Abstract

We demonstrate a platform for phase and amplitude modulation in silicon nitride photonic integrated circuits via piezo-optomechanical coupling using tightly mechanically coupled aluminum nitride actuators. The platform, fabricated in a CMOS foundry, enables scalable active photonic integrated circuits for visible wavelengths, and the piezoelectric actuation functions without performance degradation down to cryogenic temperatures. As an example of the potential of the platform, we demonstrate a compact (∼40 µm diameter) silicon nitride ring resonator modulator operating at 780 nm with intrinsic quality factors in excess of 1.5 million, >10 dB change in extinction ratio with 2 V applied, a switching time less than 4 ns, and a switching energy of 0.5 pJ/bit. We characterize the exemplary device at room temperature and 7 K. At 7 K, the device obtains a resistance of approximately 20 teraohms, allowing it to operate with sub-picowatt electrical power dissipation. We further demonstrate a Mach-Zehnder modulator constructed in the same platform with piezoelectrically tunable phase shifting arms, with 750 ns switching time constant and 20 nW steady-state power dissipation at room temperature.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths

Sebastian Romero-García, Florian Merget, Frank Zhong, Hod Finkelstein, and Jeremy Witzens
Opt. Express 21(12) 14036-14046 (2013)

CMOS-compatible temperature-independent tunable silicon optical lattice filters

Liangjun Lu, Linjie Zhou, Xiaomeng Sun, Jingya Xie, Zhi Zou, Haike Zhu, Xinwan Li, and Jianping Chen
Opt. Express 21(8) 9447-9456 (2013)

Monolithically integrated erbium-doped tunable laser on a CMOS-compatible silicon photonics platform

Nanxi Li, Diedrik Vermeulen, Zhan Su, Emir Salih Magden, Ming Xin, Neetesh Singh, Alfonso Ruocco, Jelena Notaros, Christopher V. Poulton, Erman Timurdogan, Christopher Baiocco, and Michael R. Watts
Opt. Express 26(13) 16200-16211 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. R. Liu, F. Pagliano, and A. Fiore, “Nano-opto-electro-mechanical switch based on a four-waveguide directional coupler,” Opt. Express 25(9), 10166–10176 (2017).
    [Crossref]
  2. S. Han, T. J. Seok, N. Quack, B. W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015).
    [Crossref]
  3. H. Pfeifer, T. Paraïso, L. Zang, and O. Painter, “Design of tunable GHz-frequency optomechanical crystal resonators,” Opt. Express 24(11), 11407–11419 (2016).
    [Crossref]
  4. E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
    [Crossref]
  5. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
    [Crossref]
  6. S. Sharma, N. Kohli, J. Brière, M. Ménard, and F. Nabki, “Translational MEMS Platform for Planar Optical Switching Fabrics,” Micromachines 10(7), 435 (2019).
    [Crossref]
  7. J. M. Fink, M. Kalaee, A. Pitanti, R. Norte, L. Heinzle, M. Davanço, K. Srinivasan, and O. Painter, “Quantum electromechanics on silicon nitride nanomembranes,” Nat. Commun. 7(1), 12396 (2016).
    [Crossref]
  8. C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-Loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing,” Nano Lett. 12(7), 3562–3568 (2012).
    [Crossref]
  9. S. Y. Zhu and G. Q. Lo, “Aluminum nitride electro-optic phase shifter for backend integration on silicon,” Opt. Express 24(12), 12501–12506 (2016).
    [Crossref]
  10. S. Zhu, Q. Zhong, T. Hu, Y. Li, Z. Xu, Y. Dong, and N. Singh, “Aluminum Nitride Ultralow Loss Waveguides and Push-Pull Electro-Optic Modulators for Near Infrared and Visible Integrated Photonics,” in Optical Fiber Communications Conference and Exhibition (OFC), (2019), pp. 1–3.
  11. F. Martin, P. Muralt, M.-A. Dubois, and A. Pezous, “Thickness dependence of properties of highly c-axis textured AlN thin films,” J. Vac. Sci. Technol., A 22(2), 361–365 (2004).
    [Crossref]
  12. C.-J. Tang, C.-C. Jaing, K.-H. Lee, and C.-C. Lee, “Optical properties and residual stress in aluminum nitride films prepared by alternating-current dual reactive magnetron sputtering,” Appl. Opt. 50(13), 1945–1950 (2011).
    [Crossref]
  13. M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104(9), 091108 (2014).
    [Crossref]
  14. A. W. Elshaari, I. E. Zadeh, K. D. Jons, and V. Zwiller, “Thermo-Optic Characterization of Silicon Nitride Resonators for Cryogenic Photonic Circuits,” IEEE Photonics J. 8(3), 1–9 (2016).
    [Crossref]
  15. S. Ghosh and G. Piazza, “Piezoelectric actuation of aluminum nitride contour mode optomechanical resonators,” Opt. Express 23(12), 15477–15490 (2015).
    [Crossref]
  16. S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5(1), 5402 (2014).
    [Crossref]
  17. S. A. Tadesse, H. Li, Q. Liu, and M. Li, “Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band,” Appl. Phys. Lett. 107(20), 201113 (2015).
    [Crossref]
  18. Q. Liu, H. Li, and M. Li, “Electromechanical Brillouin scattering in integrated optomechanical waveguides,” Optica 6(6), 778–785 (2019).
    [Crossref]
  19. H. Li, Q. Liu, and M. Li, “Electromechanical Brillouin scattering in integrated planar photonics,” APL Photonics 4(8), 080802 (2019).
    [Crossref]
  20. C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
    [Crossref]
  21. A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109(3), 033107 (2016).
    [Crossref]
  22. B. Dung, H. Tian, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “PORT: A Piezoelectric Optical Resonance Tuner,” in IEEE MEMS, (Belfast, Ireland, 2018), pp. 739–742.
  23. H. Tian, B. Dong, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “An unreleased MEMS actuated silicon nitride resonator with bidirectional tuning,” in CLEO, (2018).
  24. H. Tian, J. Liu, B. Dong, J. C. Skehan, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “Hybrid Integrated Photonics Using Bulk Acoustic Resonators,” arXiv 1907.10177v1 (2019).
  25. S. Donati, L. Barbieri, and G. Martini, “Piezoelectric actuation of silica-on-silicon waveguide devices,” IEEE Photonics Technol. Lett. 10(10), 1428–1430 (1998).
    [Crossref]
  26. J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).
    [Crossref]
  27. N. Hosseini, R. Dekker, M. Hoekman, M. Dekkers, J. Bos, A. Leinse, and R. Heideman, “Stress-optic modulator in TriPleX platform using a ezoelectric lead zirconate titanate (PZT) thin film,” Opt. Express 23(11), 14018–14026 (2015).
    [Crossref]
  28. W. Jin, R. G. Polcawich, P. A. Morton, and J. E. Bowers, “Piezoelectrically tuned silicon nitride ring resonator,” Opt. Express 26(3), 3174–3187 (2018).
    [Crossref]
  29. W. Jin, E. J. Stanton, N. Volet, R. G. Polcawich, D. Baney, P. Morton, and J. E. Bowers, “Piezoelectric tuning of a suspended silicon nitride ring resonator,” 30th Annual Conference of the IEEE Photonics Society (IPC), 117–118 (2017).
  30. Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. E. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100(14), 141107 (2012).
    [Crossref]
  31. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulations with exceptionally large electro-optic coefficients,” Nat. Photonics 1(7), 423 (2007).
    [Crossref]
  32. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
    [Crossref]
  33. W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. V. Laer, and A. H. Safavi-Naeini, “Lithium Niobate Piezo-optomechanical Crystals,” Optica 6(7), 845 (2019).
    [Crossref]
  34. L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photonics Res. 7(9), 1003–1013 (2019).
    [Crossref]
  35. L. Cai, A. Mahmoud, and G. Piazza, “Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications,” Opt. Express 27(7), 9794–9802 (2019).
    [Crossref]
  36. G. N. Parsons, J. H. Souk, and J. Batey, “Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 70(3), 1553–1560 (1991).
    [Crossref]
  37. T. Inukai and K. Ono, “Optical Characteristics of Amorphous Silicon Nitride Thin Films Prepared by Electron Cyclotron Resonance Plasma Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 33(5A), 2593–2598 (1994).
    [Crossref]
  38. P. Muralt, “AlN Thin Film Processing and Basic Properties,” in Piezoelectric MEMS Resonators, H. Bhugra and G. Piazza, eds. (Springer International Publishing, 2017), pp. 3–37.
  39. E. A. Douglas, P. Mahony, A. Starbuck, A. Pomerene, D. C. Trotter, and C. T. DeRose, “Effect of precursors on propagation loss for plasma-enhanced chemical vapor deposition of SiNx:H waveguides,” Opt. Mater. Express 6(9), 2892 (2016).
    [Crossref]
  40. K. E. Wojciechowski, R. H. Olsson, M. R. Tuck, E. Roherty-Osmun, and T. A. Hill, “Single-chip precision oscillators based on multi-frequency, high-Q aluminum nitride MEMS resonators,” inTRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference, 2009), 2126–2130.
  41. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell's equations with shifting material boundaries,” Phys. Rev. E 65(6), 066611 (2002).
    [Crossref]
  42. M. Borselli, T. J. Johnson, and O. Painter, “Accurate measurement of scattering and absorption loss in microphotonic devices,” Opt. Lett. 32(20), 2954–2956 (2007).
    [Crossref]
  43. H. Du, F. S. Chau, and G. Y. Zhou, “Mechanically-Tunable Photonic Devices with On-Chip Integrated MEMS/NEMS Actuators,” Micromachines 7(4), 69 (2016).
    [Crossref]
  44. M. Gehl, C. Long, D. Trotter, A. Starbuck, A. Pomerene, J. B. Wright, S. Melgaard, J. Siirola, A. L. Lentine, and C. Derose, “Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures,” Optica 4(3), 374–382 (2017).
    [Crossref]
  45. G. N. West, D. K. W. Loh, C. Sorace-Agaskar, K. K. Mehta, J. Sage, J. Chiaverini, and R. J. Ram, “Low-loss integrated photonics for the blue and ultraviolet regime,” APL Photonics 4(2), 026101 (2019).
    [Crossref]
  46. M. Akiyama, K. Kano, and A. Teshigahara, “Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films,” Appl. Phys. Lett. 95(16), 162107 (2009).
    [Crossref]

