Abstract

In this article, we describe active steering of radiation patterns by complex nanoantenna structures — called steerable nanoantennas (SNs) — formed by combining multiple Yagi-Uda nanoantennas and thin films of a phase change material (VO2). The radiation patterns of these nanoantennas can be actively steered by tunably changing the phase of the VO2 thin films from the semiconductor phase to the metallic phase. Moreover, the nanoantennas enable steering of the radiation patterns 'in the plane' of the nanoantennas. We demonstrate that the radiation pattern’s maximum achievable steering is 90° for a two-element steerable nanoantenna when the phase of the VO2 thin film is changed from the semiconductor phase to the metallic phase. Moreover, it was observed that the radiation pattern of the steerable nanoantennas being proposed in our paper can be designed to be much more directed than previously reported steerable nanoantennas. By employing a four element steerable nanoantenna, we also demonstrate a full 360° active steering of the radiation pattern. This steerable nanoantenna consists of four coplanar Yagi-Uda nanoantennas, with each Yagi-Uda nanoantenna being present inside a VO2 thin film but each individually addressable VO2 thin film being separated from the other VO2 films by an air gap. We demonstrate that the radiation pattern can be tunably steered in 12 different directions using this four element steerable nanoantenna depending on the states of the four VO2 thin films. The steerable nanoantennas can find applications in areas such as tunable on chip plasmonic interconnects, networks on chip, or for selective excitation of fluorophores on a sensor chip.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials

Priten B. Savaliya, Arun Thomas, Rishi Dua, and Anuj Dhawan
Opt. Express 25(20) 23755-23772 (2017)

Surface plasmons manipulated Smith-Purcell radiation on Yagi-Uda nanoantenna arrays

Yung-Chiang Lan, Jia-Hong Chen, and Chih-Min Chen
Opt. Express 27(22) 32567-32577 (2019)

Control of Au nanoantenna emission enhancement of magnetic dipolar emitters by means of VO2 phase change layers

Emilija Petronijevic, Marco Centini, Tiziana Cesca, Giovanni Mattei, Fabio Antonio Bovino, and Concita Sibilia
Opt. Express 27(17) 24260-24273 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
    [Crossref] [PubMed]
  2. M. Steiner, F. Schleifenbaum, C. Stupperich, A. Virgilio Failla, A. Hartschuh, and A. J. Meixner, “Microcavity-controlled single-molecule fluorescence,” ChemPhysChem 6(10), 2190–2196 (2005).
    [Crossref] [PubMed]
  3. S. Wedge and W. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12(16), 3673–3685 (2004).
    [Crossref] [PubMed]
  4. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858 (2008).
    [Crossref] [PubMed]
  5. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
    [Crossref]
  6. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 17402–17406 (2006).
    [Crossref] [PubMed]
  7. A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4(1), 1750–1757 (2013).
    [Crossref] [PubMed]
  8. P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
    [Crossref] [PubMed]
  9. T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2(1), 481–487 (2011).
    [Crossref] [PubMed]
  10. P. B. Savaliya, A. Thomas, R. Dua, and A. Dhawan, “Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials,” Opt. Express 25(20), 23755–23772 (2017).
    [Crossref] [PubMed]
  11. R. Alaee, M. Albooyeh, S. Tretyakov, and C. Rockstuhl, “Phase-change material-based nanoantennas with tunable radiation patterns,” Opt. Lett. 41(17), 4099–4102 (2016).
    [Crossref] [PubMed]
  12. G. Kaplan, K. Aydin, and J. Scheuer, “Dynamically controlled plasmonic nano-antenna phased array utilizing vanadium dioxide,” Opt. Mater. Express 5(11), 2513–2524 (2015).
    [Crossref]
  13. H. Li, S. Xu, Y. Gu, H. Wang, R. Ma, J. R. Lombardi, and W. Xu, “Active plasmonic nanoantennas for controlling fluorescence beams,” J. Phys. Chem. C 117(37), 19154–19159 (2013).
    [Crossref]
  14. M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4(1), 5708–5714 (2015).
    [Crossref] [PubMed]
  15. I. S. Maksymov, A. E. Miroshnichenko, and Y. S. Kivshar, “Actively tunable bistable optical Yagi-Uda nanoantenna,” Opt. Express 20(8), 8929–8938 (2012).
    [Crossref] [PubMed]
  16. D. H. Song, J. W. Kim, K. H. Kim, S. J. Rho, H. Lee, H. Kim, and T. H. Yoon, “Ultrafast switching of randomly-aligned nematic liquid crystals,” Opt. Express 20(11), 11659–11664 (2012).
    [Crossref] [PubMed]
  17. A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
    [Crossref] [PubMed]
  18. G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
    [Crossref]
  19. C. Ko and S. Ramanathan, “Observation of electric field-assisted phase transition in thin film vanadium oxide in a metal-oxide-semiconductor device geometry,” Appl. Phys. Lett. 93(25), 252101 (2008).
    [Crossref]
  20. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [Crossref] [PubMed]
  21. M. Agio and A. Alu, Optical Antennas (Cambridge university, 2013, pp. 81–99).
  22. A. Romanyuk, R. Steiner, L. Marot, and P. Oelhafen, “Temperature-induced metal–semiconductor transition in W-doped VO2 films studied by photoelectron spectroscopy,” Sol. Energy Mater. Sol. Cells 91(19), 1831–1835 (2007).
    [Crossref]
  23. R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, “Ultra-low thermal conductivity in W/Al2O3 nanolaminates,” Science 303(5660), 989–990 (2004).
    [Crossref] [PubMed]
  24. G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
    [Crossref] [PubMed]

