 (1)

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing,” ACM Trans. Graph. 26(3), 69 (2007).
[Crossref]

2006 (1)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924 (2006).
[Crossref]

2004 (1)

S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and challenges in super-resolution,” Int. J. Imaging Syst. Technol. 14(2), 47–57 (2004).
[Crossref]

2003 (1)

S. C. Park, M. K. Park, and M. G. Kang, “IEEE Signal Process. Mag.,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

1992 (1)

E. H. Adelson and J. Y. A. Wang, “Single Lens Stereo with a Plenoptic Camera,” IEEE Transactions on Pattern Analysis Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

1990 (1)

B. W. Silverman, M. C. Jones, J. D. Wilson, and D. W. Nychka, “A Smoothed Em Approach to Indirect Estimation Problems, with Particular Reference to Stereology and Emission Tomography,” J. Royal Stat. Soc. Ser. B (Methodological) 52, 271–303 (1990).
[Crossref]

1972 (1)

1908 (1)

G. Lippmann, “Épreuves réversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Adams, A.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924 (2006).
[Crossref]

Adelson, E. H.

E. H. Adelson and J. Y. A. Wang, “Single Lens Stereo with a Plenoptic Camera,” IEEE Transactions on Pattern Analysis Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Agrawal, A.

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing,” ACM Trans. Graph. 26(3), 69 (2007).
[Crossref]

Akeley, K.

L.-Y. Wei, C.-K. Liang, G. Myhre, C. Pitts, and K. Akeley, “Improving light field camera sample design with irregularity and aberration,” ACM Trans. Graph. 34(4), 1–11 (2015).
[Crossref]

Altshuller, Y.

Andalman, A.

Bai, L.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref]

Balázs, B.

N. Wagner, N. Norlin, J. Gierten, G. de Medeiros, B. Balázs, J. Wittbrodt, L. Hufnagel, and R. Prevedel, “Instantaneous isotropic volumetric imaging of fast biological processes,” Nat. Methods 16(6), 497–500 (2019).
[Crossref]

Berkner, K.

Bishop, T. E.

T. E. Bishop and P. Favaro, “The light field camera: Extended depth of field, aliasing, and superresolution,” IEEE Transactions on Pattern Analysis Mach. Intell. 34(5), 972–986 (2012).
[Crossref]

T. E. Bishop, S. Zanetti, and P. Favaro, “Light field superresolution,” in 2009 IEEE International Conference on Computational Photography, ICCP 09, (2009).

Boyden, E. S.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

Brédif, M.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light Field Photography with a Hand-Held Plenoptic Camera,” Tech. Rep. Stanford CTSR 02 (2005).

Broxton, M.

Chai, J.-X.

J.-X. Chai, S.-C. Chan, H.-Y. Shum, and X. Tong, “Plenoptic sampling,” in Proc. ACM Siggraph, (2000), 307–318.

Chai, Y.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref]

Chan, S.-C.

J.-X. Chai, S.-C. Chan, H.-Y. Shum, and X. Tong, “Plenoptic sampling,” in Proc. ACM Siggraph, (2000), 307–318.

Cohen, N.

Cong, L.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref]

Curless, B.

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” Eurographics Symposium on Rendering (EGSR), pp. 263–272, (2006).

Dansereau, D. G.

D. G. Dansereau, O. Pizarro, and S. B. Williams, “Decoding, Calibration and Rectification for Lenselet-Based Plenoptic Cameras,” in 2013 IEEE Conference on Computer Vision and Pattern Recognition, (2013).

de Medeiros, G.

N. Wagner, N. Norlin, J. Gierten, G. de Medeiros, B. Balázs, J. Wittbrodt, L. Hufnagel, and R. Prevedel, “Instantaneous isotropic volumetric imaging of fast biological processes,” Nat. Methods 16(6), 497–500 (2019).
[Crossref]

Deisseroth, K.

Du, J.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref]

Durand, F.

A. Levin, S. W. Hasinoff, P. Green, F. Durand, and W. T. Freeman, “4D frequency analysis of computational cameras for depth of field extension,” ACM Trans. Graph. 28(3), 1–97 (2009)..
[Crossref]

Duval, G.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light Field Photography with a Hand-Held Plenoptic Camera,” Tech. Rep. Stanford CTSR 02 (2005).

Elad, M.

S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and challenges in super-resolution,” Int. J. Imaging Syst. Technol. 14(2), 47–57 (2004).
[Crossref]

Farsiu, S.

S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and challenges in super-resolution,” Int. J. Imaging Syst. Technol. 14(2), 47–57 (2004).
[Crossref]

Favaro, P.