2019 (7)

S. Sharma, N. Kohli, J. Brière, M. Ménard, and F. Nabki, “Translational MEMS Platform for Planar Optical Switching Fabrics,” Micromachines 10(7), 435 (2019).
[Crossref]

Q. Liu, H. Li, and M. Li, “Electromechanical Brillouin scattering in integrated optomechanical waveguides,” Optica 6(6), 778–785 (2019).
[Crossref]

H. Li, Q. Liu, and M. Li, “Electromechanical Brillouin scattering in integrated planar photonics,” APL Photonics 4(8), 080802 (2019).
[Crossref]

W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. V. Laer, and A. H. Safavi-Naeini, “Lithium Niobate Piezo-optomechanical Crystals,” Optica 6(7), 845 (2019).
[Crossref]

L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photonics Res. 7(9), 1003–1013 (2019).
[Crossref]

L. Cai, A. Mahmoud, and G. Piazza, “Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications,” Opt. Express 27(7), 9794–9802 (2019).
[Crossref]

G. N. West, D. K. W. Loh, C. Sorace-Agaskar, K. K. Mehta, J. Sage, J. Chiaverini, and R. J. Ram, “Low-loss integrated photonics for the blue and ultraviolet regime,” APL Photonics 4(2), 026101 (2019).
[Crossref]

2018 (2)

W. Jin, R. G. Polcawich, P. A. Morton, and J. E. Bowers, “Piezoelectrically tuned silicon nitride ring resonator,” Opt. Express 26(3), 3174–3187 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

2017 (3)

2016 (8)

H. Pfeifer, T. Paraïso, L. Zang, and O. Painter, “Design of tunable GHz-frequency optomechanical crystal resonators,” Opt. Express 24(11), 11407–11419 (2016).
[Crossref]

J. M. Fink, M. Kalaee, A. Pitanti, R. Norte, L. Heinzle, M. Davanço, K. Srinivasan, and O. Painter, “Quantum electromechanics on silicon nitride nanomembranes,” Nat. Commun. 7(1), 12396 (2016).
[Crossref]

S. Y. Zhu and G. Q. Lo, “Aluminum nitride electro-optic phase shifter for backend integration on silicon,” Opt. Express 24(12), 12501–12506 (2016).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

A. W. Elshaari, I. E. Zadeh, K. D. Jons, and V. Zwiller, “Thermo-Optic Characterization of Silicon Nitride Resonators for Cryogenic Photonic Circuits,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109(3), 033107 (2016).
[Crossref]

E. A. Douglas, P. Mahony, A. Starbuck, A. Pomerene, D. C. Trotter, and C. T. DeRose, “Effect of precursors on propagation loss for plasma-enhanced chemical vapor deposition of SiNx:H waveguides,” Opt. Mater. Express 6(9), 2892 (2016).
[Crossref]

H. Du, F. S. Chau, and G. Y. Zhou, “Mechanically-Tunable Photonic Devices with On-Chip Integrated MEMS/NEMS Actuators,” Micromachines 7(4), 69 (2016).
[Crossref]

2015 (4)

2014 (2)

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104(9), 091108 (2014).
[Crossref]

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5(1), 5402 (2014).
[Crossref]

2012 (3)

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-Loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing,” Nano Lett. 12(7), 3562–3568 (2012).
[Crossref]

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. E. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100(14), 141107 (2012).
[Crossref]

2011 (1)

2009 (1)

M. Akiyama, K. Kano, and A. Teshigahara, “Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films,” Appl. Phys. Lett. 95(16), 162107 (2009).
[Crossref]

2008 (1)

E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
[Crossref]

2007 (2)

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulations with exceptionally large electro-optic coefficients,” Nat. Photonics 1(7), 423 (2007).
[Crossref]

M. Borselli, T. J. Johnson, and O. Painter, “Accurate measurement of scattering and absorption loss in microphotonic devices,” Opt. Lett. 32(20), 2954–2956 (2007).
[Crossref]

2004 (1)

F. Martin, P. Muralt, M.-A. Dubois, and A. Pezous, “Thickness dependence of properties of highly c-axis textured AlN thin films,” J. Vac. Sci. Technol., A 22(2), 361–365 (2004).
[Crossref]

2002 (1)

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell's equations with shifting material boundaries,” Phys. Rev. E 65(6), 066611 (2002).
[Crossref]

1998 (1)

S. Donati, L. Barbieri, and G. Martini, “Piezoelectric actuation of silica-on-silicon waveguide devices,” IEEE Photonics Technol. Lett. 10(10), 1428–1430 (1998).
[Crossref]

1994 (1)

T. Inukai and K. Ono, “Optical Characteristics of Amorphous Silicon Nitride Thin Films Prepared by Electron Cyclotron Resonance Plasma Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 33(5A), 2593–2598 (1994).
[Crossref]

1991 (1)

G. N. Parsons, J. H. Souk, and J. Batey, “Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 70(3), 1553–1560 (1991).
[Crossref]

Akiyama, M.