2017 (1)

2016 (2)

R. Alaee, M. Albooyeh, S. Tretyakov, and C. Rockstuhl, “Phase-change material-based nanoantennas with tunable radiation patterns,” Opt. Lett. 41(17), 4099–4102 (2016).
[Crossref] [PubMed]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
[Crossref] [PubMed]

2015 (2)

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4(1), 5708–5714 (2015).
[Crossref] [PubMed]

G. Kaplan, K. Aydin, and J. Scheuer, “Dynamically controlled plasmonic nano-antenna phased array utilizing vanadium dioxide,” Opt. Mater. Express 5(11), 2513–2524 (2015).
[Crossref]

2013 (2)

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4(1), 1750–1757 (2013).
[Crossref] [PubMed]

H. Li, S. Xu, Y. Gu, H. Wang, R. Ma, J. R. Lombardi, and W. Xu, “Active plasmonic nanoantennas for controlling fluorescence beams,” J. Phys. Chem. C 117(37), 19154–19159 (2013).
[Crossref]

2012 (2)

2011 (1)

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2(1), 481–487 (2011).
[Crossref] [PubMed]

2010 (1)

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
[Crossref] [PubMed]

2008 (3)

C. Ko and S. Ramanathan, “Observation of electric field-assisted phase transition in thin film vanadium oxide in a metal-oxide-semiconductor device geometry,” Appl. Phys. Lett. 93(25), 252101 (2008).
[Crossref]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858 (2008).
[Crossref] [PubMed]

2007 (2)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

A. Romanyuk, R. Steiner, L. Marot, and P. Oelhafen, “Temperature-induced metal–semiconductor transition in W-doped VO2 films studied by photoelectron spectroscopy,” Sol. Energy Mater. Sol. Cells 91(19), 1831–1835 (2007).
[Crossref]

2006 (1)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 17402–17406 (2006).
[Crossref] [PubMed]

2005 (1)

M. Steiner, F. Schleifenbaum, C. Stupperich, A. Virgilio Failla, A. Hartschuh, and A. J. Meixner, “Microcavity-controlled single-molecule fluorescence,” ChemPhysChem 6(10), 2190–2196 (2005).
[Crossref] [PubMed]

2004 (3)

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[Crossref] [PubMed]

R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, “Ultra-low thermal conductivity in W/Al2O3 nanolaminates,” Science 303(5660), 989–990 (2004).
[Crossref] [PubMed]

S. Wedge and W. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12(16), 3673–3685 (2004).
[Crossref] [PubMed]

2001 (1)

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

2000 (1)

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Alaee, R.

