Abstract

Passive radiative cooling, which pumps heat to outer space via thermal radiation, has been a promising energy free technology to maintain the earth surface temperature. Nighttime radiative cooling technology is quite mature, while daytime radiative cooling still poses many challenges due to the requirement of minimization of incident solar absorption and maximization of the mid-infrared emissivity in the atmospheric transparency windows. However, the mid-infrared emissivity efficiency of natural materials is usually poor, providing a low cooling efficiency and the realization of a high performance daytime radiative cooler is still quite challenge. In this work, we design and numerically investigate a three dimensional (3D) all-dielectric pyramidal multilayer metamaterial (PMM), which not only avoids the problem of high absorptivity loss of metal materials to solar, but also provide extremely high infrared absorptivity due to the attenuation effect of moth-eye structure and the electromagnetic resonant absorption in the metamaterial, achieving the purpose of both extremely low solar spectrum absorption and strong infrared emissivity within the atmospheric windows under the direct sunlight. Eventually, our designed cooler presents the potential to achieve a net radiative cooling power exceeding 156 W/m2 at ambient temperature of 300 K under direct solar irradiation, leading to a temperature reduction of 42.4°C. At nighttime, the net cooling power is more than 199 W/m2 at ambient temperature, resulting in a temperature reduction of 58.5°C. Even considering the non-radiative heat exchange conditions, this metamaterial cooler can still cool down 9.6°C at the daytime and 12.3°C at the nighttime respectively. Therefore, this work further promotes the development of all-dielectric metamaterial based passive radiative coolers and is of great significance for energy conservation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Example of metal-multi-dielectric-metal cooling metamaterial use in engineering thermal radiation

Dong Wang, Yeqing Zhu, Cheng Fang, Ping He, and Yonghong Ye
Appl. Opt. 58(26) 7035-7041 (2019)

Effective, angle-independent radiative cooler based on one-dimensional photonic crystal

Huaxin Yuan, Chenying Yang, Xiaowen Zheng, Wen Mu, Zhen Wang, Wenjia Yuan, Yueguang Zhang, Chaonan Chen, Xu Liu, and Weidong Shen
Opt. Express 26(21) 27885-27893 (2018)

Radiative cooling for low-bandgap photovoltaics under concentrated sunlight

Zhiguang Zhou, Ze Wang, and Peter Bermel
Opt. Express 27(8) A404-A418 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Santamouris and J. Feng, “Recent progress in daytime radiative cooling: Is it the air conditioner of the future?” Buildings 8(12), 168 (2018).
    [Crossref]
  2. D. Pearlmutter and P. Berliner, “Experiments with a ‘psychrometric’ roof pond system for passive cooling in hot-arid regions,” Energy and Buildings 144, 295–302 (2017).
    [Crossref]
  3. T. S. Safi and J. N. Munday, “Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments,” Opt. Express 23(19), A1120–A1128 (2015).
    [Crossref]
  4. P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
    [Crossref]
  5. C. Zhen, L. Zhu, A. Raman, and A. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle,” Nat. Commun. 7(1), 13729 (2016).
    [Crossref]
  6. S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
    [Crossref]
  7. F. Trombe, “Perspectives sur l’utilisationdes rayonnements solaires et terrestres dans certaines régions du monde,” Revue Générale de Thermique 6, 1285–1314 (1967).
  8. A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
    [Crossref]
  9. B. A. Kimball, “Cooling performance and efficiency of night sky radiators,” Sol. Energy 34(1), 19–33 (1985).
    [Crossref]
  10. C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
    [Crossref]
  11. T. S. Eriksson, S. J. Jiang, and C. G. Granqvist, “Surface coatings for radiative cooling applications: silicon dioxide and silicon nitride made by reactive rf-sputtering,” Sol. Energy Mater. 12(5), 319–325 (1985).
    [Crossref]
  12. E. M. Lushiku, T. S. Eriksson, A. Hjortsberg, and C. G. Granqvist, “Radiative cooling to low temperatures with selectively infrared-emitting gases,” Renewable Energy 1(2), 115–121 (1984).
    [Crossref]
  13. D. M. Diatezua, P. A. Thiry, A. Dereux, and R. Caudano, “Silicon oxynitride multilayers as spectrally selective material for passive radiative cooling applications,” Sol. Energy Mater. Sol. Cells 40(3), 253–259 (1996).
    [Crossref]
  14. M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
    [Crossref]
  15. C. Zou, G. Ren, M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
    [Crossref]
  16. V. Silvestrini, M. Peraldo, and E. Monza, “Covering Element screening off the solar radiation for the applications in the refrigeration by radiation,” US Patent 4, 323–619 (1982).
  17. T. M. J. Nilsson, G. A. Niklasson, and C. G. Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28(2), 175–193 (1992).
    [Crossref]
  18. T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
    [Crossref]
  19. N. A. Nilsson, T. S. Eriksson, and C. G. Granqvist, “Infrared-transparent convection shields for radiative cooling: Initial results on corrugated polyethylene foils,” Sol. Energy Mater. 12(5), 327–333 (1985).
    [Crossref]
  20. E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
    [Crossref]
  21. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref]
  22. M. A. Kecebas, M. P. Menguc, A. Kosar, and K. Sendur, “Passive radiative cooling design with broadband optical thin-film filters,” J. Quant. Spectrosc. Radiat. Transfer 198, 179–186 (2017).
    [Crossref]
  23. J. Y. Wu, Y. Z. Gong, P. R. Huang, G. J. Ma, and Q. F. Dai, “Diurnal cooling for continuous thermal sources under direct subtropical sunlight produced by quasi-Cantor structure,” Chin. Phys. B 26(10), 104201 (2017).
    [Crossref]
  24. H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).
  25. Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
    [Crossref]
  26. J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
    [Crossref]
  27. P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by textile,” Science 353(6303), 1019–1023 (2016).
    [Crossref]
  28. J. Mandal, Y. Fu, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
    [Crossref]
  29. G. C. R. Devarapu and S. Foteinopoulou, “Broadband Near-Unidirectional Absorptivity Enabled by Phonon-Polariton Resonances in SiC Micropyramid Arrays,” Phys. Rev. Appl. 7(3), 034001 (2017).
    [Crossref]
  30. S. J. Wilson and M. C. Hutley, “The optical properties of moth-eye, antireflection surfaces,” Opt. Acta 29(7), 993–1009 (1982).
    [Crossref]
  31. P. Kunze and K. Hausen, “Inhomogeneous refractive index in the crystalline cone of a moth eye,” Nature 231(5302), 392–393 (1971).
    [Crossref]
  32. S. L. Diedenhofen, G. Vecchi, R. E. Alga, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
    [Crossref]
  33. W. L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
    [Crossref]
  34. D. L. Wood, K. Nassau, T. Y. Kometani, and D. L. Nash, “Optical properties of cubic hafnia stabilized with yttria,” Appl. Opt. 29(4), 604–607 (1990).
    [Crossref]
  35. E. Palik, “Handbook of Optical Constants of Solids,” Academic Press (1998).
  36. A. Hervé, J. Drevillon, Y. Ezzahri, and K. Joulain, “Radiative cooling by tailoring surfaces with microstructures: Association of a grating and a multi-layer structure,” J. Quant. Spectrosc. Radiat. Transfer 221, 155–163 (2018).
    [Crossref]
  37. M. M. Muntasir and M. Gu, “Radiative Cooling: Principle Progress, and Potentials,” Adv. Sci. 3(7), 1500360 (2016).
    [Crossref]
  38. G. Bekefi, J. L. Hirshfield, and S. C. Brown, “Kirchhoff ‘s radiation law for plasmas with non-Maxwellian distributions,” Phys. Fluids 4(2), 173–176 (1961).
    [Crossref]
  39. G. C. R. Devarapu and S. Foteinopoulou, “Broadband mid-IR super absorption with aperiodic polaritonic photonic crystals,” J. Eur. Opt. Soc. Rapid Publ. 9, 14012 (2014).
    [Crossref]
  40. IR transmission spectra, “Gemini Observatory,” http://www.gemini.edu/?q=node/10789 .
  41. Air mass 1.5 spectra, “American Society for testing and Materials (ASTM),” http://www.nrel.gov/grid/solar-resource/spectral.html .
  42. Z. Huang and X. Ruan, “Nanoparticle embedded double-layer coating for daytime radiative cooling,” Int. J. Heat Mass Transfer 104, 890–896 (2017).
    [Crossref]
  43. F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, and S. He, “Ultra-broadband Microwave Metamaterial Absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
    [Crossref]
  44. D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Materials & Design 139, 104–111 (2018).
    [Crossref]

2018 (4)

M. Santamouris and J. Feng, “Recent progress in daytime radiative cooling: Is it the air conditioner of the future?” Buildings 8(12), 168 (2018).
[Crossref]

J. Mandal, Y. Fu, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

A. Hervé, J. Drevillon, Y. Ezzahri, and K. Joulain, “Radiative cooling by tailoring surfaces with microstructures: Association of a grating and a multi-layer structure,” J. Quant. Spectrosc. Radiat. Transfer 221, 155–163 (2018).
[Crossref]

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Materials & Design 139, 104–111 (2018).
[Crossref]

2017 (9)

Z. Huang and X. Ruan, “Nanoparticle embedded double-layer coating for daytime radiative cooling,” Int. J. Heat Mass Transfer 104, 890–896 (2017).
[Crossref]

G. C. R. Devarapu and S. Foteinopoulou, “Broadband Near-Unidirectional Absorptivity Enabled by Phonon-Polariton Resonances in SiC Micropyramid Arrays,” Phys. Rev. Appl. 7(3), 034001 (2017).
[Crossref]

M. A. Kecebas, M. P. Menguc, A. Kosar, and K. Sendur, “Passive radiative cooling design with broadband optical thin-film filters,” J. Quant. Spectrosc. Radiat. Transfer 198, 179–186 (2017).
[Crossref]

J. Y. Wu, Y. Z. Gong, P. R. Huang, G. J. Ma, and Q. F. Dai, “Diurnal cooling for continuous thermal sources under direct subtropical sunlight produced by quasi-Cantor structure,” Chin. Phys. B 26(10), 104201 (2017).
[Crossref]

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

D. Pearlmutter and P. Berliner, “Experiments with a ‘psychrometric’ roof pond system for passive cooling in hot-arid regions,” Energy and Buildings 144, 295–302 (2017).
[Crossref]

C. Zou, G. Ren, M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

2016 (4)

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

C. Zhen, L. Zhu, A. Raman, and A. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

M. M. Muntasir and M. Gu, “Radiative Cooling: Principle Progress, and Potentials,” Adv. Sci. 3(7), 1500360 (2016).
[Crossref]

2015 (2)

T. S. Safi and J. N. Munday, “Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments,” Opt. Express 23(19), A1120–A1128 (2015).
[Crossref]

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

2014 (2)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

G. C. R. Devarapu and S. Foteinopoulou, “Broadband mid-IR super absorption with aperiodic polaritonic photonic crystals,” J. Eur. Opt. Soc. Rapid Publ. 9, 14012 (2014).
[Crossref]

2013 (1)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

2012 (1)

F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, and S. He, “Ultra-broadband Microwave Metamaterial Absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

2010 (1)

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref]

2009 (1)

S. L. Diedenhofen, G. Vecchi, R. E. Alga, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

2008 (1)

W. L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[Crossref]

1996 (1)

D. M. Diatezua, P. A. Thiry, A. Dereux, and R. Caudano, “Silicon oxynitride multilayers as spectrally selective material for passive radiative cooling applications,” Sol. Energy Mater. Sol. Cells 40(3), 253–259 (1996).
[Crossref]

1995 (1)

T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
[Crossref]

1992 (1)

T. M. J. Nilsson, G. A. Niklasson, and C. G. Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28(2), 175–193 (1992).
[Crossref]

1990 (1)

1985 (3)

N. A. Nilsson, T. S. Eriksson, and C. G. Granqvist, “Infrared-transparent convection shields for radiative cooling: Initial results on corrugated polyethylene foils,” Sol. Energy Mater. 12(5), 327–333 (1985).
[Crossref]

T. S. Eriksson, S. J. Jiang, and C. G. Granqvist, “Surface coatings for radiative cooling applications: silicon dioxide and silicon nitride made by reactive rf-sputtering,” Sol. Energy Mater. 12(5), 319–325 (1985).
[Crossref]

B. A. Kimball, “Cooling performance and efficiency of night sky radiators,” Sol. Energy 34(1), 19–33 (1985).
[Crossref]

1984 (1)

E. M. Lushiku, T. S. Eriksson, A. Hjortsberg, and C. G. Granqvist, “Radiative cooling to low temperatures with selectively infrared-emitting gases,” Renewable Energy 1(2), 115–121 (1984).
[Crossref]

1982 (1)

S. J. Wilson and M. C. Hutley, “The optical properties of moth-eye, antireflection surfaces,” Opt. Acta 29(7), 993–1009 (1982).
[Crossref]

1981 (1)

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

1975 (1)

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

1971 (1)

P. Kunze and K. Hausen, “Inhomogeneous refractive index in the crystalline cone of a moth eye,” Nature 231(5302), 392–393 (1971).
[Crossref]

1967 (1)

F. Trombe, “Perspectives sur l’utilisationdes rayonnements solaires et terrestres dans certaines régions du monde,” Revue Générale de Thermique 6, 1285–1314 (1967).

1961 (1)

G. Bekefi, J. L. Hirshfield, and S. C. Brown, “Kirchhoff ‘s radiation law for plasmas with non-Maxwellian distributions,” Phys. Fluids 4(2), 173–176 (1961).
[Crossref]

Ahmed, T.

C. Zou, G. Ren, M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Alga, R. E.

S. L. Diedenhofen, G. Vecchi, R. E. Alga, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Bakkers, E. P. A. M.

S. L. Diedenhofen, G. Vecchi, R. E. Alga, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Bao, H.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).

Bekefi, G.

G. Bekefi, J. L. Hirshfield, and S. C. Brown, “Kirchhoff ‘s radiation law for plasmas with non-Maxwellian distributions,” Phys. Fluids 4(2), 173–176 (1961).
[Crossref]

Berliner, P.

D. Pearlmutter and P. Berliner, “Experiments with a ‘psychrometric’ roof pond system for passive cooling in hot-arid regions,” Energy and Buildings 144, 295–302 (2017).
[Crossref]

Bhaskaran, M.

C. Zou, G. Ren, M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Brown, S. C.

G. Bekefi, J. L. Hirshfield, and S. C. Brown, “Kirchhoff ‘s radiation law for plasmas with non-Maxwellian distributions,” Phys. Fluids 4(2), 173–176 (1961).
[Crossref]

Catalanotti, S.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Catrysse, P. B.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Caudano, R.

D. M. Diatezua, P. A. Thiry, A. Dereux, and R. Caudano, “Silicon oxynitride multilayers as spectrally selective material for passive radiative cooling applications,” Sol. Energy Mater. Sol. Cells 40(3), 253–259 (1996).
[Crossref]

Chen, L.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Materials & Design 139, 104–111 (2018).
[Crossref]

Chen, Z.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Cui, Y.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, and S. He, “Ultra-broadband Microwave Metamaterial Absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Cuomo, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Dai, Q. F.

J. Y. Wu, Y. Z. Gong, P. R. Huang, G. J. Ma, and Q. F. Dai, “Diurnal cooling for continuous thermal sources under direct subtropical sunlight produced by quasi-Cantor structure,” Chin. Phys. B 26(10), 104201 (2017).
[Crossref]

David, S. N.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Dereux, A.

D. M. Diatezua, P. A. Thiry, A. Dereux, and R. Caudano, “Silicon oxynitride multilayers as spectrally selective material for passive radiative cooling applications,” Sol. Energy Mater. Sol. Cells 40(3), 253–259 (1996).
[Crossref]

Devarapu, G. C. R.

G. C. R. Devarapu and S. Foteinopoulou, “Broadband Near-Unidirectional Absorptivity Enabled by Phonon-Polariton Resonances in SiC Micropyramid Arrays,” Phys. Rev. Appl. 7(3), 034001 (2017).
[Crossref]

G. C. R. Devarapu and S. Foteinopoulou, “Broadband mid-IR super absorption with aperiodic polaritonic photonic crystals,” J. Eur. Opt. Soc. Rapid Publ. 9, 14012 (2014).
[Crossref]

Diatezua, D. M.