M. Akiyama, K. Kano, and A. Teshigahara, “Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films,” Appl. Phys. Lett. 95(16), 162107 (2009).
[Crossref]

Arrangoiz-Arriola, P.

Bain, J.

L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photonics Res. 7(9), 1003–1013 (2019).
[Crossref]

Baney, D.

W. Jin, E. J. Stanton, N. Volet, R. G. Polcawich, D. Baney, P. Morton, and J. E. Bowers, “Piezoelectric tuning of a suspended silicon nitride ring resonator,” 30th Annual Conference of the IEEE Photonics Society (IPC), 117–118 (2017).

Barbieri, L.

S. Donati, L. Barbieri, and G. Martini, “Piezoelectric actuation of silica-on-silicon waveguide devices,” IEEE Photonics Technol. Lett. 10(10), 1428–1430 (1998).
[Crossref]

Batey, J.

G. N. Parsons, J. H. Souk, and J. Batey, “Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 70(3), 1553–1560 (1991).
[Crossref]

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Bhave, S. A.

H. Tian, J. Liu, B. Dong, J. C. Skehan, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “Hybrid Integrated Photonics Using Bulk Acoustic Resonators,” arXiv 1907.10177v1 (2019).

B. Dung, H. Tian, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “PORT: A Piezoelectric Optical Resonance Tuner,” in IEEE MEMS, (Belfast, Ireland, 2018), pp. 739–742.

H. Tian, B. Dong, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “An unreleased MEMS actuated silicon nitride resonator with bidirectional tuning,” in CLEO, (2018).

Borselli, M.

Bos, J.

Bowers, J. E.

W. Jin, R. G. Polcawich, P. A. Morton, and J. E. Bowers, “Piezoelectrically tuned silicon nitride ring resonator,” Opt. Express 26(3), 3174–3187 (2018).
[Crossref]

W. Jin, E. J. Stanton, N. Volet, R. G. Polcawich, D. Baney, P. Morton, and J. E. Bowers, “Piezoelectric tuning of a suspended silicon nitride ring resonator,” 30th Annual Conference of the IEEE Photonics Society (IPC), 117–118 (2017).

Brière, J.

S. Sharma, N. Kohli, J. Brière, M. Ménard, and F. Nabki, “Translational MEMS Platform for Planar Optical Switching Fabrics,” Micromachines 10(7), 435 (2019).
[Crossref]

Bulgan, E.

E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
[Crossref]

Cai, L.

L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photonics Res. 7(9), 1003–1013 (2019).
[Crossref]

L. Cai, A. Mahmoud, and G. Piazza, “Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications,” Opt. Express 27(7), 9794–9802 (2019).
[Crossref]

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Chau, F. S.

H. Du, F. S. Chau, and G. Y. Zhou, “Mechanically-Tunable Photonic Devices with On-Chip Integrated MEMS/NEMS Actuators,” Micromachines 7(4), 69 (2016).
[Crossref]

Chen, X.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Chiaverini, J.

G. N. West, D. K. W. Loh, C. Sorace-Agaskar, K. K. Mehta, J. Sage, J. Chiaverini, and R. J. Ram, “Low-loss integrated photonics for the blue and ultraviolet regime,” APL Photonics 4(2), 026101 (2019).
[Crossref]

Cleland, A. N.

A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109(3), 033107 (2016).
[Crossref]

Davanço, M.

J. M. Fink, M. Kalaee, A. Pitanti, R. Norte, L. Heinzle, M. Davanço, K. Srinivasan, and O. Painter, “Quantum electromechanics on silicon nitride nanomembranes,” Nat. Commun. 7(1), 12396 (2016).
[Crossref]

Dekker, R.

Dekkers, M.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).
[Crossref]

N. Hosseini, R. Dekker, M. Hoekman, M. Dekkers, J. Bos, A. Leinse, and R. Heideman, “Stress-optic modulator in TriPleX platform using a ezoelectric lead zirconate titanate (PZT) thin film,” Opt. Express 23(11), 14018–14026 (2015).
[Crossref]

Derose, C.

DeRose, C. T.

E. A. Douglas, P. Mahony, A. Starbuck, A. Pomerene, D. C. Trotter, and C. T. DeRose, “Effect of precursors on propagation loss for plasma-enhanced chemical vapor deposition of SiNx:H waveguides,” Opt. Mater. Express 6(9), 2892 (2016).
[Crossref]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulations with exceptionally large electro-optic coefficients,” Nat. Photonics 1(7), 423 (2007).
[Crossref]

Desiatov, B.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. E. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100(14), 141107 (2012).
[Crossref]

Donati, S.

S. Donati, L. Barbieri, and G. Martini, “Piezoelectric actuation of silica-on-silicon waveguide devices,” IEEE Photonics Technol. Lett. 10(10), 1428–1430 (1998).
[Crossref]

Dong, B.

H. Tian, J. Liu, B. Dong, J. C. Skehan, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “Hybrid Integrated Photonics Using Bulk Acoustic Resonators,” arXiv 1907.10177v1 (2019).

H. Tian, B. Dong, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “An unreleased MEMS actuated silicon nitride resonator with bidirectional tuning,” in CLEO, (2018).

Dong, Y.

S. Zhu, Q. Zhong, T. Hu, Y. Li, Z. Xu, Y. Dong, and N. Singh, “Aluminum Nitride Ultralow Loss Waveguides and Push-Pull Electro-Optic Modulators for Near Infrared and Visible Integrated Photonics,” in Optical Fiber Communications Conference and Exhibition (OFC), (2019), pp. 1–3.

Douglas, E. A.

Du, H.

H. Du, F. S. Chau, and G. Y. Zhou, “Mechanically-Tunable Photonic Devices with On-Chip Integrated MEMS/NEMS Actuators,” Micromachines 7(4), 69 (2016).
[Crossref]

Dubois, M.-A.

F. Martin, P. Muralt, M.-A. Dubois, and A. Pezous, “Thickness dependence of properties of highly c-axis textured AlN thin films,” J. Vac. Sci. Technol., A 22(2), 361–365 (2004).
[Crossref]

Dung, B.

B. Dung, H. Tian, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “PORT: A Piezoelectric Optical Resonance Tuner,” in IEEE MEMS, (Belfast, Ireland, 2018), pp. 739–742.

Ebert, J.

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104(9), 091108 (2014).
[Crossref]

Elshaari, A. W.

A. W. Elshaari, I. E. Zadeh, K. D. Jons, and V. Zwiller, “Thermo-Optic Characterization of Silicon Nitride Resonators for Cryogenic Photonic Circuits,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

Enami, Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulations with exceptionally large electro-optic coefficients,” Nat. Photonics 1(7), 423 (2007).
[Crossref]

Epping, J. P.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).
[Crossref]

Fink, J. M.

J. M. Fink, M. Kalaee, A. Pitanti, R. Norte, L. Heinzle, M. Davanço, K. Srinivasan, and O. Painter, “Quantum electromechanics on silicon nitride nanomembranes,” Nat. Commun. 7(1), 12396 (2016).
[Crossref]

Fink, Y.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell's equations with shifting material boundaries,” Phys. Rev. E 65(6), 066611 (2002).
[Crossref]

Fiore, A.

Fong, K. Y.

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

Gehl, M.

Ghosh, S.

Goykhman, I.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. E. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100(14), 141107 (2012).
[Crossref]

Greenlee, C.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulations with exceptionally large electro-optic coefficients,” Nat. Photonics 1(7), 423 (2007).
[Crossref]

Han, S.

Hane, K.

E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
[Crossref]

Heideman, R.

Heideman, R. G.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).
[Crossref]

Heinzle, L.

J. M. Fink, M. Kalaee, A. Pitanti, R. Norte, L. Heinzle, M. Davanço, K. Srinivasan, and O. Painter, “Quantum electromechanics on silicon nitride nanomembranes,” Nat. Commun. 7(1), 12396 (2016).
[Crossref]

Hill, T. A.

K. E. Wojciechowski, R. H. Olsson, M. R. Tuck, E. Roherty-Osmun, and T. A. Hill, “Single-chip precision oscillators based on multi-frequency, high-Q aluminum nitride MEMS resonators,” inTRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference, 2009), 2126–2130.

Hoekman, M.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).
[Crossref]

N. Hosseini, R. Dekker, M. Hoekman, M. Dekkers, J. Bos, A. Leinse, and R. Heideman, “Stress-optic modulator in TriPleX platform using a ezoelectric lead zirconate titanate (PZT) thin film,” Opt. Express 23(11), 14018–14026 (2015).
[Crossref]

Hosseini, N.

Hu, T.

S. Zhu, Q. Zhong, T. Hu, Y. Li, Z. Xu, Y. Dong, and N. Singh, “Aluminum Nitride Ultralow Loss Waveguides and Push-Pull Electro-Optic Modulators for Near Infrared and Visible Integrated Photonics,” in Optical Fiber Communications Conference and Exhibition (OFC), (2019), pp. 1–3.

Ibanescu, M.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell's equations with shifting material boundaries,” Phys. Rev. E 65(6), 066611 (2002).
[Crossref]

Ilin, K.

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104(9), 091108 (2014).
[Crossref]

Inukai, T.

T. Inukai and K. Ono, “Optical Characteristics of Amorphous Silicon Nitride Thin Films Prepared by Electron Cyclotron Resonance Plasma Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 33(5A), 2593–2598 (1994).
[Crossref]

Jaing, C.-C.

Jen, A. K. Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulations with exceptionally large electro-optic coefficients,” Nat. Photonics 1(7), 423 (2007).
[Crossref]

Jiang, W.

Jin, W.

W. Jin, R. G. Polcawich, P. A. Morton, and J. E. Bowers, “Piezoelectrically tuned silicon nitride ring resonator,” Opt. Express 26(3), 3174–3187 (2018).
[Crossref]

W. Jin, E. J. Stanton, N. Volet, R. G. Polcawich, D. Baney, P. Morton, and J. E. Bowers, “Piezoelectric tuning of a suspended silicon nitride ring resonator,” 30th Annual Conference of the IEEE Photonics Society (IPC), 117–118 (2017).

Joannopoulos, J. D.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell's equations with shifting material boundaries,” Phys. Rev. E 65(6), 066611 (2002).
[Crossref]

Johnson, S. G.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell's equations with shifting material boundaries,” Phys. Rev. E 65(6), 066611 (2002).
[Crossref]

Johnson, T. J.

Jons, K. D.

A. W. Elshaari, I. E. Zadeh, K. D. Jons, and V. Zwiller, “Thermo-Optic Characterization of Silicon Nitride Resonators for Cryogenic Photonic Circuits,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

Kabla, M.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. E. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100(14), 141107 (2012).
[Crossref]

Kalaee, M.

J. M. Fink, M. Kalaee, A. Pitanti, R. Norte, L. Heinzle, M. Davanço, K. Srinivasan, and O. Painter, “Quantum electromechanics on silicon nitride nanomembranes,” Nat. Commun. 7(1), 12396 (2016).
[Crossref]

Kanamori, Y.

E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
[Crossref]

Kano, K.

M. Akiyama, K. Kano, and A. Teshigahara, “Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films,” Appl. Phys. Lett. 95(16), 162107 (2009).
[Crossref]

Khan, M.

L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photonics Res. 7(9), 1003–1013 (2019).
[Crossref]

Kim, T. D.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulations with exceptionally large electro-optic coefficients,” Nat. Photonics 1(7), 423 (2007).
[Crossref]

Kippenberg, T. J.

B. Dung, H. Tian, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “PORT: A Piezoelectric Optical Resonance Tuner,” in IEEE MEMS, (Belfast, Ireland, 2018), pp. 739–742.

H. Tian, B. Dong, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “An unreleased MEMS actuated silicon nitride resonator with bidirectional tuning,” in CLEO, (2018).

H. Tian, J. Liu, B. Dong, J. C. Skehan, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “Hybrid Integrated Photonics Using Bulk Acoustic Resonators,” arXiv 1907.10177v1 (2019).

Klein, E. J.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).
[Crossref]

Kohli, N.

S. Sharma, N. Kohli, J. Brière, M. Ménard, and F. Nabki, “Translational MEMS Platform for Planar Optical Switching Fabrics,” Micromachines 10(7), 435 (2019).
[Crossref]

Laer, R. V.

Lee, C.-C.

Lee, K.-H.

Leinse, A.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).
[Crossref]

N. Hosseini, R. Dekker, M. Hoekman, M. Dekkers, J. Bos, A. Leinse, and R. Heideman, “Stress-optic modulator in TriPleX platform using a ezoelectric lead zirconate titanate (PZT) thin film,” Opt. Express 23(11), 14018–14026 (2015).
[Crossref]

Lentine, A. L.

Levy, U.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. E. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100(14), 141107 (2012).
[Crossref]

Li, H.

H. Li, Q. Liu, and M. Li, “Electromechanical Brillouin scattering in integrated planar photonics,” APL Photonics 4(8), 080802 (2019).
[Crossref]

Q. Liu, H. Li, and M. Li, “Electromechanical Brillouin scattering in integrated optomechanical waveguides,” Optica 6(6), 778–785 (2019).
[Crossref]

S. A. Tadesse, H. Li, Q. Liu, and M. Li, “Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band,” Appl. Phys. Lett. 107(20), 201113 (2015).
[Crossref]

Li, M.

H. Li, Q. Liu, and M. Li, “Electromechanical Brillouin scattering in integrated planar photonics,” APL Photonics 4(8), 080802 (2019).
[Crossref]

Q. Liu, H. Li, and M. Li, “Electromechanical Brillouin scattering in integrated optomechanical waveguides,” Optica 6(6), 778–785 (2019).
[Crossref]

S. A. Tadesse, H. Li, Q. Liu, and M. Li, “Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band,” Appl. Phys. Lett. 107(20), 201113 (2015).
[Crossref]

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5(1), 5402 (2014).
[Crossref]

Li, Y.

S. Zhu, Q. Zhong, T. Hu, Y. Li, Z. Xu, Y. Dong, and N. Singh, “Aluminum Nitride Ultralow Loss Waveguides and Push-Pull Electro-Optic Modulators for Near Infrared and Visible Integrated Photonics,” in Optical Fiber Communications Conference and Exhibition (OFC), (2019), pp. 1–3.

Liu, J.

H. Tian, J. Liu, B. Dong, J. C. Skehan, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “Hybrid Integrated Photonics Using Bulk Acoustic Resonators,” arXiv 1907.10177v1 (2019).

Liu, Q.

H. Li, Q. Liu, and M. Li, “Electromechanical Brillouin scattering in integrated planar photonics,” APL Photonics 4(8), 080802 (2019).
[Crossref]

Q. Liu, H. Li, and M. Li, “Electromechanical Brillouin scattering in integrated optomechanical waveguides,” Optica 6(6), 778–785 (2019).
[Crossref]

S. A. Tadesse, H. Li, Q. Liu, and M. Li, “Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band,” Appl. Phys. Lett. 107(20), 201113 (2015).
[Crossref]

Liu, T. R.

Lo, G. Q.

Loh, D. K. W.

G. N. West, D. K. W. Loh, C. Sorace-Agaskar, K. K. Mehta, J. Sage, J. Chiaverini, and R. J. Ram, “Low-loss integrated photonics for the blue and ultraviolet regime,” APL Photonics 4(2), 026101 (2019).
[Crossref]

Loncar, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Long, C.

Loychik, C.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulations with exceptionally large electro-optic coefficients,” Nat. Photonics 1(7), 423 (2007).
[Crossref]

Luo, J.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulations with exceptionally large electro-optic coefficients,” Nat. Photonics 1(7), 423 (2007).
[Crossref]

Mahmoud, A.

L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photonics Res. 7(9), 1003–1013 (2019).
[Crossref]

L. Cai, A. Mahmoud, and G. Piazza, “Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications,” Opt. Express 27(7), 9794–9802 (2019).
[Crossref]

Mahmoud, M.

L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photonics Res. 7(9), 1003–1013 (2019).
[Crossref]

Mahony, P.

Marchenko, D.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).
[Crossref]

Martin, F.

F. Martin, P. Muralt, M.-A. Dubois, and A. Pezous, “Thickness dependence of properties of highly c-axis textured AlN thin films,” J. Vac. Sci. Technol., A 22(2), 361–365 (2004).
[Crossref]

Martini, G.

S. Donati, L. Barbieri, and G. Martini, “Piezoelectric actuation of silica-on-silicon waveguide devices,” IEEE Photonics Technol. Lett. 10(10), 1428–1430 (1998).
[Crossref]

Mateman, R.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).
[Crossref]

Mathine, D.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulations with exceptionally large electro-optic coefficients,” Nat. Photonics 1(7), 423 (2007).
[Crossref]

Mayor, F. M.

McKenna, T. P.

Meckbach, J. M.

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104(9), 091108 (2014).
[Crossref]

Mehta, K. K.

G. N. West, D. K. W. Loh, C. Sorace-Agaskar, K. K. Mehta, J. Sage, J. Chiaverini, and R. J. Ram, “Low-loss integrated photonics for the blue and ultraviolet regime,” APL Photonics 4(2), 026101 (2019).
[Crossref]

Melgaard, S.

Meltzer, S. E.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. E. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100(14), 141107 (2012).
[Crossref]

Ménard, M.

S. Sharma, N. Kohli, J. Brière, M. Ménard, and F. Nabki, “Translational MEMS Platform for Planar Optical Switching Fabrics,” Micromachines 10(7), 435 (2019).
[Crossref]

Morton, P.

W. Jin, E. J. Stanton, N. Volet, R. G. Polcawich, D. Baney, P. Morton, and J. E. Bowers, “Piezoelectric tuning of a suspended silicon nitride ring resonator,” 30th Annual Conference of the IEEE Photonics Society (IPC), 117–118 (2017).

Morton, P. A.

Mukherjee, T.

L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photonics Res. 7(9), 1003–1013 (2019).
[Crossref]

Muller, R. S.

Muralt, P.

F. Martin, P. Muralt, M.-A. Dubois, and A. Pezous, “Thickness dependence of properties of highly c-axis textured AlN thin films,” J. Vac. Sci. Technol., A 22(2), 361–365 (2004).
[Crossref]

P. Muralt, “AlN Thin Film Processing and Basic Properties,” in Piezoelectric MEMS Resonators, H. Bhugra and G. Piazza, eds. (Springer International Publishing, 2017), pp. 3–37.

Nabki, F.

S. Sharma, N. Kohli, J. Brière, M. Ménard, and F. Nabki, “Translational MEMS Platform for Planar Optical Switching Fabrics,” Micromachines 10(7), 435 (2019).
[Crossref]

Nachmias, T.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. E. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100(14), 141107 (2012).
[Crossref]

Norte, R.

J. M. Fink, M. Kalaee, A. Pitanti, R. Norte, L. Heinzle, M. Davanço, K. Srinivasan, and O. Painter, “Quantum electromechanics on silicon nitride nanomembranes,” Nat. Commun. 7(1), 12396 (2016).
[Crossref]

Norwood, R. A.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulations with exceptionally large electro-optic coefficients,” Nat. Photonics 1(7), 423 (2007).
[Crossref]

Olsson, R. H.

K. E. Wojciechowski, R. H. Olsson, M. R. Tuck, E. Roherty-Osmun, and T. A. Hill, “Single-chip precision oscillators based on multi-frequency, high-Q aluminum nitride MEMS resonators,” inTRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference, 2009), 2126–2130.

Ono, K.

T. Inukai and K. Ono, “Optical Characteristics of Amorphous Silicon Nitride Thin Films Prepared by Electron Cyclotron Resonance Plasma Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 33(5A), 2593–2598 (1994).
[Crossref]

Pagliano, F.

Painter, O.

Paraïso, T.

Parsons, G. N.

G. N. Parsons, J. H. Souk, and J. Batey, “Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 70(3), 1553–1560 (1991).
[Crossref]

Patel, R. N.

Peairs, G. A.

A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109(3), 033107 (2016).
[Crossref]

Pernice, W. H.

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

Pernice, W. H. P.

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104(9), 091108 (2014).
[Crossref]

C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-Loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing,” Nano Lett. 12(7), 3562–3568 (2012).
[Crossref]

Peyghambarian, N.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulations with exceptionally large electro-optic coefficients,” Nat. Photonics 1(7), 423 (2007).
[Crossref]

Pezous, A.

F. Martin, P. Muralt, M.-A. Dubois, and A. Pezous, “Thickness dependence of properties of highly c-axis textured AlN thin films,” J. Vac. Sci. Technol., A 22(2), 361–365 (2004).
[Crossref]

Pfeifer, H.