T. E. Bishop and P. Favaro, “The light field camera: Extended depth of field, aliasing, and superresolution,” IEEE Transactions on Pattern Analysis Mach. Intell. 34(5), 972–986 (2012).
[Crossref]

P. Favaro, “A split-sensor light field camera for extended depth of field and superresolution,” Proc. SPIE 8436, 843602 (2012).
[Crossref]

T. E. Bishop, S. Zanetti, and P. Favaro, “Light field superresolution,” in 2009 IEEE International Conference on Computational Photography, ICCP 09, (2009).

Fei, P.

P. Fei, Z. Wang, H. Zhang, Y. Yang, Y. Li, and S. Gao, “Deep learning light field microscopy for rapid four-dimensional imaging of behaving animals,” bioRxiv 34, 432807 (2018).
[Crossref]

Fleischer, J.

C.-H. Lu, S. Muenzel, and J. Fleischer, “High-Resolution Light-Field Microscopy,” in Imaging and Applied Optics (Optical Society of America, 2013), p. CTh3B.2.

Footer, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924 (2006).
[Crossref]

Freeman, W. T.

A. Levin, S. W. Hasinoff, P. Green, F. Durand, and W. T. Freeman, “4D frequency analysis of computational cameras for depth of field extension,” ACM Trans. Graph. 28(3), 1–97 (2009)..
[Crossref]

French, J. B.

Frohman, M. A.

Frossard, P.

M. Rossi and P. Frossard, “Geometry-Consistent Light Field Super-Resolution via Graph-Based Regularization,” IEEE Trans. Image Processing 27(9), 4207–4218 (2018).
[Crossref]

Gao, S.

P. Fei, Z. Wang, H. Zhang, Y. Yang, Y. Li, and S. Gao, “Deep learning light field microscopy for rapid four-dimensional imaging of behaving animals,” bioRxiv 34, 432807 (2018).
[Crossref]

Georgiev, T.

T. Georgiev and A. Lumsdaine, “The multifocus plenoptic camera,” Proc. SPIE 8299, 829908 (2012).
[Crossref]

T. Georgiev and A. Lumsdaine, “Depth of Field in Plenoptic Cameras,” Eurographics 2009, 5–8 (2009).

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in 2009 IEEE International Conference on Computational Photography, ICCP 09, (IEEE, 2009), pp. 1–8.

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” Eurographics Symposium on Rendering (EGSR), pp. 263–272, (2006).

Gierten, J.

N. Wagner, N. Norlin, J. Gierten, G. de Medeiros, B. Balázs, J. Wittbrodt, L. Hufnagel, and R. Prevedel, “Instantaneous isotropic volumetric imaging of fast biological processes,” Nat. Methods 16(6), 497–500 (2019).
[Crossref]

Goldluecke, B.

S. Wanner and B. Goldluecke, “Variational light field analysis for disparity estimation and super-resolution,” IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 606–619 (2014).
[Crossref]

Gortler, S.

J. Stewart, J. Yu, S. Gortler, and L. McMillan, “A new reconstruction filter for undersampled light fields,” Proc. 14th Eurographics Work. Render. pp. 150–156(2003).

Green, P.

A. Levin, S. W. Hasinoff, P. Green, F. Durand, and W. T. Freeman, “4D frequency analysis of computational cameras for depth of field extension,” ACM Trans. Graph. 28(3), 1–97 (2009)..
[Crossref]

Grosenick, L.

Gu, M.

M. Gu, Advanced Optical Imaging Theory, vol. 75 (Springer, 1999).

Guo, C.

Hang, W.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref]

Hanrahan, P.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light Field Photography with a Hand-Held Plenoptic Camera,” Tech. Rep. Stanford CTSR 02 (2005).

M. Levoy and P. Hanrahan, “Light Field Rendering,” in Proc. ACM Siggraph, (1996) pp. 31–42.

Hasinoff, S. W.

A. Levin, S. W. Hasinoff, P. Green, F. Durand, and W. T. Freeman, “4D frequency analysis of computational cameras for depth of field extension,” ACM Trans. Graph. 28(3), 1–97 (2009)..
[Crossref]

Hoffmann, M.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

Horowitz, M.

N. Cohen, S. Yang, A. Andalman, M. Broxton, L. Grosenick, K. Deisseroth, M. Horowitz, and M. Levoy, “Enhancing the performance of the light field microscope using wavefront coding,” Opt. Express 22(20), 24817–24839 (2014).
[Crossref]

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924 (2006).
[Crossref]

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light Field Photography with a Hand-Held Plenoptic Camera,” Tech. Rep. Stanford CTSR 02 (2005).

Hufnagel, L.

N. Wagner, N. Norlin, J. Gierten, G. de Medeiros, B. Balázs, J. Wittbrodt, L. Hufnagel, and R. Prevedel, “Instantaneous isotropic volumetric imaging of fast biological processes,” Nat. Methods 16(6), 497–500 (2019).
[Crossref]

Intwala, C.

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” Eurographics Symposium on Rendering (EGSR), pp. 263–272, (2006).

Jia, S.