D. M. Diatezua, P. A. Thiry, A. Dereux, and R. Caudano, “Silicon oxynitride multilayers as spectrally selective material for passive radiative cooling applications,” Sol. Energy Mater. Sol. Cells 40(3), 253–259 (1996).
[Crossref]

Diedenhofen, S. L.

S. L. Diedenhofen, G. Vecchi, R. E. Alga, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Ding, F.

F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, and S. He, “Ultra-broadband Microwave Metamaterial Absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Drevillon, J.

A. Hervé, J. Drevillon, Y. Ezzahri, and K. Joulain, “Radiative cooling by tailoring surfaces with microstructures: Association of a grating and a multi-layer structure,” J. Quant. Spectrosc. Radiat. Transfer 221, 155–163 (2018).
[Crossref]

Eriksson, T. S.

T. S. Eriksson, S. J. Jiang, and C. G. Granqvist, “Surface coatings for radiative cooling applications: silicon dioxide and silicon nitride made by reactive rf-sputtering,” Sol. Energy Mater. 12(5), 319–325 (1985).
[Crossref]

N. A. Nilsson, T. S. Eriksson, and C. G. Granqvist, “Infrared-transparent convection shields for radiative cooling: Initial results on corrugated polyethylene foils,” Sol. Energy Mater. 12(5), 327–333 (1985).
[Crossref]

E. M. Lushiku, T. S. Eriksson, A. Hjortsberg, and C. G. Granqvist, “Radiative cooling to low temperatures with selectively infrared-emitting gases,” Renewable Energy 1(2), 115–121 (1984).
[Crossref]

Ezzahri, Y.

A. Hervé, J. Drevillon, Y. Ezzahri, and K. Joulain, “Radiative cooling by tailoring surfaces with microstructures: Association of a grating and a multi-layer structure,” J. Quant. Spectrosc. Radiat. Transfer 221, 155–163 (2018).
[Crossref]

Fan, A.

C. Zhen, L. Zhu, A. Raman, and A. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

Fan, S.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Fang, X.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).

Feng, J.

M. Santamouris and J. Feng, “Recent progress in daytime radiative cooling: Is it the air conditioner of the future?” Buildings 8(12), 168 (2018).
[Crossref]

Foteinopoulou, S.

G. C. R. Devarapu and S. Foteinopoulou, “Broadband Near-Unidirectional Absorptivity Enabled by Phonon-Polariton Resonances in SiC Micropyramid Arrays,” Phys. Rev. Appl. 7(3), 034001 (2017).
[Crossref]

G. C. R. Devarapu and S. Foteinopoulou, “Broadband mid-IR super absorption with aperiodic polaritonic photonic crystals,” J. Eur. Opt. Soc. Rapid Publ. 9, 14012 (2014).
[Crossref]

Fu, Y.

J. Mandal, Y. Fu, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Fumeaux, C.

C. Zou, G. Ren, M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Ge, X.

F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, and S. He, “Ultra-broadband Microwave Metamaterial Absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Gentle, A. R.

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref]

Gong, Y. Z.

J. Y. Wu, Y. Z. Gong, P. R. Huang, G. J. Ma, and Q. F. Dai, “Diurnal cooling for continuous thermal sources under direct subtropical sunlight produced by quasi-Cantor structure,” Chin. Phys. B 26(10), 104201 (2017).
[Crossref]

Granqvist, C. G.

T. M. J. Nilsson, G. A. Niklasson, and C. G. Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28(2), 175–193 (1992).
[Crossref]

N. A. Nilsson, T. S. Eriksson, and C. G. Granqvist, “Infrared-transparent convection shields for radiative cooling: Initial results on corrugated polyethylene foils,” Sol. Energy Mater. 12(5), 327–333 (1985).
[Crossref]

T. S. Eriksson, S. J. Jiang, and C. G. Granqvist, “Surface coatings for radiative cooling applications: silicon dioxide and silicon nitride made by reactive rf-sputtering,” Sol. Energy Mater. 12(5), 319–325 (1985).
[Crossref]

E. M. Lushiku, T. S. Eriksson, A. Hjortsberg, and C. G. Granqvist, “Radiative cooling to low temperatures with selectively infrared-emitting gases,” Renewable Energy 1(2), 115–121 (1984).
[Crossref]

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Gu, M.

C. Zou, G. Ren, M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

M. M. Muntasir and M. Gu, “Radiative Cooling: Principle Progress, and Potentials,” Adv. Sci. 3(7), 1500360 (2016).
[Crossref]

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Hartsuiker, A.

S. L. Diedenhofen, G. Vecchi, R. E. Alga, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Hausen, K.

P. Kunze and K. Hausen, “Inhomogeneous refractive index in the crystalline cone of a moth eye,” Nature 231(5302), 392–393 (1971).
[Crossref]

He, S.

F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, and S. He, “Ultra-broadband Microwave Metamaterial Absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Hervé, A.

A. Hervé, J. Drevillon, Y. Ezzahri, and K. Joulain, “Radiative cooling by tailoring surfaces with microstructures: Association of a grating and a multi-layer structure,” J. Quant. Spectrosc. Radiat. Transfer 221, 155–163 (2018).
[Crossref]

Hirshfield, J. L.

G. Bekefi, J. L. Hirshfield, and S. C. Brown, “Kirchhoff ‘s radiation law for plasmas with non-Maxwellian distributions,” Phys. Fluids 4(2), 173–176 (1961).
[Crossref]

Hjortsberg, A.

