Abstract

Low noise, high power single-frequency lasers and amplifiers are key components of interferometric gravitational wave detectors. One way to increase the detector sensitivity is to increase the power injected into the interferometers. We developed a fiber amplifier engineering prototype with a pump power limited output power of 200 W at 1064 nm. No signs of stimulated Brillouin scattering are observed at 200 W. At the maximum output power the polarization extinction ratio is above 19 dB and the fractional power in the fundamental transverse mode (TEM$_{00}$) was measured to be 94.8 %. In addition, measurements of the frequency noise, relative power noise, and relative pointing noise were performed and demonstrate excellent low noise properties over the entire output power slope. In the context of single-frequency fiber amplifiers, the measured relative pointing noise below 100 Hz and the higher order mode content is, to the best of our knowledge, at 200 W the lowest ever measured. A long-term test of more than 695 h demonstrated stable operation without beam quality degradation. It is also the longest single-frequency fiber amplifier operation at 200 W ever reported.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-frequency fiber amplifier at 1.5 µm with 100 W in the linearly-polarized TEM00 mode for next-generation gravitational wave detectors

Omar De Varona, Willy Fittkau, Phillip Booker, Thomas Theeg, Michael Steinke, Dietmar Kracht, Jörg Neumann, and Peter Wessels
Opt. Express 25(21) 24880-24892 (2017)

TEM00 mode content of a two stage single-frequency Yb-doped PCF MOPA with 246 W of output power

Malte Karow, Chandrajit Basu, Dietmar Kracht, Jörg Neumann, and Peter Weßels
Opt. Express 20(5) 5319-5324 (2012)

