H. Wang, Z. Chen, S. Yang, L. Hu, and M. Hu, “Analysis of a discrete-layout bimorph disk elements piezoelectric deformable mirror,” J. Astron. Telesc. Instrum. Syst. 4(02), 1 (2018).

[Crossref]

H. Wang, J. Cheng, Z. Lou, M. Liang, X. Zheng, Y. Zuo, and J. Yang, “A comparative study of the thermal performance of primary mirror at the four typical sites,” Optik 174, 727–738 (2018).

[Crossref]

H. Wang, M. Hu, and Z. Li, “Modelling and analysis of circular bimorph piezoelectric actuator for deformable mirror,” Appl. Math. Mech. 37(5), 639–646 (2016).

[Crossref]

H. Wang and S. Yang, “Modeling and analysis of the thermal effects of a circular bimorph piezoelectric actuator,” Appl. Opt. 55(4), 873–878 (2016).

[Crossref]
[PubMed]

H. Wang, Z. Lou, Y. Qian, X. Zheng, and Y. Zuo, “Hybrid optimization methodology of variable densities mesh model for the axial supporting design of wide-field survey telescope,” Opt. Eng. 55(3), 35105 (2016).

[Crossref]

H. Wang, J. Cheng, Z. Lou, Y. Qian, X. Zheng, Y. Zuo, and J. Yang, “Multi-variable H-β optimization approach for the lateral support design of a wide field survey telescope,” Appl. Opt. 55(31), 8763–8769 (2016).

[Crossref]
[PubMed]

H. Wang, “Analytical analysis of a beam flexural-mode piezoelectric actuator for deformable mirrors,” J. Astron. Telesc. Instrum. Syst. 1(4), 49001 (2015).

[Crossref]

H. Wang, X. Xie, Y. Hu, and J. Wang, “Nonlinear analysis of a 5-layer beam-like piezoelectric transformer near resonance,” Acta Mechanica Solida Sinica 27(2), 195–201 (2014).

[Crossref]

H. R. Wang, J. M. Xie, X. Xie, Y. T. Hu, and J. Wang, “Nonlinear characteristics of circular-cylinder piezoelectric power harvester near resonance based on flow-induced flexural vibration mode,” Appl. Math. Mech. 35(2), 229–236 (2014).

[Crossref]

H. R. Wang, X. Xie, Y. T. Hu, and J. Wang, “Weakly nonlinear characteristics of a three-layer circular piezoelectric plate-like power harvester near resonance,” J. Mech. 30(01), 97–102 (2014).

[Crossref]

H. Hu, L. Hu, J. Yang, H. Wang, and X. Chen, “A piezoelectric spring-mass system as a low-frequency energy harvester,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(4), 846–850 (2013).

[Crossref]
[PubMed]

H. Wang, H. Hu, J. Yang, and Y. Hu, “Spiral piezoelectric transducer in torsional motion as low-frequency power harvester,” Appl. Math. Mech. 34(5), 589–596 (2013).

[Crossref]

H. Wang, Y. Hu, and J. Wang, “On the nonlinear behavior of a multilayer circular piezoelectric plate-like transformer operating near resonance,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(4), 752–757 (2013).

[Crossref]
[PubMed]

J. Wang, H. Wang, H. Hu, B. Luo, Y. Hu, and J. Wang, “On the strain-gradient effects in micro piezoelectric-bimorph circular plate power harvesters,” Smart Mater. Struct. 21(1), 015006 (2012).

[Crossref]

Y. Ning, W. Jiang, N. Ling, and C. Rao, “Response function calculation and sensitivity comparison analysis of various bimorph deformable mirrors,” Opt. Express 15(19), 12030–12038 (2007).

[Crossref]
[PubMed]

H. Xue, Y. Hu, Q.-M. Wang, and J. Yang, “Analysis of temperature compensation in a plate thickness mode bulk acoustic wave resonator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(9), 1826–1833 (2007).

[Crossref]
[PubMed]

N. Hubin and L. Noethe, “Active optics, adaptive optics, and laser guide stars,” Science 262(5138), 1390–1394 (1993).

[Crossref]
[PubMed]

L. Noethe, “Use of minimum-energy modes for modal-active optics corrections of thin meniscus mirrors,” J. Mod. Opt. 38(6), 1043–1066 (1991).

[Crossref]

R. Wilson, F. Franza, and L. Noethe, “Active Optics,” J. Mod. Opt. 34(4), 485–509 (1987).

[Crossref]

H. Hu, L. Hu, J. Yang, H. Wang, and X. Chen, “A piezoelectric spring-mass system as a low-frequency energy harvester,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(4), 846–850 (2013).

[Crossref]
[PubMed]

H. Wang, Z. Chen, S. Yang, L. Hu, and M. Hu, “Analysis of a discrete-layout bimorph disk elements piezoelectric deformable mirror,” J. Astron. Telesc. Instrum. Syst. 4(02), 1 (2018).

[Crossref]

H. Wang, J. Cheng, Z. Lou, M. Liang, X. Zheng, Y. Zuo, and J. Yang, “A comparative study of the thermal performance of primary mirror at the four typical sites,” Optik 174, 727–738 (2018).