E. M. Lushiku, T. S. Eriksson, A. Hjortsberg, and C. G. Granqvist, “Radiative cooling to low temperatures with selectively infrared-emitting gases,” Renewable Energy 1(2), 115–121 (1984).
[Crossref]

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Hossain, M.

C. Zou, G. Ren, M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Hossain, M. M.

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Hsu, P. C.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Huang, P. R.

J. Y. Wu, Y. Z. Gong, P. R. Huang, G. J. Ma, and Q. F. Dai, “Diurnal cooling for continuous thermal sources under direct subtropical sunlight produced by quasi-Cantor structure,” Chin. Phys. B 26(10), 104201 (2017).
[Crossref]

Huang, Z.

Z. Huang and X. Ruan, “Nanoparticle embedded double-layer coating for daytime radiative cooling,” Int. J. Heat Mass Transfer 104, 890–896 (2017).
[Crossref]

Hutley, M. C.

S. J. Wilson and M. C. Hutley, “The optical properties of moth-eye, antireflection surfaces,” Opt. Acta 29(7), 993–1009 (1982).
[Crossref]

Immink, G.

S. L. Diedenhofen, G. Vecchi, R. E. Alga, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Jia, B.

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Jia, M.

J. Mandal, Y. Fu, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Jiang, B.

W. L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[Crossref]

Jiang, P.

W. L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[Crossref]

Jiang, S. J.

T. S. Eriksson, S. J. Jiang, and C. G. Granqvist, “Surface coatings for radiative cooling applications: silicon dioxide and silicon nitride made by reactive rf-sputtering,” Sol. Energy Mater. 12(5), 319–325 (1985).
[Crossref]

Jin, Y.

F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, and S. He, “Ultra-broadband Microwave Metamaterial Absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Joulain, K.

A. Hervé, J. Drevillon, Y. Ezzahri, and K. Joulain, “Radiative cooling by tailoring surfaces with microstructures: Association of a grating and a multi-layer structure,” J. Quant. Spectrosc. Radiat. Transfer 221, 155–163 (2018).
[Crossref]

Jurado, Z.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Kecebas, M. A.

M. A. Kecebas, M. P. Menguc, A. Kosar, and K. Sendur, “Passive radiative cooling design with broadband optical thin-film filters,” J. Quant. Spectrosc. Radiat. Transfer 198, 179–186 (2017).
[Crossref]

Kimball, B. A.

B. A. Kimball, “Cooling performance and efficiency of night sky radiators,” Sol. Energy 34(1), 19–33 (1985).
[Crossref]

Kometani, T. Y.

Kosar, A.

M. A. Kecebas, M. P. Menguc, A. Kosar, and K. Sendur, “Passive radiative cooling design with broadband optical thin-film filters,” J. Quant. Spectrosc. Radiat. Transfer 198, 179–186 (2017).
[Crossref]

Kou, J.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Kunze, P.

P. Kunze and K. Hausen, “Inhomogeneous refractive index in the crystalline cone of a moth eye,” Nature 231(5302), 392–393 (1971).
[Crossref]

Li, R.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Materials & Design 139, 104–111 (2018).
[Crossref]

Liu, C.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Materials & Design 139, 104–111 (2018).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Liu, Y.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Materials & Design 139, 104–111 (2018).
[Crossref]

Lou, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Lushiku, E. M.

E. M. Lushiku, T. S. Eriksson, A. Hjortsberg, and C. G. Granqvist, “Radiative cooling to low temperatures with selectively infrared-emitting gases,” Renewable Energy 1(2), 115–121 (1984).
[Crossref]

Ma, G. J.

J. Y. Wu, Y. Z. Gong, P. R. Huang, G. J. Ma, and Q. F. Dai, “Diurnal cooling for continuous thermal sources under direct subtropical sunlight produced by quasi-Cantor structure,” Chin. Phys. B 26(10), 104201 (2017).
[Crossref]

Ma, R.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Materials & Design 139, 104–111 (2018).
[Crossref]

Ma, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Mandal, J.

J. Mandal, Y. Fu, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Menguc, M. P.

M. A. Kecebas, M. P. Menguc, A. Kosar, and K. Sendur, “Passive radiative cooling design with broadband optical thin-film filters,” J. Quant. Spectrosc. Radiat. Transfer 198, 179–186 (2017).
[Crossref]

Min, W. L.

W. L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[Crossref]

Minnich, A. J.

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Monza, E.

V. Silvestrini, M. Peraldo, and E. Monza, “Covering Element screening off the solar radiation for the applications in the refrigeration by radiation,” US Patent 4, 323–619 (1982).

Munday, J. N.

Muntasir, M. M.

M. M. Muntasir and M. Gu, “Radiative Cooling: Principle Progress, and Potentials,” Adv. Sci. 3(7), 1500360 (2016).
[Crossref]

Muskens, O. L.

S. L. Diedenhofen, G. Vecchi, R. E. Alga, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Nash, D. L.

Nassau, K.

Niklasson, G. A.

T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
[Crossref]

T. M. J. Nilsson, G. A. Niklasson, and C. G. Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28(2), 175–193 (1992).
[Crossref]

Nilsson, N. A.

N. A. Nilsson, T. S. Eriksson, and C. G. Granqvist, “Infrared-transparent convection shields for radiative cooling: Initial results on corrugated polyethylene foils,” Sol. Energy Mater. 12(5), 327–333 (1985).
[Crossref]

Nilsson, T. M. J.