100-W single-frequency master-oscillator fiber power amplifier

A. Liem, J. Limpert, H. Zellmer, and A. Tünnermann
Opt. Lett. 28(17) 1537-1539 (2003)

References

  • View by:
  • |
  • |
  • |

  1. B. P. Abbott et al. (LIGO scientific collaboration and Virgo collaboration), “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116(6), 061102 (2016).
    [Crossref]
  2. B. P. Abbott et al. (LIGO scientific collaboration and Virgo collaboration), “Multi-messenger observations of a binary neutron star merger,” Astrophys. J. Lett. 848, L12 (2017).
    [Crossref]
  3. LIGO Science Collaboration, “Exploring the Sensitivity of Next Generation Gravitational Wave Detectors,” Classical Quantum Gravity 34, 044001 (2017).
    [Crossref]
  4. M. Abernathy et al., “Einstein Gravitational Wave Telescope Conceptual Design Study,” European Gravitational Observatory Document ET-0106A-10 (2011).
  5. L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B: Lasers Opt. 102(3), 529–538 (2011).
    [Crossref]
  6. M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Weßels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Select. Topics Quantum Electron. 24(3), 1–13 (2018).
    [Crossref]
  7. J. Zhang and M. R. Phillips, “Modeling Intensity Noise Caused by Stimulated Brillouin Scattering in Optical Fibers,” Conf. Laser Electr., 140–142 (2005).
  8. K. Izumi and D. Sigg, “Advanced LIGO: Length Sensing and Control in a Dual Recycled Interferometric Gravitational Wave Antenna,” Classical Quantum Gravity 34(1), 015001 (2017).
    [Crossref]
  9. M. Karow, C. Basu, D. Kracht, J. Neumann, and P. Weßels, “TEM$_{00}$00 Mode Content of a Two Stage Single-Frequency Yb-doped PCF MOPA with 246 W of Output Power,” Opt. Express 20(5), 5319–5324 (2012).
    [Crossref]
  10. S. Wielandy, “Implications of Higher-Order Mode Content in Large Mode Area Fibers with Good Beam Quality,” Opt. Express 15(23), 15402–15409 (2007).
    [Crossref]
  11. L. Huang, H. Wu, R. Li, L. Li, P. Ma, X. Wang, J. Leng, and P. Zhou, “414 W Near-Diffraction-Limited all-Fiberized Single-Frequency Polarization-Maintained Fiber Amplifier,” Opt. Lett. 42(1), 1–4 (2017).
    [Crossref]
  12. C. Robin, I. Dajani, and B. Pulford, “Modal Instability-Suppressing, Single-Frequency Photonic Crystal Fiber Amplifier with 811 W Output Power,” Opt. Lett. 39(3), 666–669 (2014).
    [Crossref]
  13. C. Pierre, G. Guiraud, J. Yehouessi, G. Santarelli, J. Boullet, N. Traynor, and C. Vincont, “200-W Single Frequency Laser based on Short Active Double Clad Tapered Fiber,” Proc. SPIE 10512, 105122A (2018).
    [Crossref]
  14. T. Theeg, H. Sayinc, J. Neumann, L. Overmeyer, and D. Kracht, “Pump and Signal Combiner for Bi-Directional Pumping of all-Fiber Lasers and Amplifiers,” Opt. Express 20(27), 28125–28141 (2012).
    [Crossref]
  15. M. Wysmolek, C. Ottenhues, T. Pulzer, T. Theeg, H. Sayinc, M. Steinke, U. Morgner, J. Neumann, and D. Kracht, “Microstructured Fiber Cladding Light Stripper for Kilowatt-Class Laser Systems,” Appl. Opt. 57(23), 6640–6644 (2018).
    [Crossref]
  16. T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-Fiber Counter-Propagation Pumped Single Frequency Amplifier Stage With 300-W Output Power,” IEEE Photonics Technol. Lett. 24(20), 1864–1867 (2012).
    [Crossref]
  17. F. Wellmann, P. Booker, S. Hochheim, T. Theeg, O. de Varona, W. Fittkau, L. Overmeyer, M. Steinke, P. Weßels, J. Neumann, and D. Kracht, “Recent Progress on Monolithic Fiber Amplifiers for Next Generation of Gravitational Wave Detectors,” Proc. SPIE 10512, 105120I (2018).
    [Crossref]
  18. M. Hildebrandt, S. Büsche, P. Weßels, M. Frede, and D. Kracht, “Brillouin Scattering Spectra in High-Power Single-Frequency Ytterbium Doped Fiber Amplifiers,” Opt. Express 16(20), 15970–15979 (2008).
    [Crossref]
  19. V. I. Kovalev and R. G. Harrison, “Suppression of Stimulated Brillouin Scattering in High-Power Single-Frequency Fiber Amplifiers,” Opt. Lett. 31(2), 161–163 (2006).
    [Crossref]
  20. P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser Beam Quality and Pointing Measurement with an Optical Resonator,” Rev. Sci. Instrum. 78(7), 073103 (2007).
    [Crossref]
  21. A. Liu, X. Chen, M. J. Li, J. Wang, D. T. Walton, and L. A. Zenteno, “Comprehensive Modeling of Single Frequency Fiber Amplifiers for Mitigating Stimulated Brillouin Scattering,” J. Lightwave Technol. 27(13), 2189–2198 (2009).
    [Crossref]
  22. F. Thies, N. Bode, P. Oppermann, M. Frede, B. Schulz, and B. Willke, “Nd:YVO$4$4 High-Power Master Oscillator Power Amplifier Laser System for Second-Generation Gravitational Wave Detectors,” Opt. Lett. 44(3), 719–722 (2019).
    [Crossref]
  23. B. Willke et al., “Pre-Stabilized Laser Subsystem Testing and Acceptance - L1 PSL(LIGO scientific collaboration),” Technical Report No. LIGO-E1100716-v6, (2012) https://dcc.ligo.org/LIGOE1100716/public .
  24. H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “Gain Dynamics and Refractive Index Changes in Fiber Amplifiers: a Frequency Domain Approach,” Opt. Express 20(12), 13539–13550 (2012).
    [Crossref]

2019 (1)

2018 (4)

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Weßels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Select. Topics Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

C. Pierre, G. Guiraud, J. Yehouessi, G. Santarelli, J. Boullet, N. Traynor, and C. Vincont, “200-W Single Frequency Laser based on Short Active Double Clad Tapered Fiber,” Proc. SPIE 10512, 105122A (2018).
[Crossref]

M. Wysmolek, C. Ottenhues, T. Pulzer, T. Theeg, H. Sayinc, M. Steinke, U. Morgner, J. Neumann, and D. Kracht, “Microstructured Fiber Cladding Light Stripper for Kilowatt-Class Laser Systems,” Appl. Opt. 57(23), 6640–6644 (2018).
[Crossref]

