Abstract

We demonstrate dual-comb generation from an all-polarization-maintaining dual-color ytterbium (Yb) fiber laser. Two pulse trains with center wavelengths at 1030 nm and 1060 nm respectively are generated within the same laser cavity with a repetition rate around 77 MHz. Dual-color operation is induced using a tunable mechanical spectral filter, which cuts the gain spectrum into two spectral regions that can be independently mode-locked. Spectral overlap of the two pulse trains is achieved outside the laser cavity by amplifying the 1030-nm pulses and broadening them in a nonlinear fiber. Spatially overlapping the two arms on a simple photodiode then generates a down-converted radio frequency comb. The difference in repetition rates between the two pulse trains and hence the line spacing of the down-converted comb can easily be tuned in this setup. This feature allows for a flexible adjustment of the tradeoff between non-aliasing bandwidth vs. measurement time in spectroscopy applications. Furthermore, we show that by fine-tuning the center-wavelengths of the two pulse trains, we are able to shift the down-converted frequency comb along the radio-frequency axis. The usability of this dual-comb setup is demonstrated by measuring the transmission of two different etalons while the laser is completely free-running.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Tunable dual-color operation of Yb:fiber laser via mechanical spectral subdivision

Jakob Fellinger, Georg Winkler, Aline S. Mayer, Laurin R. Steidle, and Oliver H. Heckl
Opt. Express 27(4) 5478-5486 (2019)

All-polarization-maintaining, polarization-multiplexed, dual-comb fiber laser with a nonlinear amplifying loop mirror

Yoshiaki Nakajima, Yuya Hata, and Kaoru Minoshima
Opt. Express 27(10) 14648-14656 (2019)

All-polarization-maintaining Er-doped dual comb fiber laser using single-wall carbon nanotubes