Jones, M. C.

B. W. Silverman, M. C. Jones, J. D. Wilson, and D. W. Nychka, “A Smoothed Em Approach to Indirect Estimation Problems, with Particular Reference to Stereology and Emission Tomography,” J. Royal Stat. Soc. Ser. B (Methodological) 52, 271–303 (1990).
[Crossref]

Kang, M. G.

S. C. Park, M. K. Park, and M. G. Kang, “IEEE Signal Process. Mag.,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

Kato, S.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

Kim-Holzapfel, D.

Levin, A.

A. Levin, S. W. Hasinoff, P. Green, F. Durand, and W. T. Freeman, “4D frequency analysis of computational cameras for depth of field extension,” ACM Trans. Graph. 28(3), 1–97 (2009)..
[Crossref]

Levoy, M.

N. Cohen, S. Yang, A. Andalman, M. Broxton, L. Grosenick, K. Deisseroth, M. Horowitz, and M. Levoy, “Enhancing the performance of the light field microscope using wavefront coding,” Opt. Express 22(20), 24817–24839 (2014).
[Crossref]

M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
[Crossref]

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref]

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924 (2006).
[Crossref]

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light Field Photography with a Hand-Held Plenoptic Camera,” Tech. Rep. Stanford CTSR 02 (2005).

M. Levoy and P. Hanrahan, “Light Field Rendering,” in Proc. ACM Siggraph, (1996) pp. 31–42.

Li, H.

Li, W.

Li, Y.

P. Fei, Z. Wang, H. Zhang, Y. Yang, Y. Li, and S. Gao, “Deep learning light field microscopy for rapid four-dimensional imaging of behaving animals,” bioRxiv 34, 432807 (2018).
[Crossref]

Liang, C.-K.

L.-Y. Wei, C.-K. Liang, G. Myhre, C. Pitts, and K. Akeley, “Improving light field camera sample design with irregularity and aberration,” ACM Trans. Graph. 34(4), 1–11 (2015).
[Crossref]

C.-K. Liang and R. Ramamoorthi, “A Light Transport Framework for Lenslet Light Field Cameras,” ACM Trans. Graph. 34(2), 1–19 (2015).
[Crossref]

Lippmann, G.

G. Lippmann, “Épreuves réversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Liu, W.

Lu, C.-H.

C.-H. Lu, S. Muenzel, and J. Fleischer, “High-Resolution Light-Field Microscopy,” in Imaging and Applied Optics (Optical Society of America, 2013), p. CTh3B.2.

Lumsdaine, A.

T. Georgiev and A. Lumsdaine, “The multifocus plenoptic camera,” Proc. SPIE 8299, 829908 (2012).
[Crossref]

T. Georgiev and A. Lumsdaine, “Depth of Field in Plenoptic Cameras,” Eurographics 2009, 5–8 (2009).

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in 2009 IEEE International Conference on Computational Photography, ICCP 09, (IEEE, 2009), pp. 1–8.

McDowall, I.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref]

McMillan, L.

J. Stewart, J. Yu, S. Gortler, and L. McMillan, “A new reconstruction filter for undersampled light fields,” Proc. 14th Eurographics Work. Render. pp. 150–156(2003).

Meng, Y.

Milanfar, P.

S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and challenges in super-resolution,” Int. J. Imaging Syst. Technol. 14(2), 47–57 (2004).
[Crossref]

Mohan, A.

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing,” ACM Trans. Graph. 26(3), 69 (2007).
[Crossref]

Muenzel, S.

C.-H. Lu, S. Muenzel, and J. Fleischer, “High-Resolution Light-Field Microscopy,” in Imaging and Applied Optics (Optical Society of America, 2013), p. CTh3B.2.

Myhre, G.

L.-Y. Wei, C.-K. Liang, G. Myhre, C. Pitts, and K. Akeley, “Improving light field camera sample design with irregularity and aberration,” ACM Trans. Graph. 34(4), 1–11 (2015).
[Crossref]

Nayar, S.

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” Eurographics Symposium on Rendering (EGSR), pp. 263–272, (2006).

Ng, R.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924 (2006).
[Crossref]

R. Ng, “Fourier slice photography,” in ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 24 (2005), pp. 735–744.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light Field Photography with a Hand-Held Plenoptic Camera,” Tech. Rep. Stanford CTSR 02 (2005).

Norlin, N.

N. Wagner, N. Norlin, J. Gierten, G. de Medeiros, B. Balázs, J. Wittbrodt, L. Hufnagel, and R. Prevedel, “Instantaneous isotropic volumetric imaging of fast biological processes,” Nat. Methods 16(6), 497–500 (2019).
[Crossref]

Nychka, D. W.