F. Wellmann, P. Booker, S. Hochheim, T. Theeg, O. de Varona, W. Fittkau, L. Overmeyer, M. Steinke, P. Weßels, J. Neumann, and D. Kracht, “Recent Progress on Monolithic Fiber Amplifiers for Next Generation of Gravitational Wave Detectors,” Proc. SPIE 10512, 105120I (2018).
[Crossref]

2017 (4)

K. Izumi and D. Sigg, “Advanced LIGO: Length Sensing and Control in a Dual Recycled Interferometric Gravitational Wave Antenna,” Classical Quantum Gravity 34(1), 015001 (2017).
[Crossref]

B. P. Abbott et al. (LIGO scientific collaboration and Virgo collaboration), “Multi-messenger observations of a binary neutron star merger,” Astrophys. J. Lett. 848, L12 (2017).
[Crossref]

LIGO Science Collaboration, “Exploring the Sensitivity of Next Generation Gravitational Wave Detectors,” Classical Quantum Gravity 34, 044001 (2017).
[Crossref]

L. Huang, H. Wu, R. Li, L. Li, P. Ma, X. Wang, J. Leng, and P. Zhou, “414 W Near-Diffraction-Limited all-Fiberized Single-Frequency Polarization-Maintained Fiber Amplifier,” Opt. Lett. 42(1), 1–4 (2017).
[Crossref]

2016 (1)

B. P. Abbott et al. (LIGO scientific collaboration and Virgo collaboration), “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116(6), 061102 (2016).
[Crossref]

2014 (1)

2012 (4)

2011 (1)

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B: Lasers Opt. 102(3), 529–538 (2011).
[Crossref]

2009 (1)

2008 (1)

2007 (2)

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser Beam Quality and Pointing Measurement with an Optical Resonator,” Rev. Sci. Instrum. 78(7), 073103 (2007).
[Crossref]

S. Wielandy, “Implications of Higher-Order Mode Content in Large Mode Area Fibers with Good Beam Quality,” Opt. Express 15(23), 15402–15409 (2007).
[Crossref]

2006 (1)

Abbott, B. P.

B. P. Abbott et al. (LIGO scientific collaboration and Virgo collaboration), “Multi-messenger observations of a binary neutron star merger,” Astrophys. J. Lett. 848, L12 (2017).
[Crossref]

B. P. Abbott et al. (LIGO scientific collaboration and Virgo collaboration), “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116(6), 061102 (2016).
[Crossref]

Abernathy, M.

M. Abernathy et al., “Einstein Gravitational Wave Telescope Conceptual Design Study,” European Gravitational Observatory Document ET-0106A-10 (2011).

Basu, C.

Bode, N.

Bogan, C.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B: Lasers Opt. 102(3), 529–538 (2011).
[Crossref]

Booker, P.

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Weßels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Select. Topics Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

F. Wellmann, P. Booker, S. Hochheim, T. Theeg, O. de Varona, W. Fittkau, L. Overmeyer, M. Steinke, P. Weßels, J. Neumann, and D. Kracht, “Recent Progress on Monolithic Fiber Amplifiers for Next Generation of Gravitational Wave Detectors,” Proc. SPIE 10512, 105120I (2018).
[Crossref]

Boullet, J.

C. Pierre, G. Guiraud, J. Yehouessi, G. Santarelli, J. Boullet, N. Traynor, and C. Vincont, “200-W Single Frequency Laser based on Short Active Double Clad Tapered Fiber,” Proc. SPIE 10512, 105122A (2018).
[Crossref]

Büsche, S.

Chen, X.

Dajani, I.

Danzmann, K.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser Beam Quality and Pointing Measurement with an Optical Resonator,” Rev. Sci. Instrum. 78(7), 073103 (2007).
[Crossref]

de Varona, O.

F. Wellmann, P. Booker, S. Hochheim, T. Theeg, O. de Varona, W. Fittkau, L. Overmeyer, M. Steinke, P. Weßels, J. Neumann, and D. Kracht, “Recent Progress on Monolithic Fiber Amplifiers for Next Generation of Gravitational Wave Detectors,” Proc. SPIE 10512, 105120I (2018).
[Crossref]

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Weßels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Select. Topics Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

Fittkau, W.