[Crossref]

H. Wang, J. Cheng, Z. Lou, Y. Qian, X. Zheng, Y. Zuo, and J. Yang, “Multi-variable H-β optimization approach for the lateral support design of a wide field survey telescope,” Appl. Opt. 55(31), 8763–8769 (2016).

[Crossref]
[PubMed]

R. Wilson, F. Franza, and L. Noethe, “Active Optics,” J. Mod. Opt. 34(4), 485–509 (1987).

[Crossref]

H. Hu, L. Hu, J. Yang, H. Wang, and X. Chen, “A piezoelectric spring-mass system as a low-frequency energy harvester,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(4), 846–850 (2013).

[Crossref]
[PubMed]

H. Wang, H. Hu, J. Yang, and Y. Hu, “Spiral piezoelectric transducer in torsional motion as low-frequency power harvester,” Appl. Math. Mech. 34(5), 589–596 (2013).

[Crossref]

J. Wang, H. Wang, H. Hu, B. Luo, Y. Hu, and J. Wang, “On the strain-gradient effects in micro piezoelectric-bimorph circular plate power harvesters,” Smart Mater. Struct. 21(1), 015006 (2012).

[Crossref]

H. Wang, Z. Chen, S. Yang, L. Hu, and M. Hu, “Analysis of a discrete-layout bimorph disk elements piezoelectric deformable mirror,” J. Astron. Telesc. Instrum. Syst. 4(02), 1 (2018).

[Crossref]

H. Hu, L. Hu, J. Yang, H. Wang, and X. Chen, “A piezoelectric spring-mass system as a low-frequency energy harvester,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(4), 846–850 (2013).

[Crossref]
[PubMed]

H. Wang, Z. Chen, S. Yang, L. Hu, and M. Hu, “Analysis of a discrete-layout bimorph disk elements piezoelectric deformable mirror,” J. Astron. Telesc. Instrum. Syst. 4(02), 1 (2018).

[Crossref]

H. Wang, M. Hu, and Z. Li, “Modelling and analysis of circular bimorph piezoelectric actuator for deformable mirror,” Appl. Math. Mech. 37(5), 639–646 (2016).

[Crossref]

H. Wang, X. Xie, Y. Hu, and J. Wang, “Nonlinear analysis of a 5-layer beam-like piezoelectric transformer near resonance,” Acta Mechanica Solida Sinica 27(2), 195–201 (2014).

[Crossref]

H. Wang, H. Hu, J. Yang, and Y. Hu, “Spiral piezoelectric transducer in torsional motion as low-frequency power harvester,” Appl. Math. Mech. 34(5), 589–596 (2013).

[Crossref]

H. Wang, Y. Hu, and J. Wang, “On the nonlinear behavior of a multilayer circular piezoelectric plate-like transformer operating near resonance,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(4), 752–757 (2013).

[Crossref]
[PubMed]

J. Wang, H. Wang, H. Hu, B. Luo, Y. Hu, and J. Wang, “On the strain-gradient effects in micro piezoelectric-bimorph circular plate power harvesters,” Smart Mater. Struct. 21(1), 015006 (2012).

[Crossref]

H. Xue, Y. Hu, Q.-M. Wang, and J. Yang, “Analysis of temperature compensation in a plate thickness mode bulk acoustic wave resonator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(9), 1826–1833 (2007).

[Crossref]
[PubMed]

H. R. Wang, J. M. Xie, X. Xie, Y. T. Hu, and J. Wang, “Nonlinear characteristics of circular-cylinder piezoelectric power harvester near resonance based on flow-induced flexural vibration mode,” Appl. Math. Mech. 35(2), 229–236 (2014).

[Crossref]

H. R. Wang, X. Xie, Y. T. Hu, and J. Wang, “Weakly nonlinear characteristics of a three-layer circular piezoelectric plate-like power harvester near resonance,” J. Mech. 30(01), 97–102 (2014).

[Crossref]

N. Hubin and L. Noethe, “Active optics, adaptive optics, and laser guide stars,” Science 262(5138), 1390–1394 (1993).

[Crossref]
[PubMed]

H. Wang, M. Hu, and Z. Li, “Modelling and analysis of circular bimorph piezoelectric actuator for deformable mirror,” Appl. Math. Mech. 37(5), 639–646 (2016).

[Crossref]

H. Wang, J. Cheng, Z. Lou, M. Liang, X. Zheng, Y. Zuo, and J. Yang, “A comparative study of the thermal performance of primary mirror at the four typical sites,” Optik 174, 727–738 (2018).

[Crossref]

H. Wang, J. Cheng, Z. Lou, M. Liang, X. Zheng, Y. Zuo, and J. Yang, “A comparative study of the thermal performance of primary mirror at the four typical sites,” Optik 174, 727–738 (2018).

[Crossref]

H. Wang, J. Cheng, Z. Lou, Y. Qian, X. Zheng, Y. Zuo, and J. Yang, “Multi-variable H-β optimization approach for the lateral support design of a wide field survey telescope,” Appl. Opt. 55(31), 8763–8769 (2016).

[Crossref]
[PubMed]

H. Wang, Z. Lