Abstract

We demonstrate the transmission of a 30-GBd polarization-multiplexed probabilistically shaped 4096-ary quadrature amplitude modulation (QAM) signal over 50.9-km standard signal-mode fiber (SSMF), with a net single-carrier bit rate of 484.4 Gb/s carrying 16.1 information bits per symbol (a potential spectral efficiency of 15.9 bits/s/Hz when taking into account a 0.01 spectral roll-off). The signal is generated from 28-nm complementary metal-oxide-semiconductor (CMOS) digital-to-analog converters (DACs) with 8-bit nominal resolution and is received by an intradyne coherent receiver with a laser that has a linewidth of ∼1 kHz.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection

Samuel L.I. Olsson, Junho Cho, Sethumadhavan Chandrasekhar, Xi Chen, Peter J. Winzer, and Sergejs Makovejs
Opt. Express 26(4) 4522-4530 (2018)

Experimental and numerical comparison of probabilistically shaped 4096 QAM and a uniformly shaped 1024 QAM in all-Raman amplified 160 km transmission

Seiji Okamoto, Masaki Terayama, Masato Yoshida, Keisuke Kasai, Toshihiko Hirooka, and Masataka Nakazawa
Opt. Express 26(3) 3535-3543 (2018)

LDPC-coded DFT-Spread DMT signal transmission employing probabilistic shaping 16/32QAM for optical interconnection

Xinxing Wu, Dongdong Zou, Ze Dong, Xue Zhao, Yifan Chen, and Fan Li
Opt. Express 27(7) 9821-9828 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer, “High-spectral-efficiency optical modulation formats,” J. Lightwave Technol. 30(24), 3824–3835 (2012).
    [Crossref]
  2. S. Olsson, J. Cho, S. Chandrasekhar, X. Chen, E. C. Burrows, and P. J. Winzer, “Record-high 17.3-bit/s/Hz spectral efficiency transmission over 50 km using PS-PDM 4096-QAM,” in Proc. Optical Fiber Communication2018, paper Th4C.5.
  3. Y. Wang, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa, “Single-channel 200 Gbit/s, 10 Gsymbol/s-1024 QAM injection-locked coherent transmission over 160 km with a pilot-assisted adaptive equalizer,” Opt. Express 26(13), 17015–17024 (2018).
    [Crossref]
  4. M. Terayama, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa et al., “4096 QAM (72 Gbit/s) single-carrier coherent optical transmission with a potential SE of 15.8 bit/s/Hz in all-Raman amplified 160 km fiber link,” in Proc. Optical Fiber Communication2018, paper Th1F.2.
  5. S. Beppu, K. Kasai, M. Yoshida, and M. Nakazawa, “2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz,” Opt. Express 23(4), 4960–4969 (2015).
    [Crossref]
  6. D. Qian, E. Ip, M. Huang, M. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3 km multicore fiber,” in Proc. European Conference on Optical Communication2013, paper Th.1.C.5.
  7. Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express 20(11), 12508–12514 (2012).
    [Crossref]
  8. E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.
  9. R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. European Conference on Optical Communication2017, paper Th.PDP.B.2.
  10. K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.
  11. T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.
  12. M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.
  13. G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.
  14. M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.
  15. X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.
  16. J. Cho, X. Chen, S. Chandrasekhar, and P. Winzer, “On line rates, information rates, and spectral efficiencies in probabilistically shaped QAM systems,” Opt. Express 26(8), 9784–9791 (2018).
    [Crossref]
  17. http://www.rio-lasers.com/_products/orion.html
  18. “Oversampling the ADC for higher resolution” http://www.ti.com/lit/an/slaa323a/slaa323a.pdf
  19. G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
    [Crossref]
  20. P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory 62(1), 430–434 (2016).
    [Crossref]
  21. A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightwave Technol. 33(20), 4338–4352 (2015).
    [Crossref]
  22. J. Cho and P. Winzer, “Probabilistic constellation shaping for optical fiber communications,” J. Lightwave Technol. 37(6), 1590–1607 (2019).
    [Crossref]
  23. A. Alvarado, T. Fehenberger, B. Chen, and F. M. J. Willems, “Achievable information rates for fiber optics: Applications and computations,” J. Lightwave Technol. 36(2), 424–439 (2018).
    [Crossref]
  24. J. Cho and L. Schmalen, “Construction of protographs for large-girth structured LDPC convolutional codes,” in Proc. International Conference on Communications2015, 4412–4417.
  25. J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in Proc. European Conference on Optical Communication2017, paper M.2.D.
  26. S. Randel, R-J. Essiambre, P. J. Winzer, and R. Ryf, “Optical receiver having a MIMO equalizer” US patent US 9,077,455.
  27. M. S. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
    [Crossref]
  28. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM Constellations,” J. Lightwave Technol. 27(8), 989–999 (2009).
    [Crossref]
  29. J. Cho, “Balancing probabilistic shaping and forward error correction for optimal system performance,” in Proc. Optical Fiber Communication Conference2018, paper M3C.2.