B. W. Silverman, M. C. Jones, J. D. Wilson, and D. W. Nychka, “A Smoothed Em Approach to Indirect Estimation Problems, with Particular Reference to Stereology and Emission Tomography,” J. Royal Stat. Soc. Ser. B (Methodological) 52, 271–303 (1990).
[Crossref]

Pak, N.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

Park, M. K.

S. C. Park, M. K. Park, and M. G. Kang, “IEEE Signal Process. Mag.,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

Park, S. C.

S. C. Park, M. K. Park, and M. G. Kang, “IEEE Signal Process. Mag.,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

Perwass, C.

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
[Crossref]

Pitts, C.

L.-Y. Wei, C.-K. Liang, G. Myhre, C. Pitts, and K. Akeley, “Improving light field camera sample design with irregularity and aberration,” ACM Trans. Graph. 34(4), 1–11 (2015).
[Crossref]

Pizarro, O.

D. G. Dansereau, O. Pizarro, and S. B. Williams, “Decoding, Calibration and Rectification for Lenselet-Based Plenoptic Cameras,” in 2013 IEEE Conference on Computer Vision and Pattern Recognition, (2013).

Prevedel, R.

N. Wagner, N. Norlin, J. Gierten, G. de Medeiros, B. Balázs, J. Wittbrodt, L. Hufnagel, and R. Prevedel, “Instantaneous isotropic volumetric imaging of fast biological processes,” Nat. Methods 16(6), 497–500 (2019).
[Crossref]

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

Ramamoorthi, R.

C.-K. Liang and R. Ramamoorthi, “A Light Transport Framework for Lenslet Light Field Cameras,” ACM Trans. Graph. 34(2), 1–19 (2015).
[Crossref]

Raskar, R.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing,” ACM Trans. Graph. 26(3), 69 (2007).
[Crossref]

Richardson, W. H.

Robinson, D.

S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and challenges in super-resolution,” Int. J. Imaging Syst. Technol. 14(2), 47–57 (2004).
[Crossref]

Roggemann, M. C.

Rossi, M.

M. Rossi and P. Frossard, “Geometry-Consistent Light Field Super-Resolution via Graph-Based Regularization,” IEEE Trans. Image Processing 27(9), 4207–4218 (2018).
[Crossref]

Salesin, D.

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” Eurographics Symposium on Rendering (EGSR), pp. 263–272, (2006).

Schrödel, T.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

Schroeder, B.

Shang, C.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref]

Shroff, S. A.

Shum, H.-Y.

J.-X. Chai, S.-C. Chan, H.-Y. Shum, and X. Tong, “Plenoptic sampling,” in Proc. ACM Siggraph, (2000), 307–318.

Silverman, B. W.

B. W. Silverman, M. C. Jones, J. D. Wilson, and D. W. Nychka, “A Smoothed Em Approach to Indirect Estimation Problems, with Particular Reference to Stereology and Emission Tomography,” J. Royal Stat. Soc. Ser. B (Methodological) 52, 271–303 (1990).
[Crossref]

Stewart, J.

J. Stewart, J. Yu, S. Gortler, and L. McMillan, “A new reconstruction filter for undersampled light fields,” Proc. 14th Eurographics Work. Render. pp. 150–156(2003).

Takamaru, K.-I.

Tong, X.

J.-X. Chai, S.-C. Chan, H.-Y. Shum, and X. Tong, “Plenoptic sampling,” in Proc. ACM Siggraph, (2000), 307–318.

Tumblin, J.

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing,” ACM Trans. Graph. 26(3), 69 (2007).
[Crossref]

Vaziri, A.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

Veeraraghavan, A.

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing,” ACM Trans. Graph. 26(3), 69 (2007).
[Crossref]

Voelz, D. G.

Wagner, N.

N. Wagner, N. Norlin, J. Gierten, G. de Medeiros, B. Balázs, J. Wittbrodt, L. Hufnagel, and R. Prevedel, “Instantaneous isotropic volumetric imaging of fast biological processes,” Nat. Methods 16(6), 497–500 (2019).
[Crossref]

Wang, J. Y. A.

E. H. Adelson and J. Y. A. Wang, “Single Lens Stereo with a Plenoptic Camera,” IEEE Transactions on Pattern Analysis Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

Wang, K.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref]

Wang, Q.

Z. Xiao, Q. Wang, G. Zhou, and J. Yu, “Aliasing detection and reduction in plenoptic imaging,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2014), pp. 3326–3333.

Wang, Z.

P. Fei, Z. Wang, H. Zhang, Y. Yang, Y. Li, and S. Gao, “Deep learning light field microscopy for rapid four-dimensional imaging of behaving animals,” bioRxiv 34, 432807 (2018).
[Crossref]

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref]

Wanner, S.

S. Wanner and B. Goldluecke, “Variational light field analysis for disparity estimation and super-resolution,” IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 606–619 (2014).
[Crossref]

Wei, L.-Y.