F. Wellmann, P. Booker, S. Hochheim, T. Theeg, O. de Varona, W. Fittkau, L. Overmeyer, M. Steinke, P. Weßels, J. Neumann, and D. Kracht, “Recent Progress on Monolithic Fiber Amplifiers for Next Generation of Gravitational Wave Detectors,” Proc. SPIE 10512, 105120I (2018).
[Crossref]

Frede, M.

Guiraud, G.

C. Pierre, G. Guiraud, J. Yehouessi, G. Santarelli, J. Boullet, N. Traynor, and C. Vincont, “200-W Single Frequency Laser based on Short Active Double Clad Tapered Fiber,” Proc. SPIE 10512, 105122A (2018).
[Crossref]

Harrison, R. G.

Hildebrandt, M.

Hochheim, S.

F. Wellmann, P. Booker, S. Hochheim, T. Theeg, O. de Varona, W. Fittkau, L. Overmeyer, M. Steinke, P. Weßels, J. Neumann, and D. Kracht, “Recent Progress on Monolithic Fiber Amplifiers for Next Generation of Gravitational Wave Detectors,” Proc. SPIE 10512, 105120I (2018).
[Crossref]

Huang, L.

Izumi, K.

K. Izumi and D. Sigg, “Advanced LIGO: Length Sensing and Control in a Dual Recycled Interferometric Gravitational Wave Antenna,” Classical Quantum Gravity 34(1), 015001 (2017).
[Crossref]

Jahn, P.

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Weßels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Select. Topics Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

Karow, M.

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Weßels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Select. Topics Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

M. Karow, C. Basu, D. Kracht, J. Neumann, and P. Weßels, “TEM$_{00}$00 Mode Content of a Two Stage Single-Frequency Yb-doped PCF MOPA with 246 W of Output Power,” Opt. Express 20(5), 5319–5324 (2012).
[Crossref]

Kluzik, R.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B: Lasers Opt. 102(3), 529–538 (2011).
[Crossref]

Kovalev, V. I.

Kracht, D.

F. Wellmann, P. Booker, S. Hochheim, T. Theeg, O. de Varona, W. Fittkau, L. Overmeyer, M. Steinke, P. Weßels, J. Neumann, and D. Kracht, “Recent Progress on Monolithic Fiber Amplifiers for Next Generation of Gravitational Wave Detectors,” Proc. SPIE 10512, 105120I (2018).
[Crossref]

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Weßels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Select. Topics Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

M. Wysmolek, C. Ottenhues, T. Pulzer, T. Theeg, H. Sayinc, M. Steinke, U. Morgner, J. Neumann, and D. Kracht, “Microstructured Fiber Cladding Light Stripper for Kilowatt-Class Laser Systems,” Appl. Opt. 57(23), 6640–6644 (2018).
[Crossref]

H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “Gain Dynamics and Refractive Index Changes in Fiber Amplifiers: a Frequency Domain Approach,” Opt. Express 20(12), 13539–13550 (2012).
[Crossref]

T. Theeg, H. Sayinc, J. Neumann, L. Overmeyer, and D. Kracht, “Pump and Signal Combiner for Bi-Directional Pumping of all-Fiber Lasers and Amplifiers,” Opt. Express 20(27), 28125–28141 (2012).
[Crossref]

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-Fiber Counter-Propagation Pumped Single Frequency Amplifier Stage With 300-W Output Power,” IEEE Photonics Technol. Lett. 24(20), 1864–1867 (2012).
[Crossref]

M. Karow, C. Basu, D. Kracht, J. Neumann, and P. Weßels, “TEM$_{00}$00 Mode Content of a Two Stage Single-Frequency Yb-doped PCF MOPA with 246 W of Output Power,” Opt. Express 20(5), 5319–5324 (2012).
[Crossref]

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B: Lasers Opt. 102(3), 529–538 (2011).
[Crossref]

M. Hildebrandt, S. Büsche, P. Weßels, M. Frede, and D. Kracht, “Brillouin Scattering Spectra in High-Power Single-Frequency Ytterbium Doped Fiber Amplifiers,” Opt. Express 16(20), 15970–15979 (2008).
[Crossref]

Kuhn, V.