2019 (1)

2018 (3)

2016 (1)

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory 62(1), 430–434 (2016).
[Crossref]

2015 (3)

2013 (1)

M. S. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
[Crossref]

2012 (2)

2009 (1)

Adamiecki, A.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Agrell, E.

Altenhain, L.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

Alvarado, A.

Ashiq, I.

X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.

Bayvel, P.

Beppu, S.

Böcherer, G.

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory 62(1), 430–434 (2016).
[Crossref]

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
[Crossref]

Buchali, F.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

Burrows, E. C.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

S. Olsson, J. Cho, S. Chandrasekhar, X. Chen, E. C. Burrows, and P. J. Winzer, “Record-high 17.3-bit/s/Hz spectral efficiency transmission over 50 km using PS-PDM 4096-QAM,” in Proc. Optical Fiber Communication2018, paper Th4C.5.

Chandrasekhar, S.

J. Cho, X. Chen, S. Chandrasekhar, and P. Winzer, “On line rates, information rates, and spectral efficiencies in probabilistically shaped QAM systems,” Opt. Express 26(8), 9784–9791 (2018).
[Crossref]

S. Olsson, J. Cho, S. Chandrasekhar, X. Chen, E. C. Burrows, and P. J. Winzer, “Record-high 17.3-bit/s/Hz spectral efficiency transmission over 50 km using PS-PDM 4096-QAM,” in Proc. Optical Fiber Communication2018, paper Th4C.5.

X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.

Chen, B.

Chen, X.

J. Cho, X. Chen, S. Chandrasekhar, and P. Winzer, “On line rates, information rates, and spectral efficiencies in probabilistically shaped QAM systems,” Opt. Express 26(8), 9784–9791 (2018).
[Crossref]

S. Olsson, J. Cho, S. Chandrasekhar, X. Chen, E. C. Burrows, and P. J. Winzer, “Record-high 17.3-bit/s/Hz spectral efficiency transmission over 50 km using PS-PDM 4096-QAM,” in Proc. Optical Fiber Communication2018, paper Th4C.5.

X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.

Cho, J.

J. Cho and P. Winzer, “Probabilistic constellation shaping for optical fiber communications,” J. Lightwave Technol. 37(6), 1590–1607 (2019).
[Crossref]

J. Cho, X. Chen, S. Chandrasekhar, and P. Winzer, “On line rates, information rates, and spectral efficiencies in probabilistically shaped QAM systems,” Opt. Express 26(8), 9784–9791 (2018).
[Crossref]

S. Olsson, J. Cho, S. Chandrasekhar, X. Chen, E. C. Burrows, and P. J. Winzer, “Record-high 17.3-bit/s/Hz spectral efficiency transmission over 50 km using PS-PDM 4096-QAM,” in Proc. Optical Fiber Communication2018, paper Th4C.5.

J. Cho and L. Schmalen, “Construction of protographs for large-girth structured LDPC convolutional codes,” in Proc. International Conference on Communications2015, 4412–4417.

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in Proc. European Conference on Optical Communication2017, paper M.2.D.

J. Cho, “Balancing probabilistic shaping and forward error correction for optimal system performance,” in Proc. Optical Fiber Communication Conference2018, paper M3C.2.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Croussore, K.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. European Conference on Optical Communication2017, paper Th.PDP.B.2.

da Silva, E. P.

E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

Diniz, J. C. M.

E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

Dümler, U.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

Dupuy, J-Y.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Duval, B.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Engenhardt, K.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

Eriksson, T. A.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

Essiambre, R-J.

S. Randel, R-J. Essiambre, P. J. Winzer, and R. Ryf, “Optical receiver having a MIMO equalizer” US patent US 9,077,455.

Faruk, M. S.