L.-Y. Wei, C.-K. Liang, G. Myhre, C. Pitts, and K. Akeley, “Improving light field camera sample design with irregularity and aberration,” ACM Trans. Graph. 34(4), 1–11 (2015).
[Crossref]

Wen, Q.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref]

Wetzstein, G.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

Wietzke, L.

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
[Crossref]

Williams, S. B.

D. G. Dansereau, O. Pizarro, and S. B. Williams, “Decoding, Calibration and Rectification for Lenselet-Based Plenoptic Cameras,” in 2013 IEEE Conference on Computer Vision and Pattern Recognition, (2013).

Wilson, J. D.

B. W. Silverman, M. C. Jones, J. D. Wilson, and D. W. Nychka, “A Smoothed Em Approach to Indirect Estimation Problems, with Particular Reference to Stereology and Emission Tomography,” J. Royal Stat. Soc. Ser. B (Methodological) 52, 271–303 (1990).
[Crossref]

Wittbrodt, J.

N. Wagner, N. Norlin, J. Gierten, G. de Medeiros, B. Balázs, J. Wittbrodt, L. Hufnagel, and R. Prevedel, “Instantaneous isotropic volumetric imaging of fast biological processes,” Nat. Methods 16(6), 497–500 (2019).
[Crossref]

Wolberg, G.

G. Wolberg, “Sampling, Reconstruction, and Antialiasing,” in Digital Image Warping, (CRC, 2004), pp. 1–32.

Xiao, Z.

Z. Xiao, Q. Wang, G. Zhou, and J. Yu, “Aliasing detection and reduction in plenoptic imaging,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2014), pp. 3326–3333.

Yang, S.

Yang, W.

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref]

Yang, Y.

P. Fei, Z. Wang, H. Zhang, Y. Yang, Y. Li, and S. Gao, “Deep learning light field microscopy for rapid four-dimensional imaging of behaving animals,” bioRxiv 34, 432807 (2018).
[Crossref]

Yoon, Y. G.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

Yu, J.

J. Stewart, J. Yu, S. Gortler, and L. McMillan, “A new reconstruction filter for undersampled light fields,” Proc. 14th Eurographics Work. Render. pp. 150–156(2003).

Z. Xiao, Q. Wang, G. Zhou, and J. Yu, “Aliasing detection and reduction in plenoptic imaging,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2014), pp. 3326–3333.

Zanetti, S.

T. E. Bishop, S. Zanetti, and P. Favaro, “Light field superresolution,” in 2009 IEEE International Conference on Computational Photography, ICCP 09, (2009).

Zhang, H.

P. Fei, Z. Wang, H. Zhang, Y. Yang, Y. Li, and S. Gao, “Deep learning light field microscopy for rapid four-dimensional imaging of behaving animals,” bioRxiv 34, 432807 (2018).
[Crossref]

Zhang, Z.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref]

Zheng, K. C.

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” Eurographics Symposium on Rendering (EGSR), pp. 263–272, (2006).

Zhou, G.

Z. Xiao, Q. Wang, G. Zhou, and J. Yu, “Aliasing detection and reduction in plenoptic imaging,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2014), pp. 3326–3333.

Zimmer, M.

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

ACM Trans. Graph. (5)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light field microscopy,” ACM Trans. Graph. 25(3), 924 (2006).
[Crossref]

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing,” ACM Trans. Graph. 26(3), 69 (2007).
[Crossref]

C.-K. Liang and R. Ramamoorthi, “A Light Transport Framework for Lenslet Light Field Cameras,” ACM Trans. Graph. 34(2), 1–19 (2015).
[Crossref]

L.-Y. Wei, C.-K. Liang, G. Myhre, C. Pitts, and K. Akeley, “Improving light field camera sample design with irregularity and aberration,” ACM Trans. Graph. 34(4), 1–11 (2015).
[Crossref]

A. Levin, S. W. Hasinoff, P. Green, F. Durand, and W. T. Freeman, “4D frequency analysis of computational cameras for depth of field extension,” ACM Trans. Graph. 28(3), 1–97 (2009)..
[Crossref]

Appl. Opt. (2)

Biomed. Opt. Express (1)

bioRxiv (1)

P. Fei, Z. Wang, H. Zhang, Y. Yang, Y. Li, and S. Gao, “Deep learning light field microscopy for rapid four-dimensional imaging of behaving animals,” bioRxiv 34, 432807 (2018).
[Crossref]

eLife (1)

L. Cong, Z. Wang, Y. Chai, W. Hang, C. Shang, W. Yang, L. Bai, J. Du, K. Wang, and Q. Wen, “Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio),” eLife 6, e28158 (2017).
[Crossref]

Eurographics (1)

T. Georgiev and A. Lumsdaine, “Depth of Field in Plenoptic Cameras,” Eurographics 2009, 5–8 (2009).

IEEE Signal Process. Mag. (1)