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Weßels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Select. Topics Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

Kwee, P.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B: Lasers Opt. 102(3), 529–538 (2011).
[Crossref]

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser Beam Quality and Pointing Measurement with an Optical Resonator,” Rev. Sci. Instrum. 78(7), 073103 (2007).
[Crossref]

Leng, J.

Li, L.

Li, M. J.

Li, R.

Liu, A.

Ma, P.

Morgner, U.

Neumann, J.

M. Wysmolek, C. Ottenhues, T. Pulzer, T. Theeg, H. Sayinc, M. Steinke, U. Morgner, J. Neumann, and D. Kracht, “Microstructured Fiber Cladding Light Stripper for Kilowatt-Class Laser Systems,” Appl. Opt. 57(23), 6640–6644 (2018).
[Crossref]

F. Wellmann, P. Booker, S. Hochheim, T. Theeg, O. de Varona, W. Fittkau, L. Overmeyer, M. Steinke, P. Weßels, J. Neumann, and D. Kracht, “Recent Progress on Monolithic Fiber Amplifiers for Next Generation of Gravitational Wave Detectors,” Proc. SPIE 10512, 105120I (2018).
[Crossref]

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Weßels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Select. Topics Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-Fiber Counter-Propagation Pumped Single Frequency Amplifier Stage With 300-W Output Power,” IEEE Photonics Technol. Lett. 24(20), 1864–1867 (2012).
[Crossref]

M. Karow, C. Basu, D. Kracht, J. Neumann, and P. Weßels, “TEM$_{00}$00 Mode Content of a Two Stage Single-Frequency Yb-doped PCF MOPA with 246 W of Output Power,” Opt. Express 20(5), 5319–5324 (2012).
[Crossref]

T. Theeg, H. Sayinc, J. Neumann, L. Overmeyer, and D. Kracht, “Pump and Signal Combiner for Bi-Directional Pumping of all-Fiber Lasers and Amplifiers,” Opt. Express 20(27), 28125–28141 (2012).
[Crossref]

H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “Gain Dynamics and Refractive Index Changes in Fiber Amplifiers: a Frequency Domain Approach,” Opt. Express 20(12), 13539–13550 (2012).
[Crossref]

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B: Lasers Opt. 102(3), 529–538 (2011).
[Crossref]

Oppermann, P.

Ottenhues, C.

Overmeyer, L.

F. Wellmann, P. Booker, S. Hochheim, T. Theeg, O. de Varona, W. Fittkau, L. Overmeyer, M. Steinke, P. Weßels, J. Neumann, and D. Kracht, “Recent Progress on Monolithic Fiber Amplifiers for Next Generation of Gravitational Wave Detectors,” Proc. SPIE 10512, 105120I (2018).
[Crossref]

T. Theeg, H. Sayinc, J. Neumann, L. Overmeyer, and D. Kracht, “Pump and Signal Combiner for Bi-Directional Pumping of all-Fiber Lasers and Amplifiers,” Opt. Express 20(27), 28125–28141 (2012).
[Crossref]

Phillips, M. R.

J. Zhang and M. R. Phillips, “Modeling Intensity Noise Caused by Stimulated Brillouin Scattering in Optical Fibers,” Conf. Laser Electr., 140–142 (2005).

Pierre, C.

C. Pierre, G. Guiraud, J. Yehouessi, G. Santarelli, J. Boullet, N. Traynor, and C. Vincont, “200-W Single Frequency Laser based on Short Active Double Clad Tapered Fiber,” Proc. SPIE 10512, 105122A (2018).
[Crossref]

Poeld, J.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B: Lasers Opt. 102(3), 529–538 (2011).
[Crossref]

Pulford, B.

Pulzer, T.

Puncken, O.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B: Lasers Opt. 102(3), 529–538 (2011).
[Crossref]

Robin, C.

Santarelli, G.

C. Pierre, G. Guiraud, J. Yehouessi, G. Santarelli, J. Boullet, N. Traynor, and C. Vincont, “200-W Single Frequency Laser based on Short Active Double Clad Tapered Fiber,” Proc. SPIE 10512, 105122A (2018).
[Crossref]

Sayinc, H.