M. S. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
[Crossref]

Fehenberger, T.

Fontaine, N.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Galili, M.

E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

Going, R.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. European Conference on Optical Communication2017, paper Th.PDP.B.2.

Guan, B.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Hamaoka, F.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.

Hirano, A.

M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.

Hoffmann, S.

Huang, M.

D. Qian, E. Ip, M. Huang, M. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3 km multicore fiber,” in Proc. European Conference on Optical Communication2013, paper Th.1.C.5.

Ida, M.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

Idler, W.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

Ip, E.

D. Qian, E. Ip, M. Huang, M. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3 km multicore fiber,” in Proc. European Conference on Optical Communication2013, paper Th.1.C.5.

Iqbal, S.

E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

Jorge, F.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Kasai, K.

Khanna, A.

X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.

Kikuchi, K.

M. S. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
[Crossref]

Kim, K.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Klejs, F.

E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

Kobayashi, T.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

Koizumi, Y.

Konczykowska, A.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Lauermann, M.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. European Conference on Optical Communication2017, paper Th.PDP.B.2.

Lavery, D.

Li, M.

D. Qian, E. Ip, M. Huang, M. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3 km multicore fiber,” in Proc. European Conference on Optical Communication2013, paper Th.1.C.5.

Lillieholm, M.

E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

Maher, R.

A. Alvarado, E. Agrell, D. Lavery, R. Maher, and P. Bayvel, “Replacing the soft-decision FEC limit paradigm in the design of optical communication systems,” J. Lightwave Technol. 33(20), 4338–4352 (2015).
[Crossref]

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. European Conference on Optical Communication2017, paper Th.PDP.B.2.

Matsushita, A.

M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.

Miyamoto, Y.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

Möller, M.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

Morioka, T.

E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

Nagatani, M.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.

Nakamura, M.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.

Nakazawa, M.

Noé, R.

Nosaka, H.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

Ogiso, Y.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

Okamoto, S.

Y. Wang, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa, “Single-channel 200 Gbit/s, 10 Gsymbol/s-1024 QAM injection-locked coherent transmission over 160 km with a pilot-assisted adaptive equalizer,” Opt. Express 26(13), 17015–17024 (2018).
[Crossref]

M. Terayama, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa et al., “4096 QAM (72 Gbit/s) single-carrier coherent optical transmission with a potential SE of 15.8 bit/s/Hz in all-Raman amplified 160 km fiber link,” in Proc. Optical Fiber Communication2018, paper Th1F.2.

Olsson, S.

S. Olsson, J. Cho, S. Chandrasekhar, X. Chen, E. C. Burrows, and P. J. Winzer, “Record-high 17.3-bit/s/Hz spectral efficiency transmission over 50 km using PS-PDM 4096-QAM,” in Proc. Optical Fiber Communication2018, paper Th4C.5.

Oxenløwe, L. K.

E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

Pfau, T.

Pilori, D.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Pupalaikis, P.

X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.

Qian, D.

D. Qian, E. Ip, M. Huang, M. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3 km multicore fiber,” in Proc. European Conference on Optical Communication2013, paper Th.1.C.5.

Rahn, J.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. European Conference on Optical Communication2017, paper Th.PDP.B.2.

Randel, S.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

S. Randel, R-J. Essiambre, P. J. Winzer, and R. Ryf, “Optical receiver having a MIMO equalizer” US patent US 9,077,455.

Raybon, G.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Riet, M.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Ryf, R.

S. Randel, R-J. Essiambre, P. J. Winzer, and R. Ryf, “Optical receiver having a MIMO equalizer” US patent US 9,077,455.

Sano, A.

M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.

Schmalen, L.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in Proc. European Conference on Optical Communication2017, paper M.2.D.

J. Cho and L. Schmalen, “Construction of protographs for large-girth structured LDPC convolutional codes,” in Proc. International Conference on Communications2015, 4412–4417.

Schmid, R.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

Schuh, K.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

Schulte, P.

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory 62(1), 430–434 (2016).
[Crossref]

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
[Crossref]

Steffan, A.

X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.

Steiner, F.

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
[Crossref]

Templ, W.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

Terayama, M.

M. Terayama, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa et al., “4096 QAM (72 Gbit/s) single-carrier coherent optical transmission with a potential SE of 15.8 bit/s/Hz in all-Raman amplified 160 km fiber link,” in Proc. Optical Fiber Communication2018, paper Th1F.2.