T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
[Crossref]

T. M. J. Nilsson, G. A. Niklasson, and C. G. Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28(2), 175–193 (1992).
[Crossref]

Nirantar, S.

C. Zou, G. Ren, M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Overvig, A.

J. Mandal, Y. Fu, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Palik, E.

E. Palik, “Handbook of Optical Constants of Solids,” Academic Press (1998).

Pearlmutter, D.

D. Pearlmutter and P. Berliner, “Experiments with a ‘psychrometric’ roof pond system for passive cooling in hot-arid regions,” Energy and Buildings 144, 295–302 (2017).
[Crossref]

Peng, Y.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Peraldo, M.

V. Silvestrini, M. Peraldo, and E. Monza, “Covering Element screening off the solar radiation for the applications in the refrigeration by radiation,” US Patent 4, 323–619 (1982).

Piro, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Raman, A.

C. Zhen, L. Zhu, A. Raman, and A. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Ren, G.

C. Zou, G. Ren, M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

Rivas, J. G.

S. L. Diedenhofen, G. Vecchi, R. E. Alga, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Ruan, X.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).

Z. Huang and X. Ruan, “Nanoparticle embedded double-layer coating for daytime radiative cooling,” Int. J. Heat Mass Transfer 104, 890–896 (2017).
[Crossref]

Ruggi, D.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Safi, T. S.

Santamouris, M.

M. Santamouris and J. Feng, “Recent progress in daytime radiative cooling: Is it the air conditioner of the future?” Buildings 8(12), 168 (2018).
[Crossref]

Sendur, K.

M. A. Kecebas, M. P. Menguc, A. Kosar, and K. Sendur, “Passive radiative cooling design with broadband optical thin-film filters,” J. Quant. Spectrosc. Radiat. Transfer 198, 179–186 (2017).
[Crossref]

Shi, N.

J. Mandal, Y. Fu, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Silvestrini, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

V. Silvestrini, M. Peraldo, and E. Monza, “Covering Element screening off the solar radiation for the applications in the refrigeration by radiation,” US Patent 4, 323–619 (1982).

Smith, G. B.

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref]

Song, A. Y.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Sriram, S.

C. Zou, G. Ren, M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Sun, K.

J. Mandal, Y. Fu, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Tan, G.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Thiry, P. A.

D. M. Diatezua, P. A. Thiry, A. Dereux, and R. Caudano, “Silicon oxynitride multilayers as spectrally selective material for passive radiative cooling applications,” Sol. Energy Mater. Sol. Cells 40(3), 253–259 (1996).
[Crossref]

transmission spectra, IR

IR transmission spectra, “Gemini Observatory,” http://www.gemini.edu/?q=node/10789 .

Troise, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

Trombe, F.

F. Trombe, “Perspectives sur l’utilisationdes rayonnements solaires et terrestres dans certaines régions du monde,” Revue Générale de Thermique 6, 1285–1314 (1967).

Vecchi, G.

S. L. Diedenhofen, G. Vecchi, R. E. Alga, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Vos, W. L.

S. L. Diedenhofen, G. Vecchi, R. E. Alga, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

Wang, B.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).

Wilson, S. J.

S. J. Wilson and M. C. Hutley, “The optical properties of moth-eye, antireflection surfaces,” Opt. Acta 29(7), 993–1009 (1982).
[Crossref]

Withayachumnankul, W.

C. Zou, G. Ren, M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Wood, D. L.

Wu, D.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Materials & Design 139, 104–111 (2018).
[Crossref]

Wu, J. Y.

J. Y. Wu, Y. Z. Gong, P. R. Huang, G. J. Ma, and Q. F. Dai, “Diurnal cooling for continuous thermal sources under direct subtropical sunlight produced by quasi-Cantor structure,” Chin. Phys. B 26(10), 104201 (2017).
[Crossref]

Xiao, X.

J. Mandal, Y. Fu, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Xie, J.

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Xu, Z.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Materials & Design 139, 104–111 (2018).
[Crossref]

Yan, C.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).

Yang, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Yang, Y.

J. Mandal, Y. Fu, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Ye, H.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Materials & Design 139, 104–111 (2018).
[Crossref]

Yin, X.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Yu, L.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Materials & Design 139, 104–111 (2018).
[Crossref]

Yu, N.

J. Mandal, Y. Fu, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Yu, Z.

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Materials & Design 139, 104–111 (2018).
[Crossref]

Zhai, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Zhang, F.

F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, and S. He, “Ultra-broadband Microwave Metamaterial Absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Zhao, C. Y.

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).

Zhao, D.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

Zhen, C.

C. Zhen, L. Zhu, A. Raman, and A. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

Zhou, H.

J. Mandal, Y. Fu, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

Zhu, L.

C. Zhen, L. Zhu, A. Raman, and A. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

Zou, C.