Schulz, B.

Seifert, F.

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser Beam Quality and Pointing Measurement with an Optical Resonator,” Rev. Sci. Instrum. 78(7), 073103 (2007).
[Crossref]

Sigg, D.

K. Izumi and D. Sigg, “Advanced LIGO: Length Sensing and Control in a Dual Recycled Interferometric Gravitational Wave Antenna,” Classical Quantum Gravity 34(1), 015001 (2017).
[Crossref]

Steinke, M.

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Weßels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Select. Topics Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

F. Wellmann, P. Booker, S. Hochheim, T. Theeg, O. de Varona, W. Fittkau, L. Overmeyer, M. Steinke, P. Weßels, J. Neumann, and D. Kracht, “Recent Progress on Monolithic Fiber Amplifiers for Next Generation of Gravitational Wave Detectors,” Proc. SPIE 10512, 105120I (2018).
[Crossref]

M. Wysmolek, C. Ottenhues, T. Pulzer, T. Theeg, H. Sayinc, M. Steinke, U. Morgner, J. Neumann, and D. Kracht, “Microstructured Fiber Cladding Light Stripper for Kilowatt-Class Laser Systems,” Appl. Opt. 57(23), 6640–6644 (2018).
[Crossref]

Theeg, T.

M. Wysmolek, C. Ottenhues, T. Pulzer, T. Theeg, H. Sayinc, M. Steinke, U. Morgner, J. Neumann, and D. Kracht, “Microstructured Fiber Cladding Light Stripper for Kilowatt-Class Laser Systems,” Appl. Opt. 57(23), 6640–6644 (2018).
[Crossref]

F. Wellmann, P. Booker, S. Hochheim, T. Theeg, O. de Varona, W. Fittkau, L. Overmeyer, M. Steinke, P. Weßels, J. Neumann, and D. Kracht, “Recent Progress on Monolithic Fiber Amplifiers for Next Generation of Gravitational Wave Detectors,” Proc. SPIE 10512, 105120I (2018).
[Crossref]

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Weßels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Select. Topics Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-Fiber Counter-Propagation Pumped Single Frequency Amplifier Stage With 300-W Output Power,” IEEE Photonics Technol. Lett. 24(20), 1864–1867 (2012).
[Crossref]

T. Theeg, H. Sayinc, J. Neumann, L. Overmeyer, and D. Kracht, “Pump and Signal Combiner for Bi-Directional Pumping of all-Fiber Lasers and Amplifiers,” Opt. Express 20(27), 28125–28141 (2012).
[Crossref]

Thies, F.

Traynor, N.

C. Pierre, G. Guiraud, J. Yehouessi, G. Santarelli, J. Boullet, N. Traynor, and C. Vincont, “200-W Single Frequency Laser based on Short Active Double Clad Tapered Fiber,” Proc. SPIE 10512, 105122A (2018).
[Crossref]

Tünnermann, H.

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Weßels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Select. Topics Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “Gain Dynamics and Refractive Index Changes in Fiber Amplifiers: a Frequency Domain Approach,” Opt. Express 20(12), 13539–13550 (2012).
[Crossref]

Veltkamp, C.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B: Lasers Opt. 102(3), 529–538 (2011).
[Crossref]

Vincont, C.

C. Pierre, G. Guiraud, J. Yehouessi, G. Santarelli, J. Boullet, N. Traynor, and C. Vincont, “200-W Single Frequency Laser based on Short Active Double Clad Tapered Fiber,” Proc. SPIE 10512, 105122A (2018).
[Crossref]

Walton, D. T.

Wang, J.

Wang, X.

Wellmann, F.

F. Wellmann, P. Booker, S. Hochheim, T. Theeg, O. de Varona, W. Fittkau, L. Overmeyer, M. Steinke, P. Weßels, J. Neumann, and D. Kracht, “Recent Progress on Monolithic Fiber Amplifiers for Next Generation of Gravitational Wave Detectors,” Proc. SPIE 10512, 105120I (2018).
[Crossref]

Weßels, P.