Albella, P.

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
[Crossref] [PubMed]

Albooyeh, M.

Aydin, K.

Barnes, W.

Berry, C. W.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4(1), 5708–5714 (2015).
[Crossref] [PubMed]

Cahill, D. G.

R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, “Ultra-low thermal conductivity in W/Al2O3 nanolaminates,” Science 303(5660), 989–990 (2004).
[Crossref] [PubMed]

Cavalleri, A.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Chen, P.

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
[Crossref] [PubMed]

Chen, S.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2(1), 481–487 (2011).
[Crossref] [PubMed]

Costescu, R. M.

R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, “Ultra-low thermal conductivity in W/Al2O3 nanolaminates,” Science 303(5660), 989–990 (2004).
[Crossref] [PubMed]

Curto, A. G.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4(1), 1750–1757 (2013).
[Crossref] [PubMed]

Deneke, Ch.

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
[Crossref] [PubMed]

Denker, U.

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
[Crossref] [PubMed]

Dhawan, A.

Dilhaire, S.

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
[Crossref] [PubMed]

Dua, R.

Fabreguette, F. H.

R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, “Ultra-low thermal conductivity in W/Al2O3 nanolaminates,” Science 303(5660), 989–990 (2004).
[Crossref] [PubMed]

Floris Van Driel, A.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[Crossref] [PubMed]

Forget, P.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

George, S. M.

R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, “Ultra-low thermal conductivity in W/Al2O3 nanolaminates,” Science 303(5660), 989–990 (2004).
[Crossref] [PubMed]

Gu, Y.

H. Li, S. Xu, Y. Gu, H. Wang, R. Ma, J. R. Lombardi, and W. Xu, “Active plasmonic nanoantennas for controlling fluorescence beams,” J. Phys. Chem. C 117(37), 19154–19159 (2013).
[Crossref]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 17402–17406 (2006).
[Crossref] [PubMed]

Hartschuh, A.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. Virgilio Failla, A. Hartschuh, and A. J. Meixner, “Microcavity-controlled single-molecule fluorescence,” ChemPhysChem 6(10), 2190–2196 (2005).
[Crossref] [PubMed]

Hashemi, M. R.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4(1), 5708–5714 (2015).
[Crossref] [PubMed]

Irman, A.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[Crossref] [PubMed]

Jacquot, A.

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
[Crossref] [PubMed]

Jarrahi, M.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4(1), 5708–5714 (2015).
[Crossref] [PubMed]

Johansson, P.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2(1), 481–487 (2011).
[Crossref] [PubMed]

Käll, M.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2(1), 481–487 (2011).
[Crossref] [PubMed]

Kaplan, G.

Kieffer, J. C.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Kim, H.

Kim, J. W.

Kim, K. H.

Kivshar, Y. S.

Ko, C.

C. Ko and S. Ramanathan, “Observation of electric field-assisted phase transition in thin film vanadium oxide in a metal-oxide-semiconductor device geometry,” Appl. Phys. Lett. 93(25), 252101 (2008).
[Crossref]

Kreuzer, M. P.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4(1), 1750–1757 (2013).
[Crossref] [PubMed]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 17402–17406 (2006).
[Crossref] [PubMed]

Lee, H.

Li, H.

H. Li, S. Xu, Y. Gu, H. Wang, R. Ma, J. R. Lombardi, and W. Xu, “Active plasmonic nanoantennas for controlling fluorescence beams,” J. Phys. Chem. C 117(37), 19154–19159 (2013).
[Crossref]

Li, S.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4(1), 5708–5714 (2015).
[Crossref] [PubMed]

Lodahl, P.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[Crossref] [PubMed]

Lombardi, J. R.

H. Li, S. Xu, Y. Gu, H. Wang, R. Ma, J. R. Lombardi, and W. Xu, “Active plasmonic nanoantennas for controlling fluorescence beams,” J. Phys. Chem. C 117(37), 19154–19159 (2013).
[Crossref]

Ma, R.