C. Zou, G. Ren, M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

ACS Photonics (1)

J. Kou, Z. Jurado, Z. Chen, S. Fan, and A. J. Minnich, “Daytime radiative cooling using near-black infrared emitters,” ACS Photonics 4(3), 626–630 (2017).
[Crossref]

Adv. Mater. (2)

S. L. Diedenhofen, G. Vecchi, R. E. Alga, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. 21(9), 973–978 (2009).
[Crossref]

W. L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[Crossref]

Adv. Opt. Mater. (2)

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

C. Zou, G. Ren, M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, and C. Fumeaux, “Metal-loaded dielectric resonator metasurfaces for radiative cooling,” Adv. Opt. Mater. 5(20), 1700460 (2017).
[Crossref]

Adv. Sci. (1)

M. M. Muntasir and M. Gu, “Radiative Cooling: Principle Progress, and Potentials,” Adv. Sci. 3(7), 1500360 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. Ding, Y. Cui, X. Ge, F. Zhang, Y. Jin, and S. He, “Ultra-broadband Microwave Metamaterial Absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Buildings (1)

M. Santamouris and J. Feng, “Recent progress in daytime radiative cooling: Is it the air conditioner of the future?” Buildings 8(12), 168 (2018).
[Crossref]

Chin. Phys. B (1)

J. Y. Wu, Y. Z. Gong, P. R. Huang, G. J. Ma, and Q. F. Dai, “Diurnal cooling for continuous thermal sources under direct subtropical sunlight produced by quasi-Cantor structure,” Chin. Phys. B 26(10), 104201 (2017).
[Crossref]

Energy and Buildings (1)

D. Pearlmutter and P. Berliner, “Experiments with a ‘psychrometric’ roof pond system for passive cooling in hot-arid regions,” Energy and Buildings 144, 295–302 (2017).
[Crossref]

Int. J. Heat Mass Transfer (1)

Z. Huang and X. Ruan, “Nanoparticle embedded double-layer coating for daytime radiative cooling,” Int. J. Heat Mass Transfer 104, 890–896 (2017).
[Crossref]

J. Appl. Phys. (1)

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: general considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

J. Eur. Opt. Soc. Rapid Publ. (1)

G. C. R. Devarapu and S. Foteinopoulou, “Broadband mid-IR super absorption with aperiodic polaritonic photonic crystals,” J. Eur. Opt. Soc. Rapid Publ. 9, 14012 (2014).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (2)

A. Hervé, J. Drevillon, Y. Ezzahri, and K. Joulain, “Radiative cooling by tailoring surfaces with microstructures: Association of a grating and a multi-layer structure,” J. Quant. Spectrosc. Radiat. Transfer 221, 155–163 (2018).
[Crossref]

M. A. Kecebas, M. P. Menguc, A. Kosar, and K. Sendur, “Passive radiative cooling design with broadband optical thin-film filters,” J. Quant. Spectrosc. Radiat. Transfer 198, 179–186 (2017).
[Crossref]

Materials & Design (1)

D. Wu, C. Liu, Z. Xu, Y. Liu, Z. Yu, L. Yu, L. Chen, R. Li, R. Ma, and H. Ye, “The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling,” Materials & Design 139, 104–111 (2018).
[Crossref]

Nano Lett. (2)

E. Rephaeli, A. Raman, and S. Fan, “Ultrabroadband photonic structures to achieve high performance daytime radiative cooling,” Nano Lett. 13(4), 1457–1461 (2013).
[Crossref]

A. R. Gentle and G. B. Smith, “Radiative heat pumping from the earth using surface phonon resonant nanoparticles,” Nano Lett. 10(2), 373–379 (2010).
[Crossref]

Nat. Commun. (1)

C. Zhen, L. Zhu, A. Raman, and A. Fan, “Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle,” Nat. Commun. 7(1), 13729 (2016).
[Crossref]

Nature (2)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref]

P. Kunze and K. Hausen, “Inhomogeneous refractive index in the crystalline cone of a moth eye,” Nature 231(5302), 392–393 (1971).
[Crossref]

Opt. Acta (1)

S. J. Wilson and M. C. Hutley, “The optical properties of moth-eye, antireflection surfaces,” Opt. Acta 29(7), 993–1009 (1982).
[Crossref]

Opt. Express (1)

Phys. Fluids (1)

G. Bekefi, J. L. Hirshfield, and S. C. Brown, “Kirchhoff ‘s radiation law for plasmas with non-Maxwellian distributions,” Phys. Fluids 4(2), 173–176 (1961).
[Crossref]

Phys. Rev. Appl. (1)

G. C. R. Devarapu and S. Foteinopoulou, “Broadband Near-Unidirectional Absorptivity Enabled by Phonon-Polariton Resonances in SiC Micropyramid Arrays,” Phys. Rev. Appl. 7(3), 034001 (2017).
[Crossref]

Renewable Energy (1)

E. M. Lushiku, T. S. Eriksson, A. Hjortsberg, and C. G. Granqvist, “Radiative cooling to low temperatures with selectively infrared-emitting gases,” Renewable Energy 1(2), 115–121 (1984).
[Crossref]

Revue Générale de Thermique (1)

F. Trombe, “Perspectives sur l’utilisationdes rayonnements solaires et terrestres dans certaines régions du monde,” Revue Générale de Thermique 6, 1285–1314 (1967).

Science (4)

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

J. Mandal, Y. Fu, A. Overvig, M. Jia, K. Sun, N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, “Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling,” Science 362(6412), 315–319 (2018).
[Crossref]

P. C. Hsu, A. Y. Song, P. B. Catrysse, C. Liu, Y. Peng, J. Xie, S. Fan, and Y. Cui, “Radiative human body cooling by nanoporous polyethylene textile,” Science 353(6303), 1019–1023 (2016).
[Crossref]

Sol. Energy (2)

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, and G. Troise, “The radiative cooling of selective surfaces,” Sol. Energy 17(2), 83–89 (1975).
[Crossref]

B. A. Kimball, “Cooling performance and efficiency of night sky radiators,” Sol. Energy 34(1), 19–33 (1985).
[Crossref]

Sol. Energy Mater. (2)

T. S. Eriksson, S. J. Jiang, and C. G. Granqvist, “Surface coatings for radiative cooling applications: silicon dioxide and silicon nitride made by reactive rf-sputtering,” Sol. Energy Mater. 12(5), 319–325 (1985).
[Crossref]

N. A. Nilsson, T. S. Eriksson, and C. G. Granqvist, “Infrared-transparent convection shields for radiative cooling: Initial results on corrugated polyethylene foils,” Sol. Energy Mater. 12(5), 327–333 (1985).
[Crossref]

Sol. Energy Mater. Sol. Cells (4)

H. Bao, C. Yan, B. Wang, X. Fang, C. Y. Zhao, and X. Ruan, “Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling,” Sol. Energy Mater. Sol. Cells 168, 78–84 (2017).