F. Wellmann, P. Booker, S. Hochheim, T. Theeg, O. de Varona, W. Fittkau, L. Overmeyer, M. Steinke, P. Weßels, J. Neumann, and D. Kracht, “Recent Progress on Monolithic Fiber Amplifiers for Next Generation of Gravitational Wave Detectors,” Proc. SPIE 10512, 105120I (2018).
[Crossref]

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Weßels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Select. Topics Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

M. Karow, C. Basu, D. Kracht, J. Neumann, and P. Weßels, “TEM$_{00}$00 Mode Content of a Two Stage Single-Frequency Yb-doped PCF MOPA with 246 W of Output Power,” Opt. Express 20(5), 5319–5324 (2012).
[Crossref]

H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “Gain Dynamics and Refractive Index Changes in Fiber Amplifiers: a Frequency Domain Approach,” Opt. Express 20(12), 13539–13550 (2012).
[Crossref]

Wessels, P.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B: Lasers Opt. 102(3), 529–538 (2011).
[Crossref]

Weßels, P.

Wielandy, S.

Willke, B.

F. Thies, N. Bode, P. Oppermann, M. Frede, B. Schulz, and B. Willke, “Nd:YVO$4$4 High-Power Master Oscillator Power Amplifier Laser System for Second-Generation Gravitational Wave Detectors,” Opt. Lett. 44(3), 719–722 (2019).
[Crossref]

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B: Lasers Opt. 102(3), 529–538 (2011).
[Crossref]

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser Beam Quality and Pointing Measurement with an Optical Resonator,” Rev. Sci. Instrum. 78(7), 073103 (2007).
[Crossref]

B. Willke et al., “Pre-Stabilized Laser Subsystem Testing and Acceptance - L1 PSL(LIGO scientific collaboration),” Technical Report No. LIGO-E1100716-v6, (2012) https://dcc.ligo.org/LIGOE1100716/public .

Winkelmann, L.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B: Lasers Opt. 102(3), 529–538 (2011).
[Crossref]

Wu, H.

Wysmolek, M.

Yehouessi, J.

C. Pierre, G. Guiraud, J. Yehouessi, G. Santarelli, J. Boullet, N. Traynor, and C. Vincont, “200-W Single Frequency Laser based on Short Active Double Clad Tapered Fiber,” Proc. SPIE 10512, 105122A (2018).
[Crossref]

Zenteno, L. A.

Zhang, J.

J. Zhang and M. R. Phillips, “Modeling Intensity Noise Caused by Stimulated Brillouin Scattering in Optical Fibers,” Conf. Laser Electr., 140–142 (2005).

Zhou, P.

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B: Lasers Opt. 102(3), 529–538 (2011).
[Crossref]

Astrophys. J. Lett. (1)

B. P. Abbott et al. (LIGO scientific collaboration and Virgo collaboration), “Multi-messenger observations of a binary neutron star merger,” Astrophys. J. Lett. 848, L12 (2017).
[Crossref]

Classical Quantum Gravity (2)

LIGO Science Collaboration, “Exploring the Sensitivity of Next Generation Gravitational Wave Detectors,” Classical Quantum Gravity 34, 044001 (2017).
[Crossref]

K. Izumi and D. Sigg, “Advanced LIGO: Length Sensing and Control in a Dual Recycled Interferometric Gravitational Wave Antenna,” Classical Quantum Gravity 34(1), 015001 (2017).
[Crossref]

IEEE J. Select. Topics Quantum Electron. (1)

M. Steinke, H. Tünnermann, V. Kuhn, T. Theeg, M. Karow, O. de Varona, P. Jahn, P. Booker, J. Neumann, P. Weßels, and D. Kracht, “Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors,” IEEE J. Select. Topics Quantum Electron. 24(3), 1–13 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. Theeg, H. Sayinc, J. Neumann, and D. Kracht, “All-Fiber Counter-Propagation Pumped Single Frequency Amplifier Stage With 300-W Output Power,” IEEE Photonics Technol. Lett. 24(20), 1864–1867 (2012).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

B. P. Abbott et al. (LIGO scientific collaboration and Virgo collaboration), “Observation of gravitational waves from a binary black hole merger,” Phys. Rev. Lett. 116(6), 061102 (2016).
[Crossref]

