Abstract

Three-dimensional imaging in underwater environments was investigated using a picosecond resolution silicon single-photon avalanche diode (SPAD) detector array fabricated in complementary metal-oxide semiconductor (CMOS) technology. Each detector in the 192  × 128 SPAD array had an individual time-to-digital converter allowing rapid, simultaneous acquisition of data for the entire array using the time-correlated single-photon counting approach. A picosecond pulsed laser diode source operating at a wavelength of 670 nm was used to illuminate the underwater scenes, emitting an average optical power up to 8 mW. Both stationary and moving targets were imaged under a variety of underwater scattering conditions. The acquisition of depth and intensity videos of moving targets was demonstrated in dark laboratory conditions through scattering water, equivalent to having up to 6.7 attenuation lengths between the transceiver and target. Data were analyzed using a pixel-wise approach, as well as an image processing algorithm based on a median filter and polynomial approximation.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Underwater depth imaging using time-correlated single-photon counting

Aurora Maccarone, Aongus McCarthy, Ximing Ren, Ryan E. Warburton, Andy M. Wallace, James Moffat, Yvan Petillot, and Gerald S. Buller
Opt. Express 23(26) 33911-33926 (2015)

Three-dimensional single-photon imaging through obscurants

Rachael Tobin, Abderrahim Halimi, Aongus McCarthy, Martin Laurenzis, Frank Christnacher, and Gerald S. Buller
Opt. Express 27(4) 4590-4611 (2019)

Single-photon three-dimensional imaging at up to 10 kilometers range

Agata M. Pawlikowska, Abderrahim Halimi, Robert A. Lamb, and Gerald S. Buller
Opt. Express 25(10) 11919-11931 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. M. Hale and M. R. Querry, “Optical Constants of Water in the 200-nm to 200-µm Wavelength Region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref]
  2. J. S. Jaffe, “Underwater optical imaging - The past, the present, and the prospects,” IEEE J. Oceanic Eng. 40(3), C1–C4 (2015).
    [Crossref]
  3. M. Massot-Campos and G. Oliver-Codina, “Optical sensors and methods for underwater 3D reconstruction,” Sensors 15(12), 31525–31557 (2015).
    [Crossref]
  4. F. M. Caimi and F. R. Dalgleish, “Performance considerations for continuous-wave and pulsed laser line scan (LLS) imaging systems,” J. Eur. Opt. Soc. 5, 10020s (2010).
    [Crossref]
  5. F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
    [Crossref]
  6. P. Risholm, J. Thorstensen, J. T. Thielemann, K. Kaspersen, J. Tschudi, C. Yates, C. Softley, I. Abrosimov, J. Alexander, and K. H. Haugholt, “Real-time super-resolved 3D in turbid water using a fast range-gated CMOS camera,” Appl. Opt. 57(14), 3927 (2018).
    [Crossref]
  7. H. Wu, Y. Hou, W. Xu, and M. Zhao, “Ultra-low-light-level digital still camera for autonomous underwater vehicle,” Opt. Eng. 58(1), 013106 (2019).
    [Crossref]
  8. R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Three-dimensional single-photon imaging through obscurants,” Opt. Express 27(4), 4590–4611 (2019).
    [Crossref]
  9. R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G. S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57(3), 031303 (2017).
    [Crossref]
  10. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
    [Crossref]
  11. A. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25(10), 11919–11931 (2017).
    [Crossref]
  12. J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction of complex scenes using single-photon lidar: when image processing meets computer graphics,” arXiv:1905.06700 (2019).
  13. A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23(26), 33911–33926 (2015).
    [Crossref]
  14. A. Maccarone, A. McCarthy, A. Halimi, R. Tobin, A. M. Wallace, Y. Petillot, and G. S. Buller, “Depth imaging in highly scattering underwater environments using time correlated single photon counting,” Proc. SPIE 9992, 99920R (2016).
    [Crossref]
  15. A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22114 (2013).
    [Crossref]
  16. M. Perenzoni, L. Pancheri, and D. Stoppa, “Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors,” Sensors 16(5), 745 (2016).
    [Crossref]
  17. Y. Maruyama and E. Charbon, “A time-gated 128 × 128 CMOS SPAD array for on-chip fluorescence detection,” in Proceedings of International Image Sensor Workshop (IISW) (2011).
  18. R. M. Field, S. Realov, and K. J. Shepard, “A 100 fps, Time-Correlated Single-PhotonCounting-Based Fluorescence-Lifetime Imager in 130 nm CMOS,” IEEE J. Solid-State Circuits 49(4), 867–880 (2014).
    [Crossref]
  19. F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
    [Crossref]
  20. C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18- m CMOS SoC for a 100-m-Range 10-Frame/s 200 96-Pixel Time-of-Flight Depth Sensor,” IEEE J. Solid-State Circuits 49(1), 315–330 (2014).
    [Crossref]
  21. H. Ruokamo, L. Hallman, H. Rapakko, and J. Kostamovaara, “An 80 × 25 Pixel CMOS Single-Photon Range Image Sensor with a Flexible On-Chip Time Gating Topology for Solid State 3D Scanning,” in Proceedings of 43rd IEEE European Solid State Circuits Conference (IEEE, 2017), 17351340.
  22. S. Bellisai, D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “Single-photon pulsed-light indirect time-of-flight 3D ranging,” Opt. Express 21(4), 5086–5098 (2013).
    [Crossref]
  23. G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6(1), 6021 (2015).
    [Crossref]
  24. N. Krstajic, S. Poland, J. Levitt, R. Walker, A. Erdogan, S. Ameer-Beg, and R. K. Henderson, “0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays,” Opt. Lett. 40(18), 4305–4308 (2015).
    [Crossref]
  25. D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
    [Crossref]
  26. C. Zhang, S. Lindner, I. M. Antolovic, J. Mata Pavia, M. Wolf, and E. Charbon, “A 30-frames/s, 252 × 144 SPAD Flash LiDAR With 1728 Dual-Clock 48.8-ps TDCs, and Pixel-Wise Integrated Histogramming,” IEEE J. Solid-State Circuits 54(4), 1137–1151 (2019).
    [Crossref]
  27. G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23(26), 33777 (2015).
    [Crossref]
  28. C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 ( 128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008).
    [Crossref]
  29. J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22(4), 4202–4213 (2014).
    [Crossref]
  30. I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26(3), 2280–2291 (2018).
    [Crossref]
  31. N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE Trans. Electron Devices 63(1), 189–196 (2016).
    [Crossref]
  32. T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside Illuminated SPAD Image Sensor with 7.83µm Pitch in 3D-Stacked CMOS Technology,” in IEEE International Electron Devices Meeting (IEEE, 2016), 16651222.
  33. R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40nm/90nm CMOS 3D-Stacked 120dB Dynamic-Range Reconfigurable Time-Resolved SPAD Imager,” in IEEE International Solid-State Circuits Conference (IEEE, 2019), 106–108.
  34. R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 × 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
    [Crossref]
  35. S. Q. Duntley, “Light in the sea,” J. Opt. Soc. Am. 53(2), 214–234 (1963).
    [Crossref]
  36. A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49(3–4), 439–451 (2002).
    [Crossref]
  37. S. Q. Duntley, “Underwater Lighting by Submerged Lasers and Incandescent Sources,” in UC San Diego: Scripps Institution of Oceanography, Visibility Laboratory (1971).
  38. A. T. Erdogan, R. Walker, N. Finlayson, N. Krstajic, G. O. S. Williams, J. M. Girkin, and R. K. Henderson, “A CMOS SPAD Line Sensor With Per-Pixel Histogramming TDC for Time-Resolved Multispectral Imaging,” IEEE J. Solid-State Circuits 54(6), 1705–1719 (2019).
    [Crossref]
  39. N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9199 (2010).
    [Crossref]
  40. P. W. R. Connolly, X. Ren, R. Henderson, and G. S. Buller, “Hot pixel classification of single-photon avalanche diode detector arrays using a log-normal statistical distribution,” Electron. Lett. 55(18), 1004–1006 (2019).
    [Crossref]
  41. S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
    [Crossref]
  42. X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
    [Crossref]
  43. A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photons data,” inProceedings of 24th European Signal Processing Conference (2016), pp. 86–90.
  44. A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3(3), 472–484 (2017).
    [Crossref]
  45. Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
    [Crossref]
  46. J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12(1), 521–550 (2019).
    [Crossref]
  47. N. S. Kopeika, A System Engineering Approach to Imaging (SPIE Press, 1998), Chap. 17.
  48. R. K. Henderson, N. Johnston, H. Chen, D. D. Li, G. Hungerford, R. Hirsch, P. Yip, D. McLoskey, and D. Birch, “A 192 × 128 time correlated single photon counting imager in 40nm CMOS technology,” in Proceedings of IEEE 44th European Solid-State Circuits Conference (IEEE, 2018).
  49. F. Ceccarelli, G. Acconcia, A. Gulinatti, M. Ghioni, and I. Rech, “83-ps timing jitter with a red-enhanced SPAD and a fully integrated front end circuit,” IEEE Photonics Technol. Lett. 30(19), 1727–1730 (2018).
    [Crossref]
  50. A. Bystrov, E. Hoare, M. Gashinova, M. Cherniakov, and T.-Y. Tran, “Underwater Optical Imaging for Automotive Wading,” Sensors 18(12), 4476 (2018).
    [Crossref]

2019 (7)

H. Wu, Y. Hou, W. Xu, and M. Zhao, “Ultra-low-light-level digital still camera for autonomous underwater vehicle,” Opt. Eng. 58(1), 013106 (2019).
[Crossref]

C. Zhang, S. Lindner, I. M. Antolovic, J. Mata Pavia, M. Wolf, and E. Charbon, “A 30-frames/s, 252 × 144 SPAD Flash LiDAR With 1728 Dual-Clock 48.8-ps TDCs, and Pixel-Wise Integrated Histogramming,” IEEE J. Solid-State Circuits 54(4), 1137–1151 (2019).
[Crossref]

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 × 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstajic, G. O. S. Williams, J. M. Girkin, and R. K. Henderson, “A CMOS SPAD Line Sensor With Per-Pixel Histogramming TDC for Time-Resolved Multispectral Imaging,” IEEE J. Solid-State Circuits 54(6), 1705–1719 (2019).
[Crossref]

P. W. R. Connolly, X. Ren, R. Henderson, and G. S. Buller, “Hot pixel classification of single-photon avalanche diode detector arrays using a log-normal statistical distribution,” Electron. Lett. 55(18), 1004–1006 (2019).
[Crossref]

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12(1), 521–550 (2019).
[Crossref]

R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Three-dimensional single-photon imaging through obscurants,” Opt. Express 27(4), 4590–4611 (2019).
[Crossref]

2018 (5)

2017 (3)

A. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25(10), 11919–11931 (2017).
[Crossref]

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3(3), 472–484 (2017).
[Crossref]

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G. S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57(3), 031303 (2017).
[Crossref]

2016 (4)

A. Maccarone, A. McCarthy, A. Halimi, R. Tobin, A. M. Wallace, Y. Petillot, and G. S. Buller, “Depth imaging in highly scattering underwater environments using time correlated single photon counting,” Proc. SPIE 9992, 99920R (2016).
[Crossref]

M. Perenzoni, L. Pancheri, and D. Stoppa, “Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors,” Sensors 16(5), 745 (2016).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref]

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE Trans. Electron Devices 63(1), 189–196 (2016).
[Crossref]

2015 (6)

2014 (5)

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

R. M. Field, S. Realov, and K. J. Shepard, “A 100 fps, Time-Correlated Single-PhotonCounting-Based Fluorescence-Lifetime Imager in 130 nm CMOS,” IEEE J. Solid-State Circuits 49(4), 867–880 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18- m CMOS SoC for a 100-m-Range 10-Frame/s 200 96-Pixel Time-of-Flight Depth Sensor,” IEEE J. Solid-State Circuits 49(1), 315–330 (2014).
[Crossref]

J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22(4), 4202–4213 (2014).
[Crossref]

2013 (3)

2010 (2)

N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9199 (2010).
[Crossref]

F. M. Caimi and F. R. Dalgleish, “Performance considerations for continuous-wave and pulsed laser line scan (LLS) imaging systems,” J. Eur. Opt. Soc. 5, 10020s (2010).
[Crossref]

2009 (1)

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[Crossref]

2008 (1)

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 ( 128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

2002 (1)

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49(3–4), 439–451 (2002).
[Crossref]

2000 (1)

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

1973 (1)

1963 (1)

Abrosimov, I.

Acconcia, G.

F. Ceccarelli, G. Acconcia, A. Gulinatti, M. Ghioni, and I. Rech, “83-ps timing jitter with a red-enhanced SPAD and a fully integrated front end circuit,” IEEE Photonics Technol. Lett. 30(19), 1727–1730 (2018).
[Crossref]

Al Abbas, T

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40nm/90nm CMOS 3D-Stacked 120dB Dynamic-Range Reconfigurable Time-Resolved SPAD Imager,” in IEEE International Solid-State Circuits Conference (IEEE, 2019), 106–108.

Al Abbas, T.

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside Illuminated SPAD Image Sensor with 7.83µm Pitch in 3D-Stacked CMOS Technology,” in IEEE International Electron Devices Meeting (IEEE, 2016), 16651222.

Alexander, J.

Almer, O.

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside Illuminated SPAD Image Sensor with 7.83µm Pitch in 3D-Stacked CMOS Technology,” in IEEE International Electron Devices Meeting (IEEE, 2016), 16651222.

Altmann, Y.

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12(1), 521–550 (2019).
[Crossref]

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref]

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photons data,” inProceedings of 24th European Signal Processing Conference (2016), pp. 86–90.

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction of complex scenes using single-photon lidar: when image processing meets computer graphics,” arXiv:1905.06700 (2019).

Ameer-Beg, S.

Andren, C. F.

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[Crossref]

Antolovic, I. M.

C. Zhang, S. Lindner, I. M. Antolovic, J. Mata Pavia, M. Wolf, and E. Charbon, “A 30-frames/s, 252 × 144 SPAD Flash LiDAR With 1728 Dual-Clock 48.8-ps TDCs, and Pixel-Wise Integrated Histogramming,” IEEE J. Solid-State Circuits 54(4), 1137–1151 (2019).
[Crossref]

Bellisai, S.

Billmers, R.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49(3–4), 439–451 (2002).
[Crossref]

Birch, D.

R. K. Henderson, N. Johnston, H. Chen, D. D. Li, G. Hungerford, R. Hirsch, P. Yip, D. McLoskey, and D. Birch, “A 192 × 128 time correlated single photon counting imager in 40nm CMOS technology,” in Proceedings of IEEE 44th European Solid-State Circuits Conference (IEEE, 2018).

Birch, D. J. S.

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 × 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

Britton, W. B.

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[Crossref]

Brockherde, W.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

Bronzi, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

S. Bellisai, D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “Single-photon pulsed-light indirect time-of-flight 3D ranging,” Opt. Express 21(4), 5086–5098 (2013).
[Crossref]

Buller, G. S.

P. W. R. Connolly, X. Ren, R. Henderson, and G. S. Buller, “Hot pixel classification of single-photon avalanche diode detector arrays using a log-normal statistical distribution,” Electron. Lett. 55(18), 1004–1006 (2019).
[Crossref]

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12(1), 521–550 (2019).
[Crossref]

R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Three-dimensional single-photon imaging through obscurants,” Opt. Express 27(4), 4590–4611 (2019).
[Crossref]

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref]

A. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25(10), 11919–11931 (2017).
[Crossref]

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3(3), 472–484 (2017).
[Crossref]

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G. S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57(3), 031303 (2017).
[Crossref]

A. Maccarone, A. McCarthy, A. Halimi, R. Tobin, A. M. Wallace, Y. Petillot, and G. S. Buller, “Depth imaging in highly scattering underwater environments using time correlated single photon counting,” Proc. SPIE 9992, 99920R (2016).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref]

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23(26), 33777 (2015).
[Crossref]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23(26), 33911–33926 (2015).
[Crossref]

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[Crossref]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22114 (2013).
[Crossref]

N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9199 (2010).
[Crossref]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photons data,” inProceedings of 24th European Signal Processing Conference (2016), pp. 86–90.