Piazza, G.

Pitanti, A.

J. M. Fink, M. Kalaee, A. Pitanti, R. Norte, L. Heinzle, M. Davanço, K. Srinivasan, and O. Painter, “Quantum electromechanics on silicon nitride nanomembranes,” Nat. Commun. 7(1), 12396 (2016).
[Crossref]

Polcawich, R. G.

W. Jin, R. G. Polcawich, P. A. Morton, and J. E. Bowers, “Piezoelectrically tuned silicon nitride ring resonator,” Opt. Express 26(3), 3174–3187 (2018).
[Crossref]

W. Jin, E. J. Stanton, N. Volet, R. G. Polcawich, D. Baney, P. Morton, and J. E. Bowers, “Piezoelectric tuning of a suspended silicon nitride ring resonator,” 30th Annual Conference of the IEEE Photonics Society (IPC), 117–118 (2017).

Pomerene, A.

Quack, N.

Ram, R. J.

G. N. West, D. K. W. Loh, C. Sorace-Agaskar, K. K. Mehta, J. Sage, J. Chiaverini, and R. J. Ram, “Low-loss integrated photonics for the blue and ultraviolet regime,” APL Photonics 4(2), 026101 (2019).
[Crossref]

Roeloffzen, C. G. H.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).
[Crossref]

Roherty-Osmun, E.

K. E. Wojciechowski, R. H. Olsson, M. R. Tuck, E. Roherty-Osmun, and T. A. Hill, “Single-chip precision oscillators based on multi-frequency, high-Q aluminum nitride MEMS resonators,” inTRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference, 2009), 2126–2130.

Safavi-Naeini, A. H.

Sage, J.

G. N. West, D. K. W. Loh, C. Sorace-Agaskar, K. K. Mehta, J. Sage, J. Chiaverini, and R. J. Ram, “Low-loss integrated photonics for the blue and ultraviolet regime,” APL Photonics 4(2), 026101 (2019).
[Crossref]

Sarabalis, C. J.

Satzinger, K. J.

A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109(3), 033107 (2016).
[Crossref]

Schuck, C.

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

Sebbag, Y.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. E. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100(14), 141107 (2012).
[Crossref]

Seok, T. J.

Shams-Ansari, A.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Sharma, S.

S. Sharma, N. Kohli, J. Brière, M. Ménard, and F. Nabki, “Translational MEMS Platform for Planar Optical Switching Fabrics,” Micromachines 10(7), 435 (2019).
[Crossref]

Siegel, M.

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104(9), 091108 (2014).
[Crossref]

Siirola, J.

Singh, N.

S. Zhu, Q. Zhong, T. Hu, Y. Li, Z. Xu, Y. Dong, and N. Singh, “Aluminum Nitride Ultralow Loss Waveguides and Push-Pull Electro-Optic Modulators for Near Infrared and Visible Integrated Photonics,” in Optical Fiber Communications Conference and Exhibition (OFC), (2019), pp. 1–3.

Skehan, J. C.

H. Tian, J. Liu, B. Dong, J. C. Skehan, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “Hybrid Integrated Photonics Using Bulk Acoustic Resonators,” arXiv 1907.10177v1 (2019).

Skorobogatiy, M. A.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell's equations with shifting material boundaries,” Phys. Rev. E 65(6), 066611 (2002).
[Crossref]

Sorace-Agaskar, C.

G. N. West, D. K. W. Loh, C. Sorace-Agaskar, K. K. Mehta, J. Sage, J. Chiaverini, and R. J. Ram, “Low-loss integrated photonics for the blue and ultraviolet regime,” APL Photonics 4(2), 026101 (2019).
[Crossref]

Souk, J. H.

G. N. Parsons, J. H. Souk, and J. Batey, “Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 70(3), 1553–1560 (1991).
[Crossref]

Srinivasan, K.

J. M. Fink, M. Kalaee, A. Pitanti, R. Norte, L. Heinzle, M. Davanço, K. Srinivasan, and O. Painter, “Quantum electromechanics on silicon nitride nanomembranes,” Nat. Commun. 7(1), 12396 (2016).
[Crossref]

Stanton, E. J.

W. Jin, E. J. Stanton, N. Volet, R. G. Polcawich, D. Baney, P. Morton, and J. E. Bowers, “Piezoelectric tuning of a suspended silicon nitride ring resonator,” 30th Annual Conference of the IEEE Photonics Society (IPC), 117–118 (2017).

Starbuck, A.

Stegmaier, M.

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104(9), 091108 (2014).
[Crossref]

Sun, X.

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

Tadesse, S. A.

S. A. Tadesse, H. Li, Q. Liu, and M. Li, “Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band,” Appl. Phys. Lett. 107(20), 201113 (2015).
[Crossref]

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5(1), 5402 (2014).
[Crossref]

Tang, C.-J.

Tang, H. X.

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-Loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing,” Nano Lett. 12(7), 3562–3568 (2012).
[Crossref]

Teshigahara, A.

M. Akiyama, K. Kano, and A. Teshigahara, “Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films,” Appl. Phys. Lett. 95(16), 162107 (2009).
[Crossref]

Tian, H.

B. Dung, H. Tian, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “PORT: A Piezoelectric Optical Resonance Tuner,” in IEEE MEMS, (Belfast, Ireland, 2018), pp. 739–742.

H. Tian, J. Liu, B. Dong, J. C. Skehan, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “Hybrid Integrated Photonics Using Bulk Acoustic Resonators,” arXiv 1907.10177v1 (2019).

H. Tian, B. Dong, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “An unreleased MEMS actuated silicon nitride resonator with bidirectional tuning,” in CLEO, (2018).

Tian, Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulations with exceptionally large electro-optic coefficients,” Nat. Photonics 1(7), 423 (2007).
[Crossref]

Trotter, D.

Trotter, D. C.

Tuck, M. R.

K. E. Wojciechowski, R. H. Olsson, M. R. Tuck, E. Roherty-Osmun, and T. A. Hill, “Single-chip precision oscillators based on multi-frequency, high-Q aluminum nitride MEMS resonators,” inTRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference, 2009), 2126–2130.

Vainsencher, A.

A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109(3), 033107 (2016).
[Crossref]

Volet, N.

W. Jin, E. J. Stanton, N. Volet, R. G. Polcawich, D. Baney, P. Morton, and J. E. Bowers, “Piezoelectric tuning of a suspended silicon nitride ring resonator,” 30th Annual Conference of the IEEE Photonics Society (IPC), 117–118 (2017).

Wang, C.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Weisberg, O.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell's equations with shifting material boundaries,” Phys. Rev. E 65(6), 066611 (2002).
[Crossref]

West, G. N.

G. N. West, D. K. W. Loh, C. Sorace-Agaskar, K. K. Mehta, J. Sage, J. Chiaverini, and R. J. Ram, “Low-loss integrated photonics for the blue and ultraviolet regime,” APL Photonics 4(2), 026101 (2019).
[Crossref]

Wevers, L.

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).
[Crossref]

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Witmer, J. D.

Wojciechowski, K. E.

K. E. Wojciechowski, R. H. Olsson, M. R. Tuck, E. Roherty-Osmun, and T. A. Hill, “Single-chip precision oscillators based on multi-frequency, high-Q aluminum nitride MEMS resonators,” inTRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference, 2009), 2126–2130.