S. C. Park, M. K. Park, and M. G. Kang, “IEEE Signal Process. Mag.,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

IEEE Trans. Image Processing (1)

M. Rossi and P. Frossard, “Geometry-Consistent Light Field Super-Resolution via Graph-Based Regularization,” IEEE Trans. Image Processing 27(9), 4207–4218 (2018).
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

S. Wanner and B. Goldluecke, “Variational light field analysis for disparity estimation and super-resolution,” IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 606–619 (2014).
[Crossref]

IEEE Transactions on Pattern Analysis Mach. Intell. (2)

E. H. Adelson and J. Y. A. Wang, “Single Lens Stereo with a Plenoptic Camera,” IEEE Transactions on Pattern Analysis Mach. Intell. 14(2), 99–106 (1992).
[Crossref]

T. E. Bishop and P. Favaro, “The light field camera: Extended depth of field, aliasing, and superresolution,” IEEE Transactions on Pattern Analysis Mach. Intell. 34(5), 972–986 (2012).
[Crossref]

Int. J. Imaging Syst. Technol. (1)

S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Advances and challenges in super-resolution,” Int. J. Imaging Syst. Technol. 14(2), 47–57 (2004).
[Crossref]

J. Microsc. (1)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Theor. Appl. (1)

G. Lippmann, “Épreuves réversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

J. Royal Stat. Soc. Ser. B (Methodological) (1)

B. W. Silverman, M. C. Jones, J. D. Wilson, and D. W. Nychka, “A Smoothed Em Approach to Indirect Estimation Problems, with Particular Reference to Stereology and Emission Tomography,” J. Royal Stat. Soc. Ser. B (Methodological) 52, 271–303 (1990).
[Crossref]

Nat. Methods (2)

N. Wagner, N. Norlin, J. Gierten, G. de Medeiros, B. Balázs, J. Wittbrodt, L. Hufnagel, and R. Prevedel, “Instantaneous isotropic volumetric imaging of fast biological processes,” Nat. Methods 16(6), 497–500 (2019).
[Crossref]

R. Prevedel, Y. G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrödel, R. Raskar, M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy,” Nat. Methods 11(7), 727–730 (2014).
[Crossref]

Opt. Express (2)

Proc. SPIE (3)

C. Perwass and L. Wietzke, “Single lens 3D-camera with extended depth-of-field,” Proc. SPIE 8291, 829108 (2012).
[Crossref]

T. Georgiev and A. Lumsdaine, “The multifocus plenoptic camera,” Proc. SPIE 8299, 829908 (2012).
[Crossref]

P. Favaro, “A split-sensor light field camera for extended depth of field and superresolution,” Proc. SPIE 8436, 843602 (2012).
[Crossref]

Other (14)

C.-H. Lu, S. Muenzel, and J. Fleischer, “High-Resolution Light-Field Microscopy,” in Imaging and Applied Optics (Optical Society of America, 2013), p. CTh3B.2.

G. Wolberg, “Sampling, Reconstruction, and Antialiasing,” in Digital Image Warping, (CRC, 2004), pp. 1–32.

M. Gu, Advanced Optical Imaging Theory, vol. 75 (Springer, 1999).

A. Lumsdaine and T. Georgiev, “The focused plenoptic camera,” in 2009 IEEE International Conference on Computational Photography, ICCP 09, (IEEE, 2009), pp. 1–8.

T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala, “Spatio-angular resolution tradeoffs in integral photography,” Eurographics Symposium on Rendering (EGSR), pp. 263–272, (2006).

D. G. Voelz, Computational Fourier Optics: A MATLAB® Tutorial (SPIE, 2011).

M. Levoy and P. Hanrahan, “Light Field Rendering,” in Proc. ACM Siggraph, (1996) pp. 31–42.

J.-X. Chai, S.-C. Chan, H.-Y. Shum, and X. Tong, “Plenoptic sampling,” in Proc. ACM Siggraph, (2000), 307–318.

J. Stewart, J. Yu, S. Gortler, and L. McMillan, “A new reconstruction filter for undersampled light fields,” Proc. 14th Eurographics Work. Render. pp. 150–156(2003).

Z. Xiao, Q. Wang, G. Zhou, and J. Yu, “Aliasing detection and reduction in plenoptic imaging,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2014), pp. 3326–3333.

T. E. Bishop, S. Zanetti, and P. Favaro, “Light field superresolution,” in 2009 IEEE International Conference on Computational Photography, ICCP 09, (2009).

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light Field Photography with a Hand-Held Plenoptic Camera,” Tech. Rep. Stanford CTSR 02 (2005).