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction of complex scenes using single-photon lidar: when image processing meets computer graphics,” arXiv:1905.06700 (2019).

Bystrov, A.

A. Bystrov, E. Hoare, M. Gashinova, M. Cherniakov, and T.-Y. Tran, “Underwater Optical Imaging for Automotive Wading,” Sensors 18(12), 4476 (2018).
[Crossref]

Caimi, F. M.

F. M. Caimi and F. R. Dalgleish, “Performance considerations for continuous-wave and pulsed laser line scan (LLS) imaging systems,” J. Eur. Opt. Soc. 5, 10020s (2010).
[Crossref]

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[Crossref]

Calder, N.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE Trans. Electron Devices 63(1), 189–196 (2016).
[Crossref]

Ceccarelli, F.

F. Ceccarelli, G. Acconcia, A. Gulinatti, M. Ghioni, and I. Rech, “83-ps timing jitter with a red-enhanced SPAD and a fully integrated front end circuit,” IEEE Photonics Technol. Lett. 30(19), 1727–1730 (2018).
[Crossref]

Chan, S.

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40nm/90nm CMOS 3D-Stacked 120dB Dynamic-Range Reconfigurable Time-Resolved SPAD Imager,” in IEEE International Solid-State Circuits Conference (IEEE, 2019), 106–108.

Charbon, E.

C. Zhang, S. Lindner, I. M. Antolovic, J. Mata Pavia, M. Wolf, and E. Charbon, “A 30-frames/s, 252 × 144 SPAD Flash LiDAR With 1728 Dual-Clock 48.8-ps TDCs, and Pixel-Wise Integrated Histogramming,” IEEE J. Solid-State Circuits 54(4), 1137–1151 (2019).
[Crossref]

J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22(4), 4202–4213 (2014).
[Crossref]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 ( 128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

Y. Maruyama and E. Charbon, “A time-gated 128 × 128 CMOS SPAD array for on-chip fluorescence detection,” in Proceedings of International Image Sensor Workshop (IISW) (2011).

Chen, H.

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 × 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

R. K. Henderson, N. Johnston, H. Chen, D. D. Li, G. Hungerford, R. Hirsch, P. Yip, D. McLoskey, and D. Birch, “A 192 × 128 time correlated single photon counting imager in 40nm CMOS technology,” in Proceedings of IEEE 44th European Solid-State Circuits Conference (IEEE, 2018).

Cherniakov, M.

A. Bystrov, E. Hoare, M. Gashinova, M. Cherniakov, and T.-Y. Tran, “Underwater Optical Imaging for Automotive Wading,” Sensors 18(12), 4476 (2018).
[Crossref]

Christnacher, F.

Concannon, B.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49(3–4), 439–451 (2002).
[Crossref]

Connolly, P. W. R.

P. W. R. Connolly, X. Ren, R. Henderson, and G. S. Buller, “Hot pixel classification of single-photon avalanche diode detector arrays using a log-normal statistical distribution,” Electron. Lett. 55(18), 1004–1006 (2019).
[Crossref]

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref]

Contarino, V.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49(3–4), 439–451 (2002).
[Crossref]

Contini, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

Cova, S.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Dalgarno, P. A.

Dalgleish, F. R.

F. M. Caimi and F. R. Dalgleish, “Performance considerations for continuous-wave and pulsed laser line scan (LLS) imaging systems,” J. Eur. Opt. Soc. 5, 10020s (2010).
[Crossref]

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[Crossref]

Dalla Mora, A.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

Davies, A.

Davis, J.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49(3–4), 439–451 (2002).
[Crossref]

Day-Uei Li, D.

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 × 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

Della Frera, A.

Dorenbos, S. N.

Duncan, R. R.

Duntley, S. Q.

S. Q. Duntley, “Light in the sea,” J. Opt. Soc. Am. 53(2), 214–234 (1963).
[Crossref]

S. Q. Duntley, “Underwater Lighting by Submerged Lasers and Incandescent Sources,” in UC San Diego: Scripps Institution of Oceanography, Visibility Laboratory (1971).

Durini, D.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

Dutton, N.

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40nm/90nm CMOS 3D-Stacked 120dB Dynamic-Range Reconfigurable Time-Resolved SPAD Imager,” in IEEE International Solid-State Circuits Conference (IEEE, 2019), 106–108.

Dutton, N. A. W.

I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26(3), 2280–2291 (2018).
[Crossref]

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE Trans. Electron Devices 63(1), 189–196 (2016).
[Crossref]

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside Illuminated SPAD Image Sensor with 7.83µm Pitch in 3D-Stacked CMOS Technology,” in IEEE International Electron Devices Meeting (IEEE, 2016), 16651222.

Erdogan, A.

Erdogan, A. T.

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstajic, G. O. S. Williams, J. M. Girkin, and R. K. Henderson, “A CMOS SPAD Line Sensor With Per-Pixel Histogramming TDC for Time-Resolved Multispectral Imaging,” IEEE J. Solid-State Circuits 54(6), 1705–1719 (2019).
[Crossref]

Faccio, D.

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

Favi, C.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 ( 128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

Field, R. M.

R. M. Field, S. Realov, and K. J. Shepard, “A 100 fps, Time-Correlated Single-PhotonCounting-Based Fluorescence-Lifetime Imager in 130 nm CMOS,” IEEE J. Solid-State Circuits 49(4), 867–880 (2014).
[Crossref]

Finlayson, N.

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstajic, G. O. S. Williams, J. M. Girkin, and R. K. Henderson, “A CMOS SPAD Line Sensor With Per-Pixel Histogramming TDC for Time-Resolved Multispectral Imaging,” IEEE J. Solid-State Circuits 54(6), 1705–1719 (2019).
[Crossref]

Gallinet, B.

Gariepy, G.

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

Gashinova, M.

A. Bystrov, E. Hoare, M. Gashinova, M. Cherniakov, and T.-Y. Tran, “Underwater Optical Imaging for Automotive Wading,” Sensors 18(12), 4476 (2018).
[Crossref]

Gemmell, N. R.

Gersbach, M.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 ( 128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

Ghioni, M.

F. Ceccarelli, G. Acconcia, A. Gulinatti, M. Ghioni, and I. Rech, “83-ps timing jitter with a red-enhanced SPAD and a fully integrated front end circuit,” IEEE Photonics Technol. Lett. 30(19), 1727–1730 (2018).
[Crossref]

Girkin, J. M.

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstajic, G. O. S. Williams, J. M. Girkin, and R. K. Henderson, “A CMOS SPAD Line Sensor With Per-Pixel Histogramming TDC for Time-Resolved Multispectral Imaging,” IEEE J. Solid-State Circuits 54(6), 1705–1719 (2019).
[Crossref]

Gnecchi, S.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE Trans. Electron Devices 63(1), 189–196 (2016).
[Crossref]

Grant, L. A.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE Trans. Electron Devices 63(1), 189–196 (2016).
[Crossref]

Gulinatti, A.

F. Ceccarelli, G. Acconcia, A. Gulinatti, M. Ghioni, and I. Rech, “83-ps timing jitter with a red-enhanced SPAD and a fully integrated front end circuit,” IEEE Photonics Technol. Lett. 30(19), 1727–1730 (2018).
[Crossref]

Gyongy, I.

I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26(3), 2280–2291 (2018).
[Crossref]

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref]

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE Trans. Electron Devices 63(1), 189–196 (2016).
[Crossref]

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40nm/90nm CMOS 3D-Stacked 120dB Dynamic-Range Reconfigurable Time-Resolved SPAD Imager,” in IEEE International Solid-State Circuits Conference (IEEE, 2019), 106–108.

Hadfield, R. H.

Hale, G. M.

Halimi, A.