Toyoda, K.

Umbach, A.

X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.

Umeki, T.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

Wakita, H.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

Wang, T.

D. Qian, E. Ip, M. Huang, M. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3 km multicore fiber,” in Proc. European Conference on Optical Communication2013, paper Th.1.C.5.

Wang, Y.

Willems, F. M. J.

Winzer, P.

J. Cho and P. Winzer, “Probabilistic constellation shaping for optical fiber communications,” J. Lightwave Technol. 37(6), 1590–1607 (2019).
[Crossref]

J. Cho, X. Chen, S. Chandrasekhar, and P. Winzer, “On line rates, information rates, and spectral efficiencies in probabilistically shaped QAM systems,” Opt. Express 26(8), 9784–9791 (2018).
[Crossref]

X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

Winzer, P. J.

P. J. Winzer, “High-spectral-efficiency optical modulation formats,” J. Lightwave Technol. 30(24), 3824–3835 (2012).
[Crossref]

S. Olsson, J. Cho, S. Chandrasekhar, X. Chen, E. C. Burrows, and P. J. Winzer, “Record-high 17.3-bit/s/Hz spectral efficiency transmission over 50 km using PS-PDM 4096-QAM,” in Proc. Optical Fiber Communication2018, paper Th4C.5.

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in Proc. European Conference on Optical Communication2017, paper M.2.D.

S. Randel, R-J. Essiambre, P. J. Winzer, and R. Ryf, “Optical receiver having a MIMO equalizer” US patent US 9,077,455.

Xu, X.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. European Conference on Optical Communication2017, paper Th.PDP.B.2.

Yamazaki, H.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

Yankov, M. P.

E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

Yoshida, M.

IEEE Photonics J. (1)

M. S. Faruk and K. Kikuchi, “Compensation for in-phase/quadrature imbalance in coherent-receiver front end for optical quadrature amplitude modulation,” IEEE Photonics J. 5(2), 7800110 (2013).
[Crossref]

IEEE Trans. Commun. (1)

G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun. 63(12), 4651–4665 (2015).
[Crossref]

IEEE Trans. Inf. Theory (1)

P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory 62(1), 430–434 (2016).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (4)

Other (17)

J. Cho, “Balancing probabilistic shaping and forward error correction for optimal system performance,” in Proc. Optical Fiber Communication Conference2018, paper M3C.2.

D. Qian, E. Ip, M. Huang, M. Li, and T. Wang, “698.5-Gb/s PDM-2048QAM transmission over 3 km multicore fiber,” in Proc. European Conference on Optical Communication2013, paper Th.1.C.5.

J. Cho and L. Schmalen, “Construction of protographs for large-girth structured LDPC convolutional codes,” in Proc. International Conference on Communications2015, 4412–4417.

J. Cho, L. Schmalen, and P. J. Winzer, “Normalized generalized mutual information as a forward error correction threshold for probabilistically shaped QAM,” in Proc. European Conference on Optical Communication2017, paper M.2.D.

S. Randel, R-J. Essiambre, P. J. Winzer, and R. Ryf, “Optical receiver having a MIMO equalizer” US patent US 9,077,455.

E. P. da Silva, F. Klejs, M. Lillieholm, S. Iqbal, M. P. Yankov, J. C. M. Diniz, T. Morioka, L. K. Oxenløwe, and M. Galili, “Experimental characterization of 10 × 8 GBd DP-1024QAM transmission with 8-bit DACs and intradyne detection,” in Proc. European Conference on Optical Communication2018, paper Th1D.2.

R. Maher, K. Croussore, M. Lauermann, R. Going, X. Xu, and J. Rahn, “Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF,” in Proc. European Conference on Optical Communication2017, paper Th.PDP.B.2.

K. Schuh, F. Buchali, W. Idler, T. A. Eriksson, L. Schmalen, W. Templ, L. Altenhain, U. Dümler, R. Schmid, M. Möller, and K. Engenhardt, “Single carrier 1.2 Tbit/s transmission over 300 km with PM-64 QAM at 100 GBaud,” in Proc. Optical Fiber Communication2017, paper Th5B.5.

T. Kobayashi, M. Nakamura, F. Hamaoka, M. Nagatani, H. Wakita, H. Yamazaki, T. Umeki, H. Nosaka, and Y. Miyamoto, “35-Tb/s C-band transmission over 800 km employing 1-Tb/s PS-64QAM signals enhanced by complex 8 × 2 MIMO equalizer,” in Proc. Optical Fiber Communication2019, paper Th4B.2.