R. Ng, “Fourier slice photography,” in ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 24 (2005), pp. 735–744.

D. G. Dansereau, O. Pizarro, and S. B. Williams, “Decoding, Calibration and Rectification for Lenselet-Based Plenoptic Cameras,” in 2013 IEEE Conference on Computer Vision and Pattern Recognition, (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Ray diagram: light propagation through the light field microscope. $f_{obj}$ denotes for objective focal length, $\Delta z$ represents the offset from the native object plane (NOP). A source point $\textbf {o} (o_{x},o_{y},o_{z} = z)$ in front of the microscope objective has a conjugate image by the tube lens at $z''$. Finally, the micro-lenses create micro-images at $z^{\prime\prime\prime}$, and the light reaches the camera sensor, producing a raw light field image. (b) Depth-dependent aliasing in LFM: The source points in the red group at depth $z_0$ in front of the microscope have completely overlapped images at the sensor plane. The points in the blue group, while being sampled at the same rate as the points in the red group, show partially non-overlapping images on the sensor as they are placed at depth $z_1$. The points in the green group, on the other side, are also placed at $z_1$; however they are sampled at a higher rate and their images are fully non-overlapping. (c) Reconstruction of the USAF 1951 target: Left: a light field image of the USAF 1951 resolution target, acquired with our experimental LFM. Center: reconstructed target using the method in [22]. Specific aliasing artifacts are present. Right: artifact-free reconstruction using our aliasing-aware deconvolution method.
Fig. 2.
Fig. 2. (a) Micro-lens magnification: The image of an object under a micro-lens scales according to the object depth. (b) Micro-lens blur: The geometric blur radius behind a micro-lens is again depth-dependent. (c) Anti-aliasing filter radius over depth: In the original LFM design [1,22] (see Fig. 3(a)), the NOP is sampled at the coarsest rate by the LFM which implies our resampling anti-aliasing filter has the largest radius at this object depth. As we move away from the zero plane, the LFM sampling rate increases and the anti-aliasing requirements become milder.
Fig. 3.
Fig. 3. LFM configurations and their light propagation paths. (a) The original design as described in [1,22]. The objective and tube lens are arranged as a 4-f (tele-centric) system. The native object plane (NOP) is then located at $f_{obj}$ in front of the microscope objective, and the native image plane (NIP) follows at $f_{tl}$ behind the tube lens; $f_{tl}$ represents the focal length of the tube lens. The MLA is then placed at the NIP. The camera is behind the MLA at an offset $d_{mla}^{sens} = f_{ml}$, where $f_{ml}$ represents the focal length of the micro-lens. (b) and (c) Defocused LFM (similar to the focused plenoptic camera [30] design). The MLA is now placed behind the NIP (b) or in front of it (c), such that the NOP is not focused on the MLA. In the latter scenario, the virtual image that would form at the NIP is depicted in dashed orange. Top: experimentally acquired LFPSF of a point source at the NOP, $\textbf {o}(o_x, o_y, o_z) = (0,0,f_{obj})$ for each setup.
Fig. 4.
Fig. 4. (a) Example defocused LFM configuration with $d_{tl}^{mla} < f_{tl}$. (b) The “focused” object depth for our LFM in (a). FOP represents the focused object plane which is imaged exactly at the MLA by the tube lens. FOP is then located at offset $\Delta _{NOP}$ from NOP. Then an object focused on the MLA by our microscope is placed at ${dof}_{mla}=f_{obj}+\Delta _{NOP}$ in front of the objective. (c) $\Delta z_{FOP}$ represents the depth offset from the FOP for a source point, $\textbf {o}(o_x, o_y, o_z = \Delta z_{FOP} + {dof}_{mla})$. (d) Optimal sensor plane coverage condition: The micro-lens blur radius for a source point $\textbf {o}(o_x, o_y, o_z = {dof}_{mla})$ needs to match the micro-lens radius $r_{ml}$, in order to ensure optimal sensor plane coverage, without overlapping micro-images. (e) Overlapping micro-images due to violation of criteria in Eq. (18).
Fig. 5.
Fig. 5. Lateral resolution limits: Lateral MTF for the USAF 1951 resolution target for the $[-80, 80]\mu m$ depth range together with example single plane reconstructed images. (a) Baseline deconvolution [22]: Aliasing artifatcs are present in the $\Delta z = [-25, 25]\mu m$ producing high contrast score in this range, even though the resolution is low. Artifacts are visible in the shown reconstructed images at $\Delta z = -15, -5, 0 \mu m$. (b) Aliasing-aware deconvolution: The aliasing artifacts are not visible anymore in the reconstructed images at $\Delta z = -15, -5, 0 \mu m$ and the MTF plot now matches the expected resolution profile. The resolution can be reliably measured also around the zero plane due to the smoothing step. Outside of the critical range, we observe very similar profiles for both methods.
Fig. 6.
Fig. 6. 3D reconstruction of a zebrafish eye over an axial range $\Delta z = [-50, 50]\mu m$. (a), (b): maximum intensity projections. (c), (d): lateral slices through the volume. The reconstruction with the baseline method in [22] shows strong specific aliasing artifacts (red arrows) at depth planes close to the zero plane, while they fade out as we move further away from this plane. In comparison, our aliasing-aware deconvolution scheme completely removes all the artifacts.
Fig. 7.
Fig. 7. 3D reconstruction of a cardiomyocyte organoid over an axial range $\Delta z = [0, 50]\mu m$. (a), (b): maximum intensity projections. (c), (d): lateral slices through the volume. The reconstruction with the baseline method in [22] shows strong specific aliasing artifacts (red arrows) at depth planes close to the zero plane, while as we move away from this plane, the artifacts are less visible. Our aliasing-aware deconvolution method shows superior artifact-free results.
Fig. 8.
Fig. 8. Defocused LFM: 3D reconstruction of a zebrafish eye over an axial range $\Delta z = [-40, 40]\mu m$. (a) LF images acquired when $d_{tl}^{mla} > f_{tl}$ and $d_{tl}^{mla} < f_{tl}$. (b) The reconstruction using the Richardson-Lucy scheme shows artifacts around the FOP plane of each setup. The defocused LFM is effectively an axially shifted (by $\Delta _{NOP}$; see Table 2) version of the original LFM; the zero plane behavior is now appearing at the FOP plane. (c) The artifact-free reconstruction using our aliasing-aware deconvolution method. (d) Lateral slices through the reconstructed volume. The two defocused LFM configurations demonstrate higher resolved features at complementary axial ranges; marked with smileys.
Fig. 9.
Fig. 9. Defocused LFM: 3D reconstruction of fluorescent beads in agarose over an axial range of $\Delta z = [-45, 45]\mu m$. (a)Acquired LF images. (b) The reconstructed volumes using our method for the original plenoptic design with $d_{tl}^{mla} = f_{tl}$ (top) and the defocused LFM with $d_{tl}^{mla} > f_{tl}$ (middle) and $d_{tl}^{mla} < f_{tl}$ (bottom). The red and blue highlights suggest how different features at different depths are better resolved in one configuration than in the others. No plenoptic design is generally better or worse.