S. Saito, M. Yamanaka, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa
Opt. Express 27(13) 17868-17875 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Ideguchi, “Dual-comb spectroscopy,” Opt. Photonics News 28(1), 32–39 (2017).
    [Crossref]
  2. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  3. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21(5), 366–368 (1996).
    [Crossref] [PubMed]
  4. J. B. Bates, “Fourier transform infrared spectroscopy,” Science 191(4222), 31–37 (1976).
    [Crossref] [PubMed]
  5. G.-W. Truong, E. M. Waxman, K. C. Cossel, E. Baumann, A. Klose, F. R. Giorgetta, W. C. Swann, N. R. Newbury, and I. Coddington, “Accurate frequency referencing for fieldable dual-comb spectroscopy,” Opt. Express 24(26), 30495–30504 (2016).
    [Crossref] [PubMed]
  6. T. Ideguchi, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Adaptive dual-comb spectroscopy in the green region,” Opt. Lett. 37(23), 4847–4849 (2012).
    [Crossref] [PubMed]
  7. T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5(1), 3375 (2014).
    [Crossref] [PubMed]
  8. P. Giaccari, J.-D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16(6), 4347–4365 (2008).
    [Crossref] [PubMed]
  9. M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
    [Crossref]
  10. S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
    [Crossref] [PubMed]
  11. I. Znakovskaya, E. Fill, N. Forget, P. Tournois, M. Seidel, O. Pronin, F. Krausz, and A. Apolonski, “Dual frequency comb spectroscopy with a single laser,” Opt. Lett. 39(19), 5471–5474 (2014).
    [Crossref] [PubMed]
  12. T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy,” Optica 3(7), 748–753 (2016).
    [Crossref]
  13. N. Abdukerim, M. I. Kayes, A. Rekik, and M. Rochette, “Bidirectional mode-locked thulium-doped fiber laser,” Appl. Opt. 57(25), 7198–7202 (2018).
    [Crossref] [PubMed]
  14. A. E. Akosman and M. Y. Sander, “Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses,” Opt. Express 25(16), 18592–18602 (2017).
    [Crossref] [PubMed]
  15. Y. Nakajima, Y. Hata, and K. Minoshima, “All-polarization-maintaining, polarization-multiplexed, dual-comb fiber laser with a nonlinear amplifying loop mirror,” Opt. Express 27(10), 14648–14656 (2019).
    [Crossref] [PubMed]
  16. S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
    [Crossref] [PubMed]
  17. J. Nürnberg, C. G. E. Alfieri, Z. Chen, D. Waldburger, N. Picqué, and U. Keller, “An unstabilized femtosecond semiconductor laser for dual-comb spectroscopy of acetylene,” Opt. Express 27(3), 3190–3199 (2019).
    [Crossref] [PubMed]
  18. J. M. Evans, D. E. Spence, D. Burns, and W. Sibbett, “Dual-wavelength self-mode-locked Ti:sapphire laser,” Opt. Lett. 18(13), 1074–1076 (1993).
    [Crossref] [PubMed]
  19. H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
    [Crossref] [PubMed]
  20. X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, and J. Zhu, “Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning,” Opt. Express 19(2), 1168–1173 (2011).
    [Crossref] [PubMed]
  21. X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
    [Crossref] [PubMed]
  22. X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24(19), 21833–21845 (2016).
    [Crossref] [PubMed]
  23. R. Liao, Y. Song, W. Liu, H. Shi, L. Chai, and M. Hu, “Dual-comb spectroscopy with a single free-running thulium-doped fiber laser,” Opt. Express 26(8), 11046–11054 (2018).
    [Crossref] [PubMed]
  24. Y. Nakajima, Y. Hata, and K. Minoshima, “All-polarization-maintaining dual-comb fiber laser with nonlinear amplifying loop mirror,” Conf. Lasers Electro-Optics 1, STu4K.4 (2018).
    [Crossref]
  25. R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26(22), 28302–28311 (2018).
    [Crossref] [PubMed]
  26. J. Fellinger, G. Winkler, A. S. Mayer, L. R. Steidle, and O. H. Heckl, “Tunable dual-color operation of Yb:fiber laser via mechanical spectral subdivision,” Opt. Express 27(4), 5478–5486 (2019).
    [Crossref] [PubMed]
  27. J. Chen, X. Zhao, Z. Yao, T. Li, Q. Li, S. Xie, J. Liu, and Z. Zheng, “Dual-comb spectroscopy of methane based on a free-running Erbium-doped fiber laser,” Opt. Express 27(8), 11406–11412 (2019).
    [Crossref] [PubMed]
  28. X. Luo, T. H. Tuan, T. S. Saini, H. P. T. Nguyen, T. Suzuki, and Y. Ohishi, “Tunable and switchable all-fiber dual-wavelength mode locked laser based on Lyot filtering effect,” Opt. Express 27(10), 14635–14647 (2019).
    [Crossref] [PubMed]
  29. E. Baumann, E. V. Hoenig, E. F. Perez, G. M. Colacion, F. R. Giorgetta, K. C. Cossel, G. Ycas, D. R. Carlson, D. D. Hickstein, K. Srinivasan, S. B. Papp, N. R. Newbury, and I. Coddington, “Dual-comb spectroscopy with tailored spectral broadening in Si3N4 nanophotonics,” Opt. Express 27(8), 11869–11876 (2019).
    [Crossref] [PubMed]
  30. W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
    [Crossref]
  31. M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett. 15(13), 752–754 (1990).
    [Crossref] [PubMed]
  32. W. H. Knox, “In situ measurement of complete intracavity dispersion in an operating Ti:sapphire femtosecond laser,” Opt. Lett. 17(7), 514–516 (1992).
    [Crossref] [PubMed]
  33. Y. Wei, B. Li, X. Wei, Y. Yu, and K. K. Y. Wong, “Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser,” Appl. Phys. Lett. 112(8), 081104 (2018).
    [Crossref]
  34. N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
    [Crossref] [PubMed]
  35. L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36(9), 1578–1580 (2011).
    [Crossref] [PubMed]
  36. X. Li, M. A. R. Reber, C. Corder, Y. Chen, P. Zhao, and T. K. Allison, “High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools,” Rev. Sci. Instrum. 87(9), 093114 (2016).
    [Crossref] [PubMed]
  37. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
    [Crossref]
  38. M. Querry, “Optical constants of minerals and other materials from the millimeter to the ultraviolet,” Contract. Rep. https://apps.dtic.mil/docs/citations/ADA192210 (1987).
  39. Ł. A. Sterczewski, A. Przewłoka, and W. Kaszub, “Computational Doppler-limited dual-comb spectroscopy with a free-running all-fiber laser,” https://arxiv.org/abs/1905.04647 (2019).