Wright, J. B.

Wu, M. C.

Xiong, C.

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-Loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing,” Nano Lett. 12(7), 3562–3568 (2012).
[Crossref]

Xu, Z.

S. Zhu, Q. Zhong, T. Hu, Y. Li, Z. Xu, Y. Dong, and N. Singh, “Aluminum Nitride Ultralow Loss Waveguides and Push-Pull Electro-Optic Modulators for Near Infrared and Visible Integrated Photonics,” in Optical Fiber Communications Conference and Exhibition (OFC), (2019), pp. 1–3.

Yoo, B. W.

Yoshaei, O.

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. E. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100(14), 141107 (2012).
[Crossref]

Zadeh, I. E.

A. W. Elshaari, I. E. Zadeh, K. D. Jons, and V. Zwiller, “Thermo-Optic Characterization of Silicon Nitride Resonators for Cryogenic Photonic Circuits,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

Zang, L.

Zervas, M.

B. Dung, H. Tian, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “PORT: A Piezoelectric Optical Resonance Tuner,” in IEEE MEMS, (Belfast, Ireland, 2018), pp. 739–742.

H. Tian, B. Dong, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “An unreleased MEMS actuated silicon nitride resonator with bidirectional tuning,” in CLEO, (2018).

H. Tian, J. Liu, B. Dong, J. C. Skehan, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “Hybrid Integrated Photonics Using Bulk Acoustic Resonators,” arXiv 1907.10177v1 (2019).

Zhang, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

Zhong, Q.

S. Zhu, Q. Zhong, T. Hu, Y. Li, Z. Xu, Y. Dong, and N. Singh, “Aluminum Nitride Ultralow Loss Waveguides and Push-Pull Electro-Optic Modulators for Near Infrared and Visible Integrated Photonics,” in Optical Fiber Communications Conference and Exhibition (OFC), (2019), pp. 1–3.

Zhou, G. Y.

H. Du, F. S. Chau, and G. Y. Zhou, “Mechanically-Tunable Photonic Devices with On-Chip Integrated MEMS/NEMS Actuators,” Micromachines 7(4), 69 (2016).
[Crossref]

Zhu, S.

S. Zhu, Q. Zhong, T. Hu, Y. Li, Z. Xu, Y. Dong, and N. Singh, “Aluminum Nitride Ultralow Loss Waveguides and Push-Pull Electro-Optic Modulators for Near Infrared and Visible Integrated Photonics,” in Optical Fiber Communications Conference and Exhibition (OFC), (2019), pp. 1–3.

Zhu, S. Y.

Zwiller, V.

A. W. Elshaari, I. E. Zadeh, K. D. Jons, and V. Zwiller, “Thermo-Optic Characterization of Silicon Nitride Resonators for Cryogenic Photonic Circuits,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

APL Photonics (2)

H. Li, Q. Liu, and M. Li, “Electromechanical Brillouin scattering in integrated planar photonics,” APL Photonics 4(8), 080802 (2019).
[Crossref]

G. N. West, D. K. W. Loh, C. Sorace-Agaskar, K. K. Mehta, J. Sage, J. Chiaverini, and R. J. Ram, “Low-loss integrated photonics for the blue and ultraviolet regime,” APL Photonics 4(2), 026101 (2019).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

M. Stegmaier, J. Ebert, J. M. Meckbach, K. Ilin, M. Siegel, and W. H. P. Pernice, “Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths,” Appl. Phys. Lett. 104(9), 091108 (2014).
[Crossref]

S. A. Tadesse, H. Li, Q. Liu, and M. Li, “Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band,” Appl. Phys. Lett. 107(20), 201113 (2015).
[Crossref]

E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
[Crossref]

A. Vainsencher, K. J. Satzinger, G. A. Peairs, and A. N. Cleland, “Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device,” Appl. Phys. Lett. 109(3), 033107 (2016).
[Crossref]

Y. Sebbag, I. Goykhman, B. Desiatov, T. Nachmias, O. Yoshaei, M. Kabla, S. E. Meltzer, and U. Levy, “Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film,” Appl. Phys. Lett. 100(14), 141107 (2012).
[Crossref]

M. Akiyama, K. Kano, and A. Teshigahara, “Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films,” Appl. Phys. Lett. 95(16), 162107 (2009).
[Crossref]

IEEE Photonics J. (1)

A. W. Elshaari, I. E. Zadeh, K. D. Jons, and V. Zwiller, “Thermo-Optic Characterization of Silicon Nitride Resonators for Cryogenic Photonic Circuits,” IEEE Photonics J. 8(3), 1–9 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Donati, L. Barbieri, and G. Martini, “Piezoelectric actuation of silica-on-silicon waveguide devices,” IEEE Photonics Technol. Lett. 10(10), 1428–1430 (1998).
[Crossref]

J. Appl. Phys. (1)

G. N. Parsons, J. H. Souk, and J. Batey, “Low hydrogen content stoichiometric silicon nitride films deposited by plasma-enhanced chemical vapor deposition,” J. Appl. Phys. 70(3), 1553–1560 (1991).
[Crossref]

J. Vac. Sci. Technol., A (1)

F. Martin, P. Muralt, M.-A. Dubois, and A. Pezous, “Thickness dependence of properties of highly c-axis textured AlN thin films,” J. Vac. Sci. Technol., A 22(2), 361–365 (2004).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Inukai and K. Ono, “Optical Characteristics of Amorphous Silicon Nitride Thin Films Prepared by Electron Cyclotron Resonance Plasma Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 33(5A), 2593–2598 (1994).
[Crossref]

Micromachines (2)

H. Du, F. S. Chau, and G. Y. Zhou, “Mechanically-Tunable Photonic Devices with On-Chip Integrated MEMS/NEMS Actuators,” Micromachines 7(4), 69 (2016).
[Crossref]

S. Sharma, N. Kohli, J. Brière, M. Ménard, and F. Nabki, “Translational MEMS Platform for Planar Optical Switching Fabrics,” Micromachines 10(7), 435 (2019).
[Crossref]

Nano Lett. (1)

C. Xiong, W. H. P. Pernice, and H. X. Tang, “Low-Loss, Silicon Integrated, Aluminum Nitride Photonic Circuits and Their Use for Electro-Optic Signal Processing,” Nano Lett. 12(7), 3562–3568 (2012).
[Crossref]

Nat. Commun. (2)

J. M. Fink, M. Kalaee, A. Pitanti, R. Norte, L. Heinzle, M. Davanço, K. Srinivasan, and O. Painter, “Quantum electromechanics on silicon nitride nanomembranes,” Nat. Commun. 7(1), 12396 (2016).
[Crossref]

S. A. Tadesse and M. Li, “Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies,” Nat. Commun. 5(1), 5402 (2014).
[Crossref]

Nat. Photonics (1)

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulations with exceptionally large electro-optic coefficients,” Nat. Photonics 1(7), 423 (2007).
[Crossref]

Nature (1)

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref]

New J. Phys. (1)

C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, and H. X. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys. 14(9), 095014 (2012).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Opt. Mater. Express (1)

Optica (5)

Photonics Res. (1)

L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, and G. Piazza, “Acousto-optical modulation of thin film lithium niobate waveguide devices,” Photonics Res. 7(9), 1003–1013 (2019).
[Crossref]

Phys. Rev. E (1)

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell's equations with shifting material boundaries,” Phys. Rev. E 65(6), 066611 (2002).
[Crossref]

Proc. SPIE (1)

J. P. Epping, D. Marchenko, A. Leinse, R. Mateman, M. Hoekman, L. Wevers, E. J. Klein, C. G. H. Roeloffzen, M. Dekkers, and R. G. Heideman, “Ultra-low-power stress-optics modulator for microwave photonics,” Proc. SPIE 10106, 101060F (2017).
[Crossref]

Other (7)

B. Dung, H. Tian, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “PORT: A Piezoelectric Optical Resonance Tuner,” in IEEE MEMS, (Belfast, Ireland, 2018), pp. 739–742.