H. Li, S. Xu, Y. Gu, H. Wang, R. Ma, J. R. Lombardi, and W. Xu, “Active plasmonic nanoantennas for controlling fluorescence beams,” J. Phys. Chem. C 117(37), 19154–19159 (2013).
[Crossref]

Maier, S. A.

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
[Crossref] [PubMed]

Maksymov, I. S.

Marot, L.

A. Romanyuk, R. Steiner, L. Marot, and P. Oelhafen, “Temperature-induced metal–semiconductor transition in W-doped VO2 films studied by photoelectron spectroscopy,” Sol. Energy Mater. Sol. Cells 91(19), 1831–1835 (2007).
[Crossref]

Meixner, A. J.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. Virgilio Failla, A. Hartschuh, and A. J. Meixner, “Microcavity-controlled single-molecule fluorescence,” ChemPhysChem 6(10), 2190–2196 (2005).
[Crossref] [PubMed]

Miljkovic, V. D.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2(1), 481–487 (2011).
[Crossref] [PubMed]

Mingo, N.

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
[Crossref] [PubMed]

Miroshnichenko, A. E.

Mönch, I.

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
[Crossref] [PubMed]

Nikolaev, I. S.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[Crossref] [PubMed]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Oelhafen, P.

A. Romanyuk, R. Steiner, L. Marot, and P. Oelhafen, “Temperature-induced metal–semiconductor transition in W-doped VO2 films studied by photoelectron spectroscopy,” Sol. Energy Mater. Sol. Cells 91(19), 1831–1835 (2007).
[Crossref]

Overgaag, K.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[Crossref] [PubMed]

Pergament, A.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Pernot, G.

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
[Crossref] [PubMed]

Pezzoli, F.

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
[Crossref] [PubMed]

Plissonnier, M.

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
[Crossref] [PubMed]

Quidant, R.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4(1), 1750–1757 (2013).
[Crossref] [PubMed]

Ráksi, F.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Ramanathan, S.

C. Ko and S. Ramanathan, “Observation of electric field-assisted phase transition in thin film vanadium oxide in a metal-oxide-semiconductor device geometry,” Appl. Phys. Lett. 93(25), 252101 (2008).
[Crossref]

Rampnoux, J. M.

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
[Crossref] [PubMed]

Rastelli, A.

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
[Crossref] [PubMed]

Rho, S. J.

Rockstuhl, C.

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 17402–17406 (2006).
[Crossref] [PubMed]

Romanyuk, A.

A. Romanyuk, R. Steiner, L. Marot, and P. Oelhafen, “Temperature-induced metal–semiconductor transition in W-doped VO2 films studied by photoelectron spectroscopy,” Sol. Energy Mater. Sol. Cells 91(19), 1831–1835 (2007).
[Crossref]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 17402–17406 (2006).
[Crossref] [PubMed]

Savaliya, P. B.

Savelli, G.

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
[Crossref] [PubMed]

Savic, I.

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
[Crossref] [PubMed]

Scheuer, J.

Schleifenbaum, F.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. Virgilio Failla, A. Hartschuh, and A. J. Meixner, “Microcavity-controlled single-molecule fluorescence,” ChemPhysChem 6(10), 2190–2196 (2005).
[Crossref] [PubMed]

Schmidt, O. G.

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
[Crossref] [PubMed]

Schumann, J.

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
[Crossref] [PubMed]

Sechrist, Z. A.

R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, “Ultra-low thermal conductivity in W/Al2O3 nanolaminates,” Science 303(5660), 989–990 (2004).
[Crossref] [PubMed]

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Shegai, T.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2(1), 481–487 (2011).
[Crossref] [PubMed]

Shibanuma, T.

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
[Crossref] [PubMed]

Siders, C. W.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Song, D. H.

Squier, J. A.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858 (2008).
[Crossref] [PubMed]

Stefanovich, D.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Stefanovich, G.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Steiner, M.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. Virgilio Failla, A. Hartschuh, and A. J. Meixner, “Microcavity-controlled single-molecule fluorescence,” ChemPhysChem 6(10), 2190–2196 (2005).
[Crossref] [PubMed]

Steiner, R.