2019 (6)

2018 (4)

2017 (4)

T. Ideguchi, “Dual-comb spectroscopy,” Opt. Photonics News 28(1), 32–39 (2017).
[Crossref]

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

A. E. Akosman and M. Y. Sander, “Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses,” Opt. Express 25(16), 18592–18602 (2017).
[Crossref] [PubMed]

2016 (5)

2015 (1)

2014 (3)

I. Znakovskaya, E. Fill, N. Forget, P. Tournois, M. Seidel, O. Pronin, F. Krausz, and A. Apolonski, “Dual frequency comb spectroscopy with a single laser,” Opt. Lett. 39(19), 5471–5474 (2014).
[Crossref] [PubMed]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5(1), 3375 (2014).
[Crossref] [PubMed]

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

2013 (1)

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

2010 (1)

2009 (1)

2008 (1)

2003 (1)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

1996 (1)

1993 (1)

1992 (1)

1990 (1)

1976 (1)

J. B. Bates, “Fourier transform infrared spectroscopy,” Science 191(4222), 31–37 (1976).
[Crossref] [PubMed]

Abdukerim, N.

Akosman, A. E.

Alfieri, C. G. E.

Allison, T. K.

X. Li, M. A. R. Reber, C. Corder, Y. Chen, P. Zhao, and T. K. Allison, “High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools,” Rev. Sci. Instrum. 87(9), 093114 (2016).
[Crossref] [PubMed]

Apolonski, A.

Bates, J. B.

J. B. Bates, “Fourier transform infrared spectroscopy,” Science 191(4222), 31–37 (1976).
[Crossref] [PubMed]

Baumann, E.

Becouarn, L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Burns, D.

Carlson, D. R.

Cassinerio, M.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

Chai, L.

Chen, J.

Chen, Y.

X. Li, M. A. R. Reber, C. Corder, Y. Chen, P. Zhao, and T. K. Allison, “High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools,” Rev. Sci. Instrum. 87(9), 093114 (2016).
[Crossref] [PubMed]

Chen, Z.

Cleff, C.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Coddington, I.

Colacion, G. M.

Coluccelli, N.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

Corder, C.

X. Li, M. A. R. Reber, C. Corder, Y. Chen, P. Zhao, and T. K. Allison, “High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools,” Rev. Sci. Instrum. 87(9), 093114 (2016).
[Crossref] [PubMed]

Cossel, K. C.

Cui, Y.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
[Crossref] [PubMed]

Deschênes, J.-D.

Diddams, S. A.

Dobner, S.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Doubek, R.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Evans, J. M.

Eyres, L. A.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Fejer, M. M.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Fellinger, J.

Fermann, M. E.

Fill, E.

Fischer, M.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Forget, N.

Galzerano, G.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

Gambetta, A.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

Genest, J.

Gerard, B.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Giaccari, P.

Giorgetta, F. R.

Giunta, M.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Goda, K.

Golling, M.

Guelachvili, G.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5(1), 3375 (2014).
[Crossref] [PubMed]

T. Ideguchi, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Adaptive dual-comb spectroscopy in the green region,” Opt. Lett. 37(23), 4847–4849 (2012).
[Crossref] [PubMed]

Haberl, F.

Han, D.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
[Crossref] [PubMed]

Hänsch, T. W.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5(1), 3375 (2014).
[Crossref] [PubMed]

T. Ideguchi, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Adaptive dual-comb spectroscopy in the green region,” Opt. Lett. 37(23), 4847–4849 (2012).
[Crossref] [PubMed]

Hänsel, W.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Harris, J. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Hata, Y.