R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Three-dimensional single-photon imaging through obscurants,” Opt. Express 27(4), 4590–4611 (2019).
[Crossref]

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref]

A. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25(10), 11919–11931 (2017).
[Crossref]

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3(3), 472–484 (2017).
[Crossref]

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G. S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57(3), 031303 (2017).
[Crossref]

A. Maccarone, A. McCarthy, A. Halimi, R. Tobin, A. M. Wallace, Y. Petillot, and G. S. Buller, “Depth imaging in highly scattering underwater environments using time correlated single photon counting,” Proc. SPIE 9992, 99920R (2016).
[Crossref]

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photons data,” inProceedings of 24th European Signal Processing Conference (2016), pp. 86–90.

Hallman, L.

H. Ruokamo, L. Hallman, H. Rapakko, and J. Kostamovaara, “An 80 × 25 Pixel CMOS Single-Photon Range Image Sensor with a Flexible On-Chip Time Gating Topology for Solid State 3D Scanning,” in Proceedings of 43rd IEEE European Solid State Circuits Conference (IEEE, 2017), 17351340.

Haugholt, K. H.

Henderson, R.

P. W. R. Connolly, X. Ren, R. Henderson, and G. S. Buller, “Hot pixel classification of single-photon avalanche diode detector arrays using a log-normal statistical distribution,” Electron. Lett. 55(18), 1004–1006 (2019).
[Crossref]

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

Henderson, R. K.

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstajic, G. O. S. Williams, J. M. Girkin, and R. K. Henderson, “A CMOS SPAD Line Sensor With Per-Pixel Histogramming TDC for Time-Resolved Multispectral Imaging,” IEEE J. Solid-State Circuits 54(6), 1705–1719 (2019).
[Crossref]

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 × 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref]

I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26(3), 2280–2291 (2018).
[Crossref]

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE Trans. Electron Devices 63(1), 189–196 (2016).
[Crossref]

N. Krstajic, S. Poland, J. Levitt, R. Walker, A. Erdogan, S. Ameer-Beg, and R. K. Henderson, “0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays,” Opt. Lett. 40(18), 4305–4308 (2015).
[Crossref]

R. K. Henderson, N. Johnston, H. Chen, D. D. Li, G. Hungerford, R. Hirsch, P. Yip, D. McLoskey, and D. Birch, “A 192 × 128 time correlated single photon counting imager in 40nm CMOS technology,” in Proceedings of IEEE 44th European Solid-State Circuits Conference (IEEE, 2018).

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside Illuminated SPAD Image Sensor with 7.83µm Pitch in 3D-Stacked CMOS Technology,” in IEEE International Electron Devices Meeting (IEEE, 2016), 16651222.

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40nm/90nm CMOS 3D-Stacked 120dB Dynamic-Range Reconfigurable Time-Resolved SPAD Imager,” in IEEE International Solid-State Circuits Conference (IEEE, 2019), 106–108.

Henrion, Y.

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside Illuminated SPAD Image Sensor with 7.83µm Pitch in 3D-Stacked CMOS Technology,” in IEEE International Electron Devices Meeting (IEEE, 2016), 16651222.

Heshmat, B.

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

Hirsch, R.

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 × 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

R. K. Henderson, N. Johnston, H. Chen, D. D. Li, G. Hungerford, R. Hirsch, P. Yip, D. McLoskey, and D. Birch, “A 192 × 128 time correlated single photon counting imager in 40nm CMOS technology,” in Proceedings of IEEE 44th European Solid-State Circuits Conference (IEEE, 2018).

Hoare, E.

A. Bystrov, E. Hoare, M. Gashinova, M. Cherniakov, and T.-Y. Tran, “Underwater Optical Imaging for Automotive Wading,” Sensors 18(12), 4476 (2018).
[Crossref]

Hou, Y.

H. Wu, Y. Hou, W. Xu, and M. Zhao, “Ultra-low-light-level digital still camera for autonomous underwater vehicle,” Opt. Eng. 58(1), 013106 (2019).
[Crossref]

Hungerford, G.

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 × 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

R. K. Henderson, N. Johnston, H. Chen, D. D. Li, G. Hungerford, R. Hirsch, P. Yip, D. McLoskey, and D. Birch, “A 192 × 128 time correlated single photon counting imager in 40nm CMOS technology,” in Proceedings of IEEE 44th European Solid-State Circuits Conference (IEEE, 2018).

Hutchings, S. W.

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40nm/90nm CMOS 3D-Stacked 120dB Dynamic-Range Reconfigurable Time-Resolved SPAD Imager,” in IEEE International Solid-State Circuits Conference (IEEE, 2019), 106–108.

Intermite, G.

Jaffe, J. S.

J. S. Jaffe, “Underwater optical imaging - The past, the present, and the prospects,” IEEE J. Oceanic Eng. 40(3), C1–C4 (2015).
[Crossref]

Johnston, N.

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 × 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40nm/90nm CMOS 3D-Stacked 120dB Dynamic-Range Reconfigurable Time-Resolved SPAD Imager,” in IEEE International Solid-State Circuits Conference (IEEE, 2019), 106–108.

R. K. Henderson, N. Johnston, H. Chen, D. D. Li, G. Hungerford, R. Hirsch, P. Yip, D. McLoskey, and D. Birch, “A 192 × 128 time correlated single photon counting imager in 40nm CMOS technology,” in Proceedings of IEEE 44th European Solid-State Circuits Conference (IEEE, 2018).

Kagami, M.

C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18- m CMOS SoC for a 100-m-Range 10-Frame/s 200 96-Pixel Time-of-Flight Depth Sensor,” IEEE J. Solid-State Circuits 49(1), 315–330 (2014).
[Crossref]

Kaspersen, K.

Kluter, T.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 ( 128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

Kopeika, N. S.

N. S. Kopeika, A System Engineering Approach to Imaging (SPIE Press, 1998), Chap. 17.

Kostamovaara, J.

H. Ruokamo, L. Hallman, H. Rapakko, and J. Kostamovaara, “An 80 × 25 Pixel CMOS Single-Photon Range Image Sensor with a Flexible On-Chip Time Gating Topology for Solid State 3D Scanning,” in Proceedings of 43rd IEEE European Solid State Circuits Conference (IEEE, 2017), 17351340.

Krichel, N. J.

Krstajic, N.

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstajic, G. O. S. Williams, J. M. Girkin, and R. K. Henderson, “A CMOS SPAD Line Sensor With Per-Pixel Histogramming TDC for Time-Resolved Multispectral Imaging,” IEEE J. Solid-State Circuits 54(6), 1705–1719 (2019).
[Crossref]

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

N. Krstajic, S. Poland, J. Levitt, R. Walker, A. Erdogan, S. Ameer-Beg, and R. K. Henderson, “0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays,” Opt. Lett. 40(18), 4305–4308 (2015).
[Crossref]

Lamb, R. A.

Laurenzis, M.

Laux, A.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49(3–4), 439–451 (2002).
[Crossref]

Leach, J.

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40nm/90nm CMOS 3D-Stacked 120dB Dynamic-Range Reconfigurable Time-Resolved SPAD Imager,” in IEEE International Solid-State Circuits Conference (IEEE, 2019), 106–108.

Levitt, J.

Li, C.

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

Li, D. D.

R. K. Henderson, N. Johnston, H. Chen, D. D. Li, G. Hungerford, R. Hirsch, P. Yip, D. McLoskey, and D. Birch, “A 192 × 128 time correlated single photon counting imager in 40nm CMOS technology,” in Proceedings of IEEE 44th European Solid-State Circuits Conference (IEEE, 2018).

Lindner, S.

C. Zhang, S. Lindner, I. M. Antolovic, J. Mata Pavia, M. Wolf, and E. Charbon, “A 30-frames/s, 252 × 144 SPAD Flash LiDAR With 1728 Dual-Clock 48.8-ps TDCs, and Pixel-Wise Integrated Histogramming,” IEEE J. Solid-State Circuits 54(4), 1137–1151 (2019).
[Crossref]

Lussana, R.