A. Romanyuk, R. Steiner, L. Marot, and P. Oelhafen, “Temperature-induced metal–semiconductor transition in W-doped VO2 films studied by photoelectron spectroscopy,” Sol. Energy Mater. Sol. Cells 91(19), 1831–1835 (2007).
[Crossref]

Stoffel, M.

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
[Crossref] [PubMed]

Stupperich, C.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. Virgilio Failla, A. Hartschuh, and A. J. Meixner, “Microcavity-controlled single-molecule fluorescence,” ChemPhysChem 6(10), 2190–2196 (2005).
[Crossref] [PubMed]

Taminiau, T. H.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4(1), 1750–1757 (2013).
[Crossref] [PubMed]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858 (2008).
[Crossref] [PubMed]

Thomas, A.

Tóth, C.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Tretyakov, S.

Unlu, M.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4(1), 5708–5714 (2015).
[Crossref] [PubMed]

van Hulst, N. F.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4(1), 1750–1757 (2013).
[Crossref] [PubMed]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858 (2008).
[Crossref] [PubMed]

Vanmaekelbergh, D.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[Crossref] [PubMed]

Virgilio Failla, A.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. Virgilio Failla, A. Hartschuh, and A. J. Meixner, “Microcavity-controlled single-molecule fluorescence,” ChemPhysChem 6(10), 2190–2196 (2005).
[Crossref] [PubMed]

Volpe, G.

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4(1), 1750–1757 (2013).
[Crossref] [PubMed]

Vos, W. L.

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[Crossref] [PubMed]

Wang, H.

H. Li, S. Xu, Y. Gu, H. Wang, R. Ma, J. R. Lombardi, and W. Xu, “Active plasmonic nanoantennas for controlling fluorescence beams,” J. Phys. Chem. C 117(37), 19154–19159 (2013).
[Crossref]

Wang, S.

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
[Crossref] [PubMed]

Wedge, S.

Xu, S.

H. Li, S. Xu, Y. Gu, H. Wang, R. Ma, J. R. Lombardi, and W. Xu, “Active plasmonic nanoantennas for controlling fluorescence beams,” J. Phys. Chem. C 117(37), 19154–19159 (2013).
[Crossref]

Xu, W.

H. Li, S. Xu, Y. Gu, H. Wang, R. Ma, J. R. Lombardi, and W. Xu, “Active plasmonic nanoantennas for controlling fluorescence beams,” J. Phys. Chem. C 117(37), 19154–19159 (2013).
[Crossref]

Yang, S.-H.

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4(1), 5708–5714 (2015).
[Crossref] [PubMed]

Yoon, T. H.

Zengin, G.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2(1), 481–487 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

C. Ko and S. Ramanathan, “Observation of electric field-assisted phase transition in thin film vanadium oxide in a metal-oxide-semiconductor device geometry,” Appl. Phys. Lett. 93(25), 252101 (2008).
[Crossref]

ChemPhysChem (1)

M. Steiner, F. Schleifenbaum, C. Stupperich, A. Virgilio Failla, A. Hartschuh, and A. J. Meixner, “Microcavity-controlled single-molecule fluorescence,” ChemPhysChem 6(10), 2190–2196 (2005).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

H. Li, S. Xu, Y. Gu, H. Wang, R. Ma, J. R. Lombardi, and W. Xu, “Active plasmonic nanoantennas for controlling fluorescence beams,” J. Phys. Chem. C 117(37), 19154–19159 (2013).
[Crossref]

J. Phys. Condens. Matter (1)

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[Crossref]

Nat. Commun. (2)

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2(1), 481–487 (2011).
[Crossref] [PubMed]

A. G. Curto, T. H. Taminiau, G. Volpe, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Multipolar radiation of quantum emitters with nanowire optical antennas,” Nat. Commun. 4(1), 1750–1757 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, I. Mönch, Ch. Deneke, O. G. Schmidt, J. M. Rampnoux, S. Wang, M. Plissonnier, A. Rastelli, S. Dilhaire, and N. Mingo, “Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers,” Nat. Mater. 9(6), 491–495 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Nature (1)