Heckl, O. H.

Hickstein, D. D.

Hochreiter, H.

Hoenig, E. V.

Hofer, M.

Holzwarth, R.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Hoogland, H.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Hu, G.

Hu, M.

Ideguchi, T.

Jiang, Y.

Johnson, T. A.

Kayes, M. I.

Keller, U.

Klenner, A.

Klose, A.

Knox, W. H.

Kobayashi, Y.

Krausz, F.

Kuo, P. S.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Lallier, E.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Laporta, P.

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

Levi, O.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Li, B.

Y. Wei, B. Li, X. Wei, Y. Yu, and K. K. Y. Wong, “Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser,” Appl. Phys. Lett. 112(8), 081104 (2018).
[Crossref]

Li, C.

Li, Q.

Li, R.

Li, T.

Li, X.

X. Li, M. A. R. Reber, C. Corder, Y. Chen, P. Zhao, and T. K. Allison, “High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools,” Rev. Sci. Instrum. 87(9), 093114 (2016).
[Crossref] [PubMed]

Li, Y.

Liao, R.

Link, S. M.

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

Liu, B.

Liu, J.

Liu, L.

Liu, W.

Liu, X.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
[Crossref] [PubMed]

Liu, Y.

Lu, H.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
[Crossref] [PubMed]

Luo, X.

Maas, D. J. H. C.

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

Mangold, M.

Mao, D.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
[Crossref] [PubMed]

Mayer, A. S.

Mayer, P.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Minoshima, K.

Nakajima, Y.

Nakamura, T.

Newbury, N.

Newbury, N. R.

Nguyen, H. P. T.

Nugent-Glandorf, L.

Nürnberg, J.

Ohishi, Y.

Pan, Y.

Papp, S. B.

Perez, E. F.

Picqué, N.

Pinguet, T. J.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Poisson, A.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5(1), 3375 (2014).
[Crossref] [PubMed]

T. Ideguchi, A. Poisson, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Adaptive dual-comb spectroscopy in the green region,” Opt. Lett. 37(23), 4847–4849 (2012).
[Crossref] [PubMed]

Pronin, O.

Reber, M. A. R.

X. Li, M. A. R. Reber, C. Corder, Y. Chen, P. Zhao, and T. K. Allison, “High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools,” Rev. Sci. Instrum. 87(9), 093114 (2016).
[Crossref] [PubMed]

Rekik, A.

Rochette, M.

Saini, T. S.

Sander, M. Y.

Saucier, P.

Schmid, S.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Seidel, M.

Shi, H.

Shirasaki, M.

Sibbett, W.

Skauli, T.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Song, Y.

Spence, D. E.

Srinivasan, K.

Steidle, L. R.

Steinmetz, T.

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Sun, Z.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
[Crossref] [PubMed]

Suzuki, T.

Swann, W.

Swann, W. C.

Tang, D. Y.

Tian, H.

Tilma, B. W.

Tournois, P.

Tremblay, P.

Truong, G.-W.

Tuan, T. H.

Vodopyanov, K. L.

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Waldburger, D.

J. Nürnberg, C. G. E. Alfieri, Z. Chen, D. Waldburger, N. Picqué, and U. Keller, “An unstabilized femtosecond semiconductor laser for dual-comb spectroscopy of acetylene,” Opt. Express 27(3), 3190–3199 (2019).
[Crossref] [PubMed]

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

Wang, F.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
[Crossref] [PubMed]

Waxman, E. M.

Wei, X.

Y. Wei, B. Li, X. Wei, Y. Yu, and K. K. Y. Wong, “Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser,” Appl. Phys. Lett. 112(8), 081104 (2018).
[Crossref]

Wei, Y.

Y. Wei, B. Li, X. Wei, Y. Yu, and K. K. Y. Wong, “Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser,” Appl. Phys. Lett. 112(8), 081104 (2018).
[Crossref]

Winkler, G.

Wong, K. K. Y.