M. Nakamura, F. Hamaoka, A. Matsushita, H. Yamazaki, M. Nagatani, A. Sano, A. Hirano, and Y. Miyamoto, “120-GBaud coded 8 dimensional 16QAM WDM transmission using low-complexity iterative decoding based on bit-wise log likelihood ratio,” in Proc. Optical Fiber Communication2017, paper W4A.3.

G. Raybon, A. Adamiecki, J. Cho, P. Winzer, A. Konczykowska, F. Jorge, J-Y. Dupuy, M. Riet, B. Duval, K. Kim, S. Randel, D. Pilori, B. Guan, N. Fontaine, and E. C. Burrows, “Single-carrier all-ETDM 1.08-Terabit/s line rate PDM-64-QAM transmitter using a high-speed 3-bit multiplexing DAC,” in Proc. IEEE Photonics Conference2015, post-deadline paper.

M. Nakamura, F. Hamaoka, M. Nagatani, Y. Ogiso, H. Wakita, H. Yamazaki, T. Kobayashi, M. Ida, H. Nosaka, and Y. Miyamoto, “192-Gbaud signal generation using ultra-broadband optical frontend module integrated with bandwidth multiplexing function,” in Proc. Optical Fiber Communication2019, paper Th4B.4.

X. Chen, S. Chandrasekhar, P. Winzer, P. Pupalaikis, I. Ashiq, A. Khanna, A. Steffan, and A. Umbach, “180-GBaud Nyquist shaped optical QPSK generation based on a 240-GSa/s 100-GHz analog bandwidth DAC,” Asia Communications and Photonics Conference2016, post-deadline paper.

S. Olsson, J. Cho, S. Chandrasekhar, X. Chen, E. C. Burrows, and P. J. Winzer, “Record-high 17.3-bit/s/Hz spectral efficiency transmission over 50 km using PS-PDM 4096-QAM,” in Proc. Optical Fiber Communication2018, paper Th4C.5.

M. Terayama, S. Okamoto, K. Kasai, M. Yoshida, and M. Nakazawa et al., “4096 QAM (72 Gbit/s) single-carrier coherent optical transmission with a potential SE of 15.8 bit/s/Hz in all-Raman amplified 160 km fiber link,” in Proc. Optical Fiber Communication2018, paper Th1F.2.

http://www.rio-lasers.com/_products/orion.html

“Oversampling the ADC for higher resolution” http://www.ti.com/lit/an/slaa323a/slaa323a.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Information rate and symbol rates of various demonstrated high-speed system experiments. The information bits/symbol are defined as the dual-polarization net data rate per carrier and per spatial path divided by the symbol rate.
Fig. 2.
Fig. 2. Experimental setup for 30-GBd PDM-PS-4096-QAM transmission. PBC: polarization beam combiner. EDFA: erbium-doped fiber amplifier. SSMF: standard single mode fiber.
Fig. 3.
Fig. 3. Post-FEC BER performance of the rate-0.8469 SC-LDPC code.
Fig. 4.
Fig. 4. (a) Measured NGMI and (b) measured BER after 50.9-km SSMF as a function of the shaping factor β. The inset to Fig. 3(a) shows the received digital spectrum with β=3.996.
Fig. 5.
Fig. 5. Theoretical analysis of the AIRs for four different modulation formats in AWGN: PS-4096-QAM, U-4096-QAM, PS-1024-QAM, and U-1024-QAM.
Fig. 6.
Fig. 6. (a) Symbol probability distribution for the PS-4096-QAM with β=3.996; (b) Histogram of the real-part of the transmitted signal; (c) recovered PS-4096-QAM constellations on x- and y- polarizations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R max = 2 × ( 1 + β ) b i t s / s y m b o l / p o l
γ = 1 log 2 ( M ) 2 × ( 1 R C ) = 1 ( log 2 ( 4096 ) ) / ( log 2 ( 4096 ) ) 2 2 × ( 1 0.8402 )
R L i n e = 2 × ( 1 + β ) × r c × 2 p o l = 2 × ( 1 + 3.996 ) × 30 G B d × 2
R inf o = 2 × ( γ + β ) × r c × 2 p o l = 2 × ( 0.0412 + 3.996 ) × 30 G B d × 2.