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23(26), 33777 (2015).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

Maccarone, A.

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3(3), 472–484 (2017).
[Crossref]

A. Maccarone, A. McCarthy, A. Halimi, R. Tobin, A. M. Wallace, Y. Petillot, and G. S. Buller, “Depth imaging in highly scattering underwater environments using time correlated single photon counting,” Proc. SPIE 9992, 99920R (2016).
[Crossref]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23(26), 33911–33926 (2015).
[Crossref]

Maruyama, Y.

Y. Maruyama and E. Charbon, “A time-gated 128 × 128 CMOS SPAD array for on-chip fluorescence detection,” in Proceedings of International Image Sensor Workshop (IISW) (2011).

Massot-Campos, M.

M. Massot-Campos and G. Oliver-Codina, “Optical sensors and methods for underwater 3D reconstruction,” Sensors 15(12), 31525–31557 (2015).
[Crossref]

Mata Pavia, J.

C. Zhang, S. Lindner, I. M. Antolovic, J. Mata Pavia, M. Wolf, and E. Charbon, “A 30-frames/s, 252 × 144 SPAD Flash LiDAR With 1728 Dual-Clock 48.8-ps TDCs, and Pixel-Wise Integrated Histogramming,” IEEE J. Solid-State Circuits 54(4), 1137–1151 (2019).
[Crossref]

Matsubara, H.

C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18- m CMOS SoC for a 100-m-Range 10-Frame/s 200 96-Pixel Time-of-Flight Depth Sensor,” IEEE J. Solid-State Circuits 49(1), 315–330 (2014).
[Crossref]

Mattioli Della Rocca, F.

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 × 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

McCarthy, A.

R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Three-dimensional single-photon imaging through obscurants,” Opt. Express 27(4), 4590–4611 (2019).
[Crossref]

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12(1), 521–550 (2019).
[Crossref]

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3(3), 472–484 (2017).
[Crossref]

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G. S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57(3), 031303 (2017).
[Crossref]

A. Maccarone, A. McCarthy, A. Halimi, R. Tobin, A. M. Wallace, Y. Petillot, and G. S. Buller, “Depth imaging in highly scattering underwater environments using time correlated single photon counting,” Proc. SPIE 9992, 99920R (2016).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23(26), 33911–33926 (2015).
[Crossref]

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23(26), 33777 (2015).
[Crossref]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22114 (2013).
[Crossref]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[Crossref]

N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9199 (2010).
[Crossref]

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction of complex scenes using single-photon lidar: when image processing meets computer graphics,” arXiv:1905.06700 (2019).

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photons data,” inProceedings of 24th European Signal Processing Conference (2016), pp. 86–90.

McEwan, K. J.

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G. S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57(3), 031303 (2017).
[Crossref]

McLaughlin, S.

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12(1), 521–550 (2019).
[Crossref]

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref]

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G. S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57(3), 031303 (2017).
[Crossref]

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3(3), 472–484 (2017).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref]

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photons data,” inProceedings of 24th European Signal Processing Conference (2016), pp. 86–90.

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction of complex scenes using single-photon lidar: when image processing meets computer graphics,” arXiv:1905.06700 (2019).

McLoskey, D.

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 × 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

R. K. Henderson, N. Johnston, H. Chen, D. D. Li, G. Hungerford, R. Hirsch, P. Yip, D. McLoskey, and D. Birch, “A 192 × 128 time correlated single photon counting imager in 40nm CMOS technology,” in Proceedings of IEEE 44th European Solid-State Circuits Conference (IEEE, 2018).

Mellado, N.

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction of complex scenes using single-photon lidar: when image processing meets computer graphics,” arXiv:1905.06700 (2019).

Moffat, J.

Mullen, L.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49(3–4), 439–451 (2002).
[Crossref]

Niclass, C.

C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18- m CMOS SoC for a 100-m-Range 10-Frame/s 200 96-Pixel Time-of-Flight Depth Sensor,” IEEE J. Solid-State Circuits 49(1), 315–330 (2014).
[Crossref]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 ( 128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

Ogawa, M.

C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18- m CMOS SoC for a 100-m-Range 10-Frame/s 200 96-Pixel Time-of-Flight Depth Sensor,” IEEE J. Solid-State Circuits 49(1), 315–330 (2014).
[Crossref]

Oliver-Codina, G.

M. Massot-Campos and G. Oliver-Codina, “Optical sensors and methods for underwater 3D reconstruction,” Sensors 15(12), 31525–31557 (2015).
[Crossref]

Pancheri, L.

M. Perenzoni, L. Pancheri, and D. Stoppa, “Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors,” Sensors 16(5), 745 (2016).
[Crossref]

Parmesan, L.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE Trans. Electron Devices 63(1), 189–196 (2016).
[Crossref]

Pavia, J. M.

Pawlikowska, A.

Pellegrini, S.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE Trans. Electron Devices 63(1), 189–196 (2016).
[Crossref]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside Illuminated SPAD Image Sensor with 7.83µm Pitch in 3D-Stacked CMOS Technology,” in IEEE International Electron Devices Meeting (IEEE, 2016), 16651222.

Perenzoni, M.

M. Perenzoni, L. Pancheri, and D. Stoppa, “Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors,” Sensors 16(5), 745 (2016).
[Crossref]

Petillot, Y.

A. Maccarone, A. McCarthy, A. Halimi, R. Tobin, A. M. Wallace, Y. Petillot, and G. S. Buller, “Depth imaging in highly scattering underwater environments using time correlated single photon counting,” Proc. SPIE 9992, 99920R (2016).
[Crossref]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23(26), 33911–33926 (2015).
[Crossref]

Poland, S.

Prentice, J.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49(3–4), 439–451 (2002).
[Crossref]

Querry, M. R.

Rae, B. R.

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE Trans. Electron Devices 63(1), 189–196 (2016).
[Crossref]

Rapakko, H.

H. Ruokamo, L. Hallman, H. Rapakko, and J. Kostamovaara, “An 80 × 25 Pixel CMOS Single-Photon Range Image Sensor with a Flexible On-Chip Time Gating Topology for Solid State 3D Scanning,” in Proceedings of 43rd IEEE European Solid State Circuits Conference (IEEE, 2017), 17351340.

Raskar, R.

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

Realov, S.

R. M. Field, S. Realov, and K. J. Shepard, “A 100 fps, Time-Correlated Single-PhotonCounting-Based Fluorescence-Lifetime Imager in 130 nm CMOS,” IEEE J. Solid-State Circuits 49(4), 867–880 (2014).
[Crossref]

Rech, I.

F. Ceccarelli, G. Acconcia, A. Gulinatti, M. Ghioni, and I. Rech, “83-ps timing jitter with a red-enhanced SPAD and a fully integrated front end circuit,” IEEE Photonics Technol. Lett. 30(19), 1727–1730 (2018).
[Crossref]

Ren, X.

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12(1), 521–550 (2019).
[Crossref]

P. W. R. Connolly, X. Ren, R. Henderson, and G. S. Buller, “Hot pixel classification of single-photon avalanche diode detector arrays using a log-normal statistical distribution,” Electron. Lett. 55(18), 1004–1006 (2019).
[Crossref]

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref]

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G. S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57(3), 031303 (2017).
[Crossref]

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref]

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23(26), 33777 (2015).
[Crossref]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23(26), 33911–33926 (2015).
[Crossref]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22114 (2013).
[Crossref]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[Crossref]

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photons data,” inProceedings of 24th European Signal Processing Conference (2016), pp. 86–90.

Rickman, C.

Risholm, P.

Ruggeri, A.

Ruokamo, H.

H. Ruokamo, L. Hallman, H. Rapakko, and J. Kostamovaara, “An 80 × 25 Pixel CMOS Single-Photon Range Image Sensor with a Flexible On-Chip Time Gating Topology for Solid State 3D Scanning,” in Proceedings of 43rd IEEE European Solid State Circuits Conference (IEEE, 2017), 17351340.

Scarcella, C.

Shepard, K. J.