H. Tian, B. Dong, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “An unreleased MEMS actuated silicon nitride resonator with bidirectional tuning,” in CLEO, (2018).

H. Tian, J. Liu, B. Dong, J. C. Skehan, M. Zervas, T. J. Kippenberg, and S. A. Bhave, “Hybrid Integrated Photonics Using Bulk Acoustic Resonators,” arXiv 1907.10177v1 (2019).

W. Jin, E. J. Stanton, N. Volet, R. G. Polcawich, D. Baney, P. Morton, and J. E. Bowers, “Piezoelectric tuning of a suspended silicon nitride ring resonator,” 30th Annual Conference of the IEEE Photonics Society (IPC), 117–118 (2017).

S. Zhu, Q. Zhong, T. Hu, Y. Li, Z. Xu, Y. Dong, and N. Singh, “Aluminum Nitride Ultralow Loss Waveguides and Push-Pull Electro-Optic Modulators for Near Infrared and Visible Integrated Photonics,” in Optical Fiber Communications Conference and Exhibition (OFC), (2019), pp. 1–3.

K. E. Wojciechowski, R. H. Olsson, M. R. Tuck, E. Roherty-Osmun, and T. A. Hill, “Single-chip precision oscillators based on multi-frequency, high-Q aluminum nitride MEMS resonators,” inTRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference, 2009), 2126–2130.

P. Muralt, “AlN Thin Film Processing and Basic Properties,” in Piezoelectric MEMS Resonators, H. Bhugra and G. Piazza, eds. (Springer International Publishing, 2017), pp. 3–37.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Device architecture: (a) Schematic cross-section of a modulator device. (b) Scanning electron micrograph of fabricated ring modulator device. (c) Cross-sectional scanning electron micrograph of fabricated ring modulator device showing false-colored silicon nitride waveguide in purple transparent box.
Fig. 2.
Fig. 2. (a) Representative device for ring modulator design. (b) Nominal device architecture cross section with labels for critical layer dimensions.
Fig. 3.
Fig. 3. (a) An axisymmetic finite element analysis of the TE00 optical resonance being piezo-optomechanically actuated in a non-undercut ring modulator at -1 V. Deformation is scaled by 10000x. The optical power circulating the ring resonator is shown in red. (b) An image of the actuation in a released ring modulator with the same applied voltage and scaling. (c) Von Mises stress from an applied voltage of -1V to a non-undercut ring modulator. (d) Von Mises stress from an applied voltage of -1V to an undercut ring modulator.
Fig. 4.
Fig. 4. (a) An axisymmetic finite element analysis of the radial and vertical displacement of the silicon nitride ring as a function of the actuation platform undercut. (b) A plot of the responsivity and the first mechanical eigenmode frequency as a function of the ring modulator undercut.
Fig. 5.
Fig. 5. (a) Microscope image of an MZI modulator. Each arm is 42 µm wide and 480 µm long. The pictured device has 27 periodically repeated bends on each arm. (b) A higher magnification image of a MZI arm. (c) A finite element analysis of the mechanical deformation of one periodic bend of the phase shifting arm. The deformation is scaled from 1 V by 20000x and uses a exaggerated (1 µm thicker) tether for clarity.
Fig. 6.
Fig. 6. (a) Model of one periodic bend of the phase shifting arm. (b) Nominal device architecture cross section with labels for critical layer dimensions.
Fig. 7.
Fig. 7. Microscope picture of a 40.8 µm diameter ring modulator coupled to straight waveguide. GSG pads allow for electrical coupling. Silicon nitride ring with 800 nm width and 285 nm height.
Fig. 8.
Fig. 8. (a) Transmission spectrum of a non-undercut ring modulator. The actuation platform is 40.8 µm in diameter and has no undercut. Two mode families of different radial orders are clearly present. (b) The measured (blue) transmission spectrum is fitted (orange) using coupled mode theory to determine the intrinsic quality factor and waveguide coupling rate. The lower x-axis is the wavelength detuning of the laser; the upper x-axis is the corresponding calculated voltage required to change the transmission to the value associated with that detuning. (c) The S21 response measured using a vector network analyzer and high frequency photodetector. (d) The optical response of a non-undercut ring resonator to a 4 ns rise time, 8 Vpp electrical pulse average over 16 pulses. (e) Responsivity of the ring modulator in response to a 10 Vpp sawtooth waveform. 0.2 GHz/V responsivity was measured.
Fig. 9.
Fig. 9. (a) Transmission spectrum of a released ring modulator. The actuation platform is 40.8 µm in diameter and is undercut by 12.4 µm. Two mode families of different radial orders are again present. (b) Measured (blue) and fit (orange) lineshape for a single, tested resonance. The lower x-axis is the wavelength detuning of the laser; the upper x-axis is the corresponding calculated voltage required to change the transmission to the value associated with that detuning. (c) The S21 response for the undercut ring modulator measured using a vector network analyzer and photodetector. The first mechanical eigenfrequency appears at 7.26 MHz. (d) The optical response of an undercut ring resonator to a 200 ns rise time, 4 Vpp electrical pulse average over 16 pulses. (e) Responsivity of the ring modulator in response to a 5 Vpp slow saw-wave. 0.48 GHz/V responsivity was measured.
Fig. 10.
Fig. 10. (a) The S21 response for a single arm measured with a vector network analyzer and photodetector. The first mechanical eigenfrequency appears at 5.05 MHz. (b) A 40 Vpp pulse with a 750 ns rise time (amplifier limited) is applied to two arms of a MZI. Opposite voltages applied to each channel. The actuation platform for each waveguide arm is 42 µm wide, 18.5 µm undercut, and 480 µm long. Data is averaged over 16 pulses.
Fig. 11.
Fig. 11. (a) A finite element analysis of the TE00 optical mode, with optical power shown in red, of a 5 µm wide silicon nitride waveguide (purple outline) being piezo-optomechanically actuated by a 10 µm wide AlN platform (blue). (b) Von Mises stress of the same modulator at 1 V shown in 3D. (c) A graph of the optical responsivity and LVπ as a function of the waveguide width.
Fig. 12.
Fig. 12. Wavemeter measured responsivity of a ring resonator in response to a 20 Vpp slow saw-wave at 7 K.

Tables (2)

Tables Icon

Table 1. Nominal Ring Modulator Device Parameters

Tables Icon

Table 2. Nominal MZM Device Parameters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ p h = λ Q 2 π c ; 1 f 3 d B = 2 π τ p h

Metrics