Tables (2)

Tables Icon

Table 1. List of symbols

Tables Icon

Table 2. Data set acquisition parameters of our experimental LFM setup together with the corresponding reconstructed axial ranges. Light blue: original LFM design. Light red: defocused LFM.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

γ z = d m l a s e n s d t l m l a | z d t l m l a z | .
B z = r t l | d t l m l a z z | .
γ z = d m l a s e n s d t l m l a r t l B z .
b z = r m l | 1 z 1 d m l a s e n s | ,
w s e n s z = | γ z p m l b z | .
w s e n s z = min   ( | γ z p m l b z | ,   r m l ) .
w o b j z = w s e n s z s p m l .
Δ N O P = 1 M 2 Δ M L A ,
U m l a ( o , x m l a , y m l a ) = d e M o z 2 λ 2 exp ( i u 4 sin 2 ( α / 2 ) ) 0 α P ( θ ) exp ( i u sin 2 ( θ / 2 ) 2 sin 2 ( α / 2 ) ) J 0 ( sin ( θ ) sin ( α ) v ) sin ( θ )   d θ ,
v = 2 π λ ( x m l a o x ) 2 + ( y m l a o y ) 2 s i n ( α ) , u = 8 π λ Δ z F O P s i n 2 ( α / 2 ) ,
Δ z F O P = Δ z + Δ N O P
U m l a + ( o , x m l a , y m l a ) = U m l a ( o , x m l a , y m l a ) T ( x m l a , y m l a ) ,
T = r e p p m l , p m l ( t ( x l , y l ) ) ,
t ( x l , y l ) = P ( x l , y l ) e i k ( x l 2 + y l 2 ) 2 f m l .
U s e n s ( o , x s , y s ) = F 1 { F { U m l a + ( o , x s , y s ) } H r s ( f X , f Y ) } ,
H r s ( f X , f Y ) = e ( i k d m l a s e n s 1 ( λ f X ) 2 ( λ f Y ) 2 )
Δ x = λ L ( d m l a s e n s ) 2 + L 2 2 ,
r t l d t l m l a = r m l d m l a s e n s ,
r t l = r o b j | 1 d o b j t l z | ,
a j i = P ( photon counted at sensor element j |  emission occurred in voxel i )
m Poisson ( A v ) ,
a j i = | U s e n s ( o ( i ) , x s ( j ) ) | 2 ,
L ( z   |   v ) = j J i I v i a j i + z j i ln v i a j i ln z j i ! .
z j i ^ = m j v i q a j i l I v l q a j l
v i q + 1 = v i q j J a j l j J m j a j i l I v l q a j l ,
v q + 1 = v q A T 1 [ A T m A v q ] .
EMS: v q + 1 = h f w , z v q A T 1 [ A T m A v q ] ,
C = I m a x I m i n I m a x + I m i n

Metrics