Y. Wei, B. Li, X. Wei, Y. Yu, and K. K. Y. Wong, “Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser,” Appl. Phys. Lett. 112(8), 081104 (2018).
[Crossref]

Wu, X.

Xie, S.

Yang, X.

Yao, Z.

Yasui, T.

Ycas, G.

Yu, Y.

Y. Wei, B. Li, X. Wei, Y. Yu, and K. K. Y. Wong, “Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser,” Appl. Phys. Lett. 112(8), 081104 (2018).
[Crossref]

Zaugg, C. A.

Zeng, C.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
[Crossref] [PubMed]

Zhang, H.

Zhao, B.

Zhao, L. M.

Zhao, P.

X. Li, M. A. R. Reber, C. Corder, Y. Chen, P. Zhao, and T. K. Allison, “High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools,” Rev. Sci. Instrum. 87(9), 093114 (2016).
[Crossref] [PubMed]

Zhao, X.

Zheng, Z.

Zhu, J.

Znakovskaya, I.

Appl. Opt. (1)

Appl. Phys. B (1)

W. Hänsel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 123(1), 41 (2017).
[Crossref]

Appl. Phys. Lett. (2)

Y. Wei, B. Li, X. Wei, Y. Yu, and K. K. Y. Wong, “Ultrafast spectral dynamics of dual-color-soliton intracavity collision in a mode-locked fiber laser,” Appl. Phys. Lett. 112(8), 081104 (2018).
[Crossref]

M. Cassinerio, A. Gambetta, N. Coluccelli, P. Laporta, and G. Galzerano, “Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers,” Appl. Phys. Lett. 104(23), 231102 (2014).
[Crossref]

J. Appl. Phys. (1)

T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Improved dispersion relations for GaAs and applications to nonlinear optics,” J. Appl. Phys. 94(10), 6447–6455 (2003).
[Crossref]

Nat. Commun. (1)

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5(1), 3375 (2014).
[Crossref] [PubMed]

Opt. Express (16)

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24(19), 21833–21845 (2016).
[Crossref] [PubMed]

G.-W. Truong, E. M. Waxman, K. C. Cossel, E. Baumann, A. Klose, F. R. Giorgetta, W. C. Swann, N. R. Newbury, and I. Coddington, “Accurate frequency referencing for fieldable dual-comb spectroscopy,” Opt. Express 24(26), 30495–30504 (2016).
[Crossref] [PubMed]

A. E. Akosman and M. Y. Sander, “Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses,” Opt. Express 25(16), 18592–18602 (2017).
[Crossref] [PubMed]

R. Liao, Y. Song, W. Liu, H. Shi, L. Chai, and M. Hu, “Dual-comb spectroscopy with a single free-running thulium-doped fiber laser,” Opt. Express 26(8), 11046–11054 (2018).
[Crossref] [PubMed]

R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26(22), 28302–28311 (2018).
[Crossref] [PubMed]

J. Nürnberg, C. G. E. Alfieri, Z. Chen, D. Waldburger, N. Picqué, and U. Keller, “An unstabilized femtosecond semiconductor laser for dual-comb spectroscopy of acetylene,” Opt. Express 27(3), 3190–3199 (2019).
[Crossref] [PubMed]

J. Fellinger, G. Winkler, A. S. Mayer, L. R. Steidle, and O. H. Heckl, “Tunable dual-color operation of Yb:fiber laser via mechanical spectral subdivision,” Opt. Express 27(4), 5478–5486 (2019).
[Crossref] [PubMed]

J. Chen, X. Zhao, Z. Yao, T. Li, Q. Li, S. Xie, J. Liu, and Z. Zheng, “Dual-comb spectroscopy of methane based on a free-running Erbium-doped fiber laser,” Opt. Express 27(8), 11406–11412 (2019).
[Crossref] [PubMed]

E. Baumann, E. V. Hoenig, E. F. Perez, G. M. Colacion, F. R. Giorgetta, K. C. Cossel, G. Ycas, D. R. Carlson, D. D. Hickstein, K. Srinivasan, S. B. Papp, N. R. Newbury, and I. Coddington, “Dual-comb spectroscopy with tailored spectral broadening in Si3N4 nanophotonics,” Opt. Express 27(8), 11869–11876 (2019).
[Crossref] [PubMed]