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430(7000), 654–657 (2004).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. Lett. (3)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 17402–17406 (2006).
[Crossref] [PubMed]

Sci. Rep. (2)

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
[Crossref] [PubMed]

M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S.-H. Yang, and M. Jarrahi, “Switchable scattering meta-surfaces for broadband terahertz modulation,” Sci. Rep. 4(1), 5708–5714 (2015).
[Crossref] [PubMed]

Science (1)

R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, “Ultra-low thermal conductivity in W/Al2O3 nanolaminates,” Science 303(5660), 989–990 (2004).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

A. Romanyuk, R. Steiner, L. Marot, and P. Oelhafen, “Temperature-induced metal–semiconductor transition in W-doped VO2 films studied by photoelectron spectroscopy,” Sol. Energy Mater. Sol. Cells 91(19), 1831–1835 (2007).
[Crossref]

Other (1)

M. Agio and A. Alu, Optical Antennas (Cambridge university, 2013, pp. 81–99).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematics showing different steerable nanoantennas (SNs): (a) SN2 consisting of two co-planar Yagi-Uda nanoantennas, with one of the Yagi-Uda nanoantennas being present inside a VO2 film and the other being present in air, (e) SN3 consisting of two co-planar Yagi-Uda nanoantennas, with one of the Yagi-Uda nanoantennas being present inside a VO2 film and the other being present in air and one of the nanoantennas being displaced in the x-direction by a certain distance ‘L’, and (i) SN1 consisting of two co-planar Yagi-Uda nanoantennas surrounded by a VO2 film. Comparison of steering of the far-field radiation patterns for the different steerable nanoantennas: (b) SN2, (f) SN3, and (j) SN1. Note that the intensity values shown in the far-field radiation patterns are normalized through dividing by 1 × 10−12. Far-field radiation patterns as a function of both θ and Φ: for (c) the semiconductor state and (d) the metallic state of the SN2 nanoantenna, for (g) the semiconductor state and (h) the metallic state of the SN3 nanoantenna, and for (k) the semiconductor state and (l) the metallic state of the SN1 nanoantenna.
Fig. 2
Fig. 2 (a) Variation of (a) the real part (n) and (c) the imaginary part (k) of the refractive indices of VO2 with wavelength, for temperatures below 68 °C i.e. for the semiconductor state of VO2 [10]. (b) Variation of (a) the real part (n) and (c) the imaginary part (k) of the refractive indices of VO2 with wavelength, for temperatures above 68 °C i.e. for the metallic state of VO2 [10].
Fig. 3
Fig. 3 (a) Schematic showing a Yagi-Uda nanoantenna embedded in a thin film of a phase change material (VO2). Here 'D' is the length of director element, 'R' is the length of reflector element 'd' is distance of the director from the feed element, and 'r' is distance of the reflector from the feed element. Comparison of far-field radiation patterns (calculated in the plane of θ = 89°) for a quantum source placed inside: (b) a cavity of a VO2 thin film, (c) a gap of gold nanorod antenna and (d) a gap of the feed element of a Yagi-Uda antenna for two states of the VO2 thin film — i.e. the semiconductor state and the metallic state. Note that the intensity values shown in the far-field radiation patterns are normalized through dividing by 1 × 10−12. The variation in the forward ratio (FR) of a Yagi-Uda nanoantenna surrounded by a VO2 thin film, as a function of: (e) 'r' for different values of 'd' when the values of 'D' and 'R' were taken to be 60 nm and 200 nm, respectively, and (f) 'D' for different values of 'R' when the values of 'd' and 'r' were taken to be 60 nm and 150 nm, respectively. Here FR is defined as the ratio of the maximum value of the field in the forward direction to the maximum value of the field in the backward direction. (g)-(j) The effect of varying the length of the director element 'D' on the far-field radiation patterns of Yagi-Uda antennas embedded in a VO2 thin film, for both the states of the VO2 thin film.
Fig. 4