Proc. SPIE (2)

C. Pierre, G. Guiraud, J. Yehouessi, G. Santarelli, J. Boullet, N. Traynor, and C. Vincont, “200-W Single Frequency Laser based on Short Active Double Clad Tapered Fiber,” Proc. SPIE 10512, 105122A (2018).
[Crossref]

F. Wellmann, P. Booker, S. Hochheim, T. Theeg, O. de Varona, W. Fittkau, L. Overmeyer, M. Steinke, P. Weßels, J. Neumann, and D. Kracht, “Recent Progress on Monolithic Fiber Amplifiers for Next Generation of Gravitational Wave Detectors,” Proc. SPIE 10512, 105120I (2018).
[Crossref]

Rev. Sci. Instrum. (1)

P. Kwee, F. Seifert, B. Willke, and K. Danzmann, “Laser Beam Quality and Pointing Measurement with an Optical Resonator,” Rev. Sci. Instrum. 78(7), 073103 (2007).
[Crossref]

Other (3)

B. Willke et al., “Pre-Stabilized Laser Subsystem Testing and Acceptance - L1 PSL(LIGO scientific collaboration),” Technical Report No. LIGO-E1100716-v6, (2012) https://dcc.ligo.org/LIGOE1100716/public .

J. Zhang and M. R. Phillips, “Modeling Intensity Noise Caused by Stimulated Brillouin Scattering in Optical Fibers,” Conf. Laser Electr., 140–142 (2005).

M. Abernathy et al., “Einstein Gravitational Wave Telescope Conceptual Design Study,” European Gravitational Observatory Document ET-0106A-10 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Setup of the engineering fiber amplifier prototype: The first module contains a low noise non-planar ring oscillator (NPRO) with an output power of 2 W, modulators for stabilization purposes (currently not installed) and a fiber incoupling. The pre-amplifier uses a 10/125 µm Yb3+-doped PM-fiber and seeds the main-amplifier with 15 W. Two optical isolators protect the amplifier from the main-amplifier. The main-amplifier uses a 25/250 µm Yb3+-doped PM-fiber and was tested up to 200 W of output power.
Fig. 2.
Fig. 2. Fiber fused to an AR coated substrate.
Fig. 3.
Fig. 3. Amplifier slope up to a pump-limited maximum output power of 200 W. Inset: Optical spectrum shows $> {50}\;\textrm{dB }$ signal to amplified spontaneous emission (ASE) suppression at 200 W output power (0.01 nm measurement resolution).
Fig. 4.
Fig. 4. Long-term test of the fiber amplifier at 204 W output power. During the first 150 h, multiple on/off cycles were performed and no degradation of the performance was observed. In total the amplifier was operated for 695 h.
Fig. 5.
Fig. 5. TEM$_{00}$-mode content remains at approx. 97.5 % up to 125 W and decreases to 94.8 % at 200 W. The PER shows a similar behaviour decreasing from 24 dB at up to 100 W down to 19 dB at 200 W. After 650 h of operation the higher order mode content is measured at 208 W to be 7 % and the PER of 17 dB (both measurements shown in red).
Fig. 6.
Fig. 6. HF amplitude spectral density of the power noise at several amplifier output power levels. No excess noise was observed. The photodiode current is 1.9 mA at all measurements. The fiber spool temperature (c.f. Figure 1) difference is $\Delta \textrm{T}$ = 24 K.
Fig. 7.
Fig. 7. Frequency noise measurements at several amplifier output power levels. The measurements show no relevant increase in frequency noise. The feature at around 8 kHz is caused by the feedback loop of the measurement setup. The NPRO frequency noise projection is shown as reference.
Fig. 8.
Fig. 8. Relative power noise measurements at several amplifier output power levels in comparison with the 200 W solid-state laser used in the aLIGO detectors (data from [23]). At low frequency the noise is dominated by the current noise of the pump laser diode driver. At higher frequencies the noise is dominated by the seed laser.
Fig. 9.
Fig. 9. Relative pointing noise spectra at several output power levels. The measurements are compared to the relative pointing noise measurements of the 200 W SSL (data from [23]). The pointing noise is exceptionally low at frequencies below 100 Hz.