X. Luo, T. H. Tuan, T. S. Saini, H. P. T. Nguyen, T. Suzuki, and Y. Ohishi, “Tunable and switchable all-fiber dual-wavelength mode locked laser based on Lyot filtering effect,” Opt. Express 27(10), 14635–14647 (2019).
[Crossref] [PubMed]

Y. Nakajima, Y. Hata, and K. Minoshima, “All-polarization-maintaining, polarization-multiplexed, dual-comb fiber laser with a nonlinear amplifying loop mirror,” Opt. Express 27(10), 14648–14656 (2019).
[Crossref] [PubMed]

P. Giaccari, J.-D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express 16(6), 4347–4365 (2008).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[Crossref] [PubMed]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
[Crossref] [PubMed]

X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, and J. Zhu, “Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning,” Opt. Express 19(2), 1168–1173 (2011).
[Crossref] [PubMed]

Opt. Lett. (7)

Opt. Photonics News (1)

T. Ideguchi, “Dual-comb spectroscopy,” Opt. Photonics News 28(1), 32–39 (2017).
[Crossref]

Optica (2)

Rev. Sci. Instrum. (1)

X. Li, M. A. R. Reber, C. Corder, Y. Chen, P. Zhao, and T. K. Allison, “High-power ultrafast Yb:fiber laser frequency combs using commercially available components and basic fiber tools,” Rev. Sci. Instrum. 87(9), 093114 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3(1), 2718 (2013).
[Crossref] [PubMed]

Science (2)

J. B. Bates, “Fourier transform infrared spectroscopy,” Science 191(4222), 31–37 (1976).
[Crossref] [PubMed]

S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, “Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser,” Science 356(6343), 1164–1168 (2017).
[Crossref] [PubMed]

Other (3)

Y. Nakajima, Y. Hata, and K. Minoshima, “All-polarization-maintaining dual-comb fiber laser with nonlinear amplifying loop mirror,” Conf. Lasers Electro-Optics 1, STu4K.4 (2018).
[Crossref]

M. Querry, “Optical constants of minerals and other materials from the millimeter to the ultraviolet,” Contract. Rep. https://apps.dtic.mil/docs/citations/ADA192210 (1987).