R. M. Field, S. Realov, and K. J. Shepard, “A 100 fps, Time-Correlated Single-PhotonCounting-Based Fluorescence-Lifetime Imager in 130 nm CMOS,” IEEE J. Solid-State Circuits 49(4), 867–880 (2014).
[Crossref]

Smith, J. M.

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Softley, C.

Soga, M.

C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18- m CMOS SoC for a 100-m-Range 10-Frame/s 200 96-Pixel Time-of-Flight Depth Sensor,” IEEE J. Solid-State Circuits 49(1), 315–330 (2014).
[Crossref]

Stoppa, D.

M. Perenzoni, L. Pancheri, and D. Stoppa, “Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors,” Sensors 16(5), 745 (2016).
[Crossref]

Tachella, J.

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12(1), 521–550 (2019).
[Crossref]

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction of complex scenes using single-photon lidar: when image processing meets computer graphics,” arXiv:1905.06700 (2019).

Taghizadeh, M. R.

Tanner, M. G.

Thielemann, J. T.

Thomson, R. R.

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

Thorstensen, J.

Tisa, S.

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

S. Bellisai, D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “Single-photon pulsed-light indirect time-of-flight 3D ranging,” Opt. Express 21(4), 5086–5098 (2013).
[Crossref]

Tobin, R.

R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Three-dimensional single-photon imaging through obscurants,” Opt. Express 27(4), 4590–4611 (2019).
[Crossref]

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G. S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57(3), 031303 (2017).
[Crossref]

A. Maccarone, A. McCarthy, A. Halimi, R. Tobin, A. M. Wallace, Y. Petillot, and G. S. Buller, “Depth imaging in highly scattering underwater environments using time correlated single photon counting,” Proc. SPIE 9992, 99920R (2016).
[Crossref]

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction of complex scenes using single-photon lidar: when image processing meets computer graphics,” arXiv:1905.06700 (2019).

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photons data,” inProceedings of 24th European Signal Processing Conference (2016), pp. 86–90.

Tosi, A.

Tourneret, J.-Y.

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12(1), 521–550 (2019).
[Crossref]

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction of complex scenes using single-photon lidar: when image processing meets computer graphics,” arXiv:1905.06700 (2019).

Tran, T.-Y.

A. Bystrov, E. Hoare, M. Gashinova, M. Cherniakov, and T.-Y. Tran, “Underwater Optical Imaging for Automotive Wading,” Sensors 18(12), 4476 (2018).
[Crossref]

Tschudi, J.

Tyler, M.

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40nm/90nm CMOS 3D-Stacked 120dB Dynamic-Range Reconfigurable Time-Resolved SPAD Imager,” in IEEE International Solid-State Circuits Conference (IEEE, 2019), 106–108.

Villa, F.

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23(26), 33777 (2015).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

S. Bellisai, D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “Single-photon pulsed-light indirect time-of-flight 3D ranging,” Opt. Express 21(4), 5086–5098 (2013).
[Crossref]

Waddie, A. J.

Walker, R.

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstajic, G. O. S. Williams, J. M. Girkin, and R. K. Henderson, “A CMOS SPAD Line Sensor With Per-Pixel Histogramming TDC for Time-Resolved Multispectral Imaging,” IEEE J. Solid-State Circuits 54(6), 1705–1719 (2019).
[Crossref]

N. Krstajic, S. Poland, J. Levitt, R. Walker, A. Erdogan, S. Ameer-Beg, and R. K. Henderson, “0.5 billion events per second time correlated single photon counting using CMOS SPAD arrays,” Opt. Lett. 40(18), 4305–4308 (2015).
[Crossref]

Wallace, A. M.

A. Maccarone, A. McCarthy, A. Halimi, R. Tobin, A. M. Wallace, Y. Petillot, and G. S. Buller, “Depth imaging in highly scattering underwater environments using time correlated single photon counting,” Proc. SPIE 9992, 99920R (2016).
[Crossref]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23(26), 33911–33926 (2015).
[Crossref]

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Warburton, R. E.

Weyers, S.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

Williams, G. O. S.

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstajic, G. O. S. Williams, J. M. Girkin, and R. K. Henderson, “A CMOS SPAD Line Sensor With Per-Pixel Histogramming TDC for Time-Resolved Multispectral Imaging,” IEEE J. Solid-State Circuits 54(6), 1705–1719 (2019).
[Crossref]

Wolf, M.

C. Zhang, S. Lindner, I. M. Antolovic, J. Mata Pavia, M. Wolf, and E. Charbon, “A 30-frames/s, 252 × 144 SPAD Flash LiDAR With 1728 Dual-Clock 48.8-ps TDCs, and Pixel-Wise Integrated Histogramming,” IEEE J. Solid-State Circuits 54(4), 1137–1151 (2019).
[Crossref]

J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22(4), 4202–4213 (2014).
[Crossref]

Wu, H.

H. Wu, Y. Hou, W. Xu, and M. Zhao, “Ultra-low-light-level digital still camera for autonomous underwater vehicle,” Opt. Eng. 58(1), 013106 (2019).
[Crossref]

Xu, W.

H. Wu, Y. Hou, W. Xu, and M. Zhao, “Ultra-low-light-level digital still camera for autonomous underwater vehicle,” Opt. Eng. 58(1), 013106 (2019).
[Crossref]

Yates, C.

Yip, P.

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 × 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

R. K. Henderson, N. Johnston, H. Chen, D. D. Li, G. Hungerford, R. Hirsch, P. Yip, D. McLoskey, and D. Birch, “A 192 × 128 time correlated single photon counting imager in 40nm CMOS technology,” in Proceedings of IEEE 44th European Solid-State Circuits Conference (IEEE, 2018).

Zappa, F.

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23(26), 33777 (2015).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

S. Bellisai, D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “Single-photon pulsed-light indirect time-of-flight 3D ranging,” Opt. Express 21(4), 5086–5098 (2013).
[Crossref]

Zhang, C.

C. Zhang, S. Lindner, I. M. Antolovic, J. Mata Pavia, M. Wolf, and E. Charbon, “A 30-frames/s, 252 × 144 SPAD Flash LiDAR With 1728 Dual-Clock 48.8-ps TDCs, and Pixel-Wise Integrated Histogramming,” IEEE J. Solid-State Circuits 54(4), 1137–1151 (2019).
[Crossref]

Zhao, M.

H. Wu, Y. Hou, W. Xu, and M. Zhao, “Ultra-low-light-level digital still camera for autonomous underwater vehicle,” Opt. Eng. 58(1), 013106 (2019).
[Crossref]

Zwiller, V.

Appl. Opt. (2)

Electron. Lett. (1)

P. W. R. Connolly, X. Ren, R. Henderson, and G. S. Buller, “Hot pixel classification of single-photon avalanche diode detector arrays using a log-normal statistical distribution,” Electron. Lett. 55(18), 1004–1006 (2019).
[Crossref]

IEEE J. Oceanic Eng. (1)

J. S. Jaffe, “Underwater optical imaging - The past, the present, and the prospects,” IEEE J. Oceanic Eng. 40(3), C1–C4 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, and W. Brockherde, “100 000 Frames/s 64 × 32 Single-Photon Detector Array for 2-D Imaging and 3-D Ranging,” IEEE J. Sel. Top. Quantum Electron. 20(6), 354–363 (2014).
[Crossref]

IEEE J. Solid-State Circuits (6)

C. Zhang, S. Lindner, I. M. Antolovic, J. Mata Pavia, M. Wolf, and E. Charbon, “A 30-frames/s, 252 × 144 SPAD Flash LiDAR With 1728 Dual-Clock 48.8-ps TDCs, and Pixel-Wise Integrated Histogramming,” IEEE J. Solid-State Circuits 54(4), 1137–1151 (2019).
[Crossref]

C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami, “A 0.18- m CMOS SoC for a 100-m-Range 10-Frame/s 200 96-Pixel Time-of-Flight Depth Sensor,” IEEE J. Solid-State Circuits 49(1), 315–330 (2014).
[Crossref]