Fig. 4 (a) Schematic of a SN1 nanoantenna consisting of two co-planar Yagi-Uda nanoantennas surrounded by a VO2 thin film. (b)-(m) Effect of phase difference between the dipole sources of the two Yagi-Uda nanoantennas on the far-field radiation pattern of the SN1 nanoantenna, the phase difference varying from 0° to 330°. Note that the intensity values shown in the far-field radiation patterns are normalized through dividing by 1 × 10−12.
Fig. 5
Fig. 5 (a) Schematic of a steerable nanoantenna 'SN2' consisting of two co-planar Yagi-Uda nanoantennas, with one of the Yagi-Uda nanoantennas being present inside a VO2 film and the other being present in air. (b)-(m) Effect of phase difference between the dipole sources of the two Yagi-Uda nanoantennas on the far-field radiation pattern of the SN2 nanoantenna, the phase difference varying from 0° to 330°. Note that the intensity values shown in the far-field radiation patterns are normalized through dividing by 1 × 10−12.
Fig. 6
Fig. 6 (a) Schematic of a steerable nanoantenna 'SN2' consisting of two co-planar Yagi-Uda nanoantennas, with one of the Yagi-Uda nanoantennas being present inside a VO2 film and the other being present in air. (b) Far-field radiation patterns of the SN2 nanoantenna for both the states of the VO2 thin film. Near-field radiation patterns of the SN2 nanoantenna for (c) the semiconductor state and (d) the metallic state of the SN2 nanoantenna. The phase difference between the dipole sources of the two Yagi-Uda nanoantennas was taken to be 30°. Note that the intensity values shown in the far-field radiation patterns are normalized through dividing by 1 × 10−12.
Fig. 7
Fig. 7 A steerable nanoantenna (SN3) consisting of two Yagi-Uda nanoantennas, with one of the nanoantennas being present inside a VO2 film and the other being present in air: (a) with a phase difference between the sources of the two nanoantennas and (b) with one of the nanoantennas being offset in the x-direction by a certain distance ‘L’. (c) Correlation to relate the phase difference between the sources of the two Yagi-Uda nanoantennas and the corresponding spatial shift of a nanoantenna. Similarity in the radiation pattern of SN3 having no spatial shift but having a phase difference between the sources of the two Yagi-Uda nanoantennas and the pattern of two Yagi-Uda nanoantennas having a spatial offset and not having a phase difference between their sources, for offset lengths (L) of: (d) 0 nm, (e) −90 nm, (f) 90 nm, (g) −150 nm, (h) 190 nm, and (i) 300 nm. Note that the intensity values shown in the far-field radiation patterns are normalized through dividing by 1 × 10−12.
Fig. 8
Fig. 8 Schematic of a steerable nanoantenna 'SN4' consisting of two co-planar Yagi-Uda nanoantennas, with each Yagi-Uda nanoantenna being present inside a VO2 thin film and each VO2 thin film being separated from the other VO2 thin film by an air-gap and (Top) Far-field radiation patterns of the SN4 nanoantenna when film 1 and film 2 are in the metallic and the semiconductor states, respectively (in blue color) and when film 1 and film 2 are in the semiconductor and the metallic states, respectively (in red color). Note that the intensity values shown in the far-field radiation patterns are normalized through dividing by 1 × 10−12.
Fig. 9
Fig. 9 (a) Schematic of a steerable nanoantenna 'SN5′ consisting of four co-planar Yagi-Uda nanoantennas, with each Yagi-Uda nanoantenna being present inside a VO2 thin film and each VO2 thin film being separated from the other VO2 thin films by an air-gap. (b)-(j) Far-field radiation patterns of the SN5 nanoantenna for different combinations of the states of the four films, each film being in either the metallic (M) state or the semiconducting (S) state. Note that the intensity values shown in the far-field radiation patterns are normalized through dividing by 1 × 10−12.
Fig. 10
Fig. 10 Schematic showing the different processing steps involved in the fabrication of the SN2 steerable nanoantennas.
Fig. 11
Fig. 11 Schematic showing the different processing steps involved in the fabrication of the SN5 steerable nanoantennas.

Metrics