Ł. A. Sterczewski, A. Przewłoka, and W. Kaszub, “Computational Doppler-limited dual-comb spectroscopy with a free-running all-fiber laser,” https://arxiv.org/abs/1905.04647 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Overview of the all-PM NALM mode-locked single-cavity dual-color/dual-comb setup. Due to the mechanical spectral filter, the laser oscillator emits two pulse trains with different repetition rates around 77 MHz and center wavelengths around 1030 nm and 1060 nm, respectively. The output of the dual-color laser is spectrally separated using a dichroic filter: The pulse centered around 1030 nm is amplified and nonlinearly broadened. The pulse centered around 1060 nm is delayed using a passive fiber. Subsequently, spatial overlapping in a 50:50 fiber splitter/combiner leads to the generation of a dual-comb interferogram. Bandpass filtering of the light is applied to avoid spectral aliasing. The feasibility of spectral measurement is demonstrated by measuring the transmission of different etalons. The light is detected by a simple photodiode and measured with an oscilloscope.
Fig. 2
Fig. 2 Dual-comb setup operating with three different grating separations, i.e. different values of Δfrep, resulting in either higher non-aliasing bandwidth or faster acquisition times. (a-c) Radio frequency trace of the laser outputs recorded with a Keysight PXA N9030B. (d-f) Wavelength-dependence of the repetition rate: the dots mark the measurement points, the dashed line shows the second-order polynomial fit. (g-i) Optical output spectra before spectral separation recorded with an optical spectrum analyzer (ANDO AQ6315A) and measured intra cavity dispersion. The dashed black lines show the zero-GDD crossing points. (j-l) Time trace recorded on an oscilloscope (LeCroy WavePro 760Zi) showing the interferograms that are separated in time by Δt = 1/Δfrep. The spurious signals between the interferograms are the result of intra-cavity pulse collisions and is discussed in section 4.1.
Fig. 3
Fig. 3 (a) Output spectrum of the dual-color laser before spectral separation and spectrum of the broadened 1030-nm pulse recorded with an optical spectrum analyzer (ANDO AQ6315A). (b) Spatially overlapped dual-comb output after amplification and spectral broadening, before and after filtering the light using a 3-nm bandpass filter. The modulations on the spectrum are caused by the bandpass filter. (c) Radio frequency spectrum of the laser output. Note that the data shown represents one measurement and that the coloring is merely a guide to the eye.
Fig. 4
Fig. 4 (a) Spectral shift occurring when slightly changing the position of the beam block within the grating compressor using a micrometer screw. (b) Corresponding changes in the repetition rates due to the shift of the spectral filter. (c) Shift of the down-converted frequency comb along the radio-frequency axis.
Fig. 5
Fig. 5 (a) Time domain signal of the dual-comb recorded on an oscilloscope (LeCroy WavePro 760Zi). A linear interferogram can be seen (highlighted in green, zoom shown in (b)), as well as spurious signals caused by intra-cavity pulse collisions (highlighted in red, zoom shown in (c)). By changing the extra-cavity path length difference of the two arms (see setup in Fig. 1) the temporal position of the center burst can be shifted with respect to the position of the spurious signals.4.2 Relative intensity noise (RIN)
Fig. 6
Fig. 6 (a) Relative intensity noise (RIN) of the spectrally separated combs measured before amplification including the root-means-quare (rms) RIN σint,rms integrated over the interval [1 Hz, 100 kHz]. (b) RIN of the spectrally separated laser output after amplification and broadening including the root-means-quare (rms) RIN σint,rms integrated over the interval [1 Hz, 100 kHz]. (c) Radio frequency spectrum of the broadened 1030-nm pulse train, showing a span of 100 kHz around the repetition rate signal with a resolution of 3 Hz.
Fig. 7
Fig. 7 (a) Drift of the individual repetition rate frep,1 and frep,2 as well as the difference Δfrep over 200 minutes, measured with a radio frequency analyzer (Keysight N9030B PXA). (b) Zoom into the drift of Δfrep.
Fig. 8
Fig. 8 Etalon transmission measurements. (a) Spectrum re-constructed from the dual-comb interferogram by averaging the FFTs of 100 single interferograms recorded in time windows of 10 μs each after a 3-nm band pass filter with and without a 700-μm GaAs etalon. (b) Measured transmission spectrum (orange, solid) obtained after background subtraction and division by the reference spectrum without the etalon, as well as theoretically calculated transmission function for a 700-μm GaAs wafer (turquoise, dashed). (c) Same measurement performed with an optical spectrum analyzer that has a maximum resolution of 0.05 nm (ANDO AQ6315A). This measurement was perfromed to obtain an absolute wavelength calibration for the spectra retrieved from the dual-comb data. Due to the limited resolution, the ANDO is not capable of fully resolving the fringes, as can be seen in (d). (e) Spectrum re-constructed from the dual-comb interferogram by averaging the FFTs of 100 single interferograms recorded in time windows of 200 μs each after a 3-nm band pass filter with and without a 5-mm ZnSe window. (d) Measured transmission spectrum (orange, solid) obtained after background subtraction and division by the reference spectrum without the etalon, as well as theoretically calculated transmission function for a 5-mm ZnSe window (turquoise, dashed).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δν f rep,1 2 2Δ f rep .
ϕ ω = T g ( λ c )= 1 f rep ( λ c ) ,
2 ϕ ω 2 = T g ω = T g λ λ ω = λ 2 2πc T g λ
Δ t l = Δl c .
Δ t s = Δ t l Δ t c 1 f rep,1 ,
Δ t c = | T 1 T 2 |= | 1 f rep,1 1 f rep,2 |= | Δ f rep f rep,1 f rep,2 |.