R. M. Field, S. Realov, and K. J. Shepard, “A 100 fps, Time-Correlated Single-PhotonCounting-Based Fluorescence-Lifetime Imager in 130 nm CMOS,” IEEE J. Solid-State Circuits 49(4), 867–880 (2014).
[Crossref]

R. K. Henderson, N. Johnston, F. Mattioli Della Rocca, H. Chen, D. Day-Uei Li, G. Hungerford, R. Hirsch, D. McLoskey, P. Yip, and D. J. S. Birch, “A 192 × 128 Time Correlated SPAD Image Sensor in 40-nm CMOS Technology,” IEEE J. Solid-State Circuits 54(7), 1907–1916 (2019).
[Crossref]

A. T. Erdogan, R. Walker, N. Finlayson, N. Krstajic, G. O. S. Williams, J. M. Girkin, and R. K. Henderson, “A CMOS SPAD Line Sensor With Per-Pixel Histogramming TDC for Time-Resolved Multispectral Imaging,” IEEE J. Solid-State Circuits 54(6), 1705–1719 (2019).
[Crossref]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 ( 128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (1)

F. Ceccarelli, G. Acconcia, A. Gulinatti, M. Ghioni, and I. Rech, “83-ps timing jitter with a red-enhanced SPAD and a fully integrated front end circuit,” IEEE Photonics Technol. Lett. 30(19), 1727–1730 (2018).
[Crossref]

IEEE Trans. Comput. Imaging (1)

A. Halimi, A. Maccarone, A. McCarthy, S. McLaughlin, and G. S. Buller, “Object depth profile and reflectivity restoration from sparse single-photon data acquired in underwater environments,” IEEE Trans. Comput. Imaging 3(3), 472–484 (2017).
[Crossref]

IEEE Trans. Electron Devices (1)

N. A. W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B. R. Rae, S. Pellegrini, L. A. Grant, and R. K. Henderson, “A SPAD-Based QVGA Image Sensor for Single-Photon Counting and Quanta Imaging,” IEEE Trans. Electron Devices 63(1), 189–196 (2016).
[Crossref]

IEEE Trans. Image Process. (1)

Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin, “Lidar waveform based analysis of depth images constructed using sparse single-photon data,” IEEE Trans. Image Process. 25(5), 1935–1946 (2016).
[Crossref]

J. Eur. Opt. Soc. (1)

F. M. Caimi and F. R. Dalgleish, “Performance considerations for continuous-wave and pulsed laser line scan (LLS) imaging systems,” J. Eur. Opt. Soc. 5, 10020s (2010).
[Crossref]

J. Mod. Opt. (1)

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49(3–4), 439–451 (2002).
[Crossref]

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (1)

S. Pellegrini, G. S. Buller, J. M. Smith, A. M. Wallace, and S. Cova, “Laser-based distance measurement using picosecond resolution time-correlated single-photon counting,” Meas. Sci. Technol. 11(6), 712–716 (2000).
[Crossref]

Nat. Commun. (1)

G. Gariepy, N. Krstajic, R. Henderson, C. Li, R. R. Thomson, G. S. Buller, B. Heshmat, R. Raskar, J. Leach, and D. Faccio, “Single-photon sensitive light-in-flight imaging,” Nat. Commun. 6(1), 6021 (2015).
[Crossref]

Opt. Eng. (2)

H. Wu, Y. Hou, W. Xu, and M. Zhao, “Ultra-low-light-level digital still camera for autonomous underwater vehicle,” Opt. Eng. 58(1), 013106 (2019).
[Crossref]

R. Tobin, A. Halimi, A. McCarthy, X. Ren, K. J. McEwan, S. McLaughlin, and G. S. Buller, “Long-range depth profiling of camouflaged targets using single-photon detection,” Opt. Eng. 57(3), 031303 (2017).
[Crossref]

Opt. Express (11)

N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9199 (2010).
[Crossref]

S. Bellisai, D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “Single-photon pulsed-light indirect time-of-flight 3D ranging,” Opt. Express 21(4), 5086–5098 (2013).
[Crossref]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[Crossref]

A. McCarthy, X. Ren, A. Della Frera, N. R. Gemmell, N. J. Krichel, C. Scarcella, A. Ruggeri, A. Tosi, and G. S. Buller, “Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector,” Opt. Express 21(19), 22098–22114 (2013).
[Crossref]

J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22(4), 4202–4213 (2014).
[Crossref]

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23(26), 33777 (2015).
[Crossref]

A. Maccarone, A. McCarthy, X. Ren, R. E. Warburton, A. M. Wallace, J. Moffat, Y. Petillot, and G. S. Buller, “Underwater depth imaging using time-correlated single-photon counting,” Opt. Express 23(26), 33911–33926 (2015).
[Crossref]

A. Pawlikowska, A. Halimi, R. A. Lamb, and G. S. Buller, “Single-photon three-dimensional imaging at up to 10 kilometers range,” Opt. Express 25(10), 11919–11931 (2017).
[Crossref]

I. Gyongy, A. Davies, B. Gallinet, N. A. W. Dutton, R. R. Duncan, C. Rickman, R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced collection efficiency of small pixel SPAD arrays in single-molecule localisation microscopy,” Opt. Express 26(3), 2280–2291 (2018).
[Crossref]

X. Ren, P. W. R. Connolly, A. Halimi, Y. Altmann, S. McLaughlin, I. Gyongy, R. K. Henderson, and G. S. Buller, “High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor,” Opt. Express 26(5), 5541–5557 (2018).
[Crossref]

R. Tobin, A. Halimi, A. McCarthy, M. Laurenzis, F. Christnacher, and G. S. Buller, “Three-dimensional single-photon imaging through obscurants,” Opt. Express 27(4), 4590–4611 (2019).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (2)

A. Maccarone, A. McCarthy, A. Halimi, R. Tobin, A. M. Wallace, Y. Petillot, and G. S. Buller, “Depth imaging in highly scattering underwater environments using time correlated single photon counting,” Proc. SPIE 9992, 99920R (2016).
[Crossref]

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009).
[Crossref]

Sensors (3)

M. Massot-Campos and G. Oliver-Codina, “Optical sensors and methods for underwater 3D reconstruction,” Sensors 15(12), 31525–31557 (2015).
[Crossref]

M. Perenzoni, L. Pancheri, and D. Stoppa, “Compact SPAD-Based Pixel Architectures for Time-Resolved Image Sensors,” Sensors 16(5), 745 (2016).
[Crossref]

A. Bystrov, E. Hoare, M. Gashinova, M. Cherniakov, and T.-Y. Tran, “Underwater Optical Imaging for Automotive Wading,” Sensors 18(12), 4476 (2018).
[Crossref]

SIAM J. Imaging Sci. (1)

J. Tachella, Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, S. McLaughlin, and J.-Y. Tourneret, “Bayesian 3D reconstruction of complex scenes from single-photon lidar data,” SIAM J. Imaging Sci. 12(1), 521–550 (2019).
[Crossref]

Other (9)

N. S. Kopeika, A System Engineering Approach to Imaging (SPIE Press, 1998), Chap. 17.

R. K. Henderson, N. Johnston, H. Chen, D. D. Li, G. Hungerford, R. Hirsch, P. Yip, D. McLoskey, and D. Birch, “A 192 × 128 time correlated single photon counting imager in 40nm CMOS technology,” in Proceedings of IEEE 44th European Solid-State Circuits Conference (IEEE, 2018).

S. Q. Duntley, “Underwater Lighting by Submerged Lasers and Incandescent Sources,” in UC San Diego: Scripps Institution of Oceanography, Visibility Laboratory (1971).

Y. Maruyama and E. Charbon, “A time-gated 128 × 128 CMOS SPAD array for on-chip fluorescence detection,” in Proceedings of International Image Sensor Workshop (IISW) (2011).

J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S. Buller, J.-Y. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction of complex scenes using single-photon lidar: when image processing meets computer graphics,” arXiv:1905.06700 (2019).