D. M. Diatezua, P. A. Thiry, A. Dereux, and R. Caudano, “Silicon oxynitride multilayers as spectrally selective material for passive radiative cooling applications,” Sol. Energy Mater. Sol. Cells 40(3), 253–259 (1996).
[Crossref]

T. M. J. Nilsson, G. A. Niklasson, and C. G. Granqvist, “A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene,” Sol. Energy Mater. Sol. Cells 28(2), 175–193 (1992).
[Crossref]

T. M. J. Nilsson and G. A. Niklasson, “Radiative cooling during the day: simulations and experiments on pigmented polyethylene cover foils,” Sol. Energy Mater. Sol. Cells 37(1), 93–118 (1995).
[Crossref]

Other (4)

V. Silvestrini, M. Peraldo, and E. Monza, “Covering Element screening off the solar radiation for the applications in the refrigeration by radiation,” US Patent 4, 323–619 (1982).

E. Palik, “Handbook of Optical Constants of Solids,” Academic Press (1998).

IR transmission spectra, “Gemini Observatory,” http://www.gemini.edu/?q=node/10789 .

Air mass 1.5 spectra, “American Society for testing and Materials (ASTM),” http://www.nrel.gov/grid/solar-resource/spectral.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. (a) Schematic of the 3D PMM passive radiative cooler model. (b) Structure of the unit cell of the PMM.
Fig. 2.
Fig. 2. (a) A reference AM 1.5 solar irradiance spectra. (b) A modeled normalization atmospheric transmittance. (c) Blackbody irradiance spectra.
Fig. 3.
Fig. 3. Simulated emissivity /absorptivity of the PMM radiative cooler.
Fig. 4.
Fig. 4. The emissivity of the PMM radiative cooler with different incident angles of 0°, 15° and 30°.
Fig. 5.
Fig. 5. Distributions of the E-field (|E|) and H-field (|H|) of the PMM cooler in the plane y = 0 at three different wavelengths in the second atmospheric window.(a),(b) and (c) are for the E-field distribution at 10 µm, 11 µm, 13 µm, respectively. (d), (e) and (f) are for the H-field distribution at 10 µm, 11 µm, 13 µm, respectively.
Fig. 6.
Fig. 6. Distributions of the E-field (|E|) and H-field (|H|) of the PMM cooler in the plane y = 0 at three different wavelengths in the third atmospheric window.(a),(b) and (c) are for the E-field distribution at 22 µm, 23 µm, 25 µm, respectively. (d), (e) and (f) are for the H-field distribution at 22 µm, 23 µm, 25 µm, respectively.
Fig. 7.
Fig. 7. (a) Daytime cooling performance of the proposed PMM cooler (Tamb=300 K). (b) The cooling power of the proposed daytime PMM cooler with nonradiative heat exchange.
Fig. 8.
Fig. 8. (a) Nighttime Cooling performance of the proposed cooler (Tamb=300 K). (b) The cooling power of the proposed daytime cooler with nonradiative heat exchange.
Fig. 9.
Fig. 9. Cooling performance of the PMM cooler (Tamb=300 K) in different water vapor conditions, Nighttime cooling: (a) Water vapor = 3.0 mm, (b) Water vapor = 7.6 mm, (c) Water vapor = 10 mm; Day time cooling: (d) Water vapor = 3.0 mm, (e) Water vapor = 7.6 mm, (f) Water vapor = 10 mm.
Fig. 10.
Fig. 10. The reflectivity of the metamaterial cooler with different thickness ratio of HfO2 to SiO2. The thickness of SiO2 layer is set to be (a) 0.5 µm, (b) 1 µm, (c) 1.5 µm and (d) 2 µm.
Fig. 11.
Fig. 11. The reflectivity of the metamaterial with different HfO2-SiO2 pair numbers
Fig. 12.
Fig. 12. The reflectivity of the metamaterial with different widths of the top and bottom layers. (a) Different top layer widths, (b) Different bottom layer widths
Fig. 13.
Fig. 13. The reflectivity of the metamaterial with different periods
Fig. 14.
Fig. 14. The transmissivity spectrum of the metamaterial cooler.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P n e t ( T s a m p l e ) = P r a d ( T s a m p l e ) P a t m P s u n P c o n d + c o n v
P r a d ( T s a m p l e ) = A d Ω cos θ 0 d λ I B B ( T s a m p l e , λ ) ε ( λ , θ )
P a t m ( T a m b ) = A d Ω cos θ 0 d λ I B B ( T a m b , λ ) ε ( λ , θ ) ε a t m ( λ , θ )
P s u n ( T s a m p l e ) = A 0 d λ ε ( λ , θ s u n ) I A M 1.5 ( λ )
P c o n d + c o n v ( T s a m p l e , T a m b ) = A h c ( T a m b T s a m p l e )
P n e t ( T ) = P r a d ( T ) P a t m P c o n d + c o n v