H. Ruokamo, L. Hallman, H. Rapakko, and J. Kostamovaara, “An 80 × 25 Pixel CMOS Single-Photon Range Image Sensor with a Flexible On-Chip Time Gating Topology for Solid State 3D Scanning,” in Proceedings of 43rd IEEE European Solid State Circuits Conference (IEEE, 2017), 17351340.

T. Al Abbas, N. A. W. Dutton, O. Almer, S. Pellegrini, Y. Henrion, and R. K. Henderson, “Backside Illuminated SPAD Image Sensor with 7.83µm Pitch in 3D-Stacked CMOS Technology,” in IEEE International Electron Devices Meeting (IEEE, 2016), 16651222.

R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T Al Abbas, N. Dutton, M. Tyler, S. Chan, and J. Leach, “A 256×256 40nm/90nm CMOS 3D-Stacked 120dB Dynamic-Range Reconfigurable Time-Resolved SPAD Imager,” in IEEE International Solid-State Circuits Conference (IEEE, 2019), 106–108.

A. Halimi, Y. Altmann, A. McCarthy, X. Ren, R. Tobin, G. S. Buller, and S. McLaughlin, “Restoration of intensity and depth images constructed using sparse single-photons data,” inProceedings of 24th European Signal Processing Conference (2016), pp. 86–90.

Supplementary Material (5)

NameDescription
» Visualization 1       Depth and intensity profiles of flange target spinning about a vertical axis at 1.2 AL in water. The average optical power entering the water tank was approximately 1 mW and the acquisition time per frame was 1 ms. The intensity and the depth with re
» Visualization 2       Depth and intensity profiles of flange target spinning about a vertical axis at 1.2 AL in water. The average optical power entering the water tank was approximately 1 mW and the acquisition time per frame was 0.01 ms. The intensity and the depth with
» Visualization 3       Depth and intensity profiles of flange target spinning about a vertical axis at 1.2 AL in water. The average optical power entering the water tank was approximately 1 mW and the acquisition time per frame was 1 ms. The intensity and the depth with re
» Visualization 4       Depth and intensity profiles of flange target spinning about a vertical axis at 4.8 AL. The average optical power entering the water tank was approximately 8 mW and the acquisition time per frame was 1 ms. The intensity and the depth with respect to
» Visualization 5       Depth and intensity profiles of flange target spinning about a vertical axis at 6.7 AL. The average optical power entering the water tank was approximately 8 mW and the acquisition time per frame was 1 ms. The intensity and the depth with respect to

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic of the experimental setup for imaging and water transmittance measurements. The system consisted of a 192 × 128 CMOS SPAD detector array with per pixel integrated TCSPC electronics, and a pulsed laser diode source emitting at 670 nm wavelength, operating at a repetition rate of 40 MHz. The optical system comprised of mirrors on kinematic flip mounts (FM), mirrors (M), a fiber collimation package (FCP), lenses (L), diffusers (D), and objective lens (Obj). The flip mirror FM1 was used to switch between target measurement and calibration configurations.
Fig. 2.
Fig. 2. Photographs of the targets used for the experiments. (a) Spray painted metal flange 13 mm thick, diameter of 70 mm, with 7 mm diameter holes. (b) Siemens star laser-cut in a 3 mm thick sheet of white acrylic, the diameter was 40 mm and the central hole had a diameter of 5 mm.
Fig. 3.
Fig. 3. Timing histograms from a single pixel of the SPAD detector array illustrating the return of the target under different conditions: (a) 1.2 AL between system and target using 0.4 mW average optical power; and (b) 7.2 AL between system and target using an increased average optical power of 8 mW. Both histograms were acquired using 1000 binary frames with a binary frame acquisition time of 1 ms, equivalent to an overall acquisition time for the measurements of 2 seconds, as detailed in Eq. (3).
Fig. 4.
Fig. 4. Depth and intensity profiles of a section of the flange target at 1.2, 4.4, and 5.7 attenuation lengths between system and target. Column (a) and (c) show the depth and the intensity profiles, respectively, obtained with the pixel-wise cross-correlation approach. Column (b) and (d) show the depth and intensity information, respectively, reconstructed with the median filter model. In columns (a) and (b) an arbitrary zero position was used for the depth scale, with the range from transceiver to target being approximately 1.7 meters. The measurements were performed acquiring 1000 binary frames of 1 ms binary frame acquisition time. The average optical power entering the tank was 0.4 mW in the case of 1.2  AL, and 8 mW in the case of 4.4 AL and 5.7 AL between system and target.
Fig. 5.
Fig. 5. Depth and intensity profiles of a section of the flange target at 6.2 and 7.2 attenuation lengths between system and target. The first column shows the depth and intensity obtained with the pixel-wise cross-correlation approach and plotted on the same graph. The second column shows the depth and the intensity profiles obtained with the median filter model. The third column shows depth and intensity information reconstructed with the median filter model and smoothed with a polynomial approximation (PA). An arbitrary zero position was used for the depth scale, with the range from transceiver to target being approximately 1.7  meters. Both measurements were performed acquiring 1000 binary frames of 1 ms binary frame acquisition time, and using 8 mW average optical power.
Fig. 6.
Fig. 6. Normalized RSNR of depth (black curve) and intensity (red curve) images reconstructed with the median filter model. The median filtered depth and intensity images obtained at 1.2 AL were used as ground truth for the calculation.
Fig. 7.
Fig. 7. Intensity profiles of the Siemens target at (a) 1.2 AL, (b) 3.6 AL, and (c) 4.3 AL between system and target. The images were obtained acquiring 1000 binary frames using a binary frame acquisition time of 1 ms. The average optical power entering the water tank was 0.4 mW in (a), and 8 mW in (b) and (c).
Fig. 8.
Fig. 8. Contrast versus spatial resolution of the image (along the vertical direction of the detector array) at three levels of attenuation when the image is obtained with (a) the cross-correlation and (b) the cross-correlation and the median filter. For each environment, the graph shows the contrast versus the spatial resolution expressed in line pairs per millimeter.
Fig. 9.
Fig. 9. Depth (top row) and intensity (bottom row) profiles of a section of the moving flange target at 1.2 AL shown at three different positions at a range of approximately 1.7 m. The average optical power entering the water tank was approximately 1 mW and the binary frame acquisition time was 1 ms. The intensity and the depth with respect to the reference signal was obtained performing the cross-correlation approach with data from 50 binary frames.
Fig. 10.
Fig. 10. Depth profiles of the flange target spinning about a vertical axis in unfiltered tap water, equivalent to 1.2 AL between the transceiver and target at a range of approximately 1.7 m. The average optical power entering the water tank was approximately 1 mW and the binary frame acquisition time was 1 ms (top row), 0.1 ms (central row), and 0.01 ms (bottom row). The depth with respect to the reference signal was obtained performing the cross-correlation approach combining 50 binary frames (first column), 20 binary frames (second column), and a single binary frame (third column).
Fig. 11.
Fig. 11. Depth and intensity profiles of a section of the flange target at 3.6 AL, 4.8 AL, 5.8  AL, and 6.7 AL at a range of approximately 1.7 m. The first column shows on the same graph the depth and the intensity profiles obtained with the pixel-wise cross-correlation approach. The second column shows the depth and intensity information reconstructed with the median filter and smoothed with a polynomial approximation. The measurements were performed by acquiring a number of binary frames of 1 ms binary frame acquisition time. The average optical power entering the tank was 1 mW in the case of 3.6 AL, and 8 mW at higher levels of scattering.

Tables (2)

Tables Icon

Table 1. Summary of main parameters

Tables Icon

Table 2. Summary of figures of merit of the results shown in Fig. 4 and Fig. 5. The images were obtained by recording 1000 binary frames of 1 ms binary frame acquisition time. The average optical power was reduced in clear water conditions in order to avoid detector saturation effects.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P ( d ) = P 0 e α d
T = P o u t P i n = e α d
T A c q = N b f ( t b f + t i f d )
X i = j = 1 k H i + j × I j , i [ k , k ]
R i = j = 0 n a j x j
R S N R = 10 log 10 ( | | x | | 2 | | x x ^ | | 2 )
C o n t r a s t = I M a x I M i n I M a x + I M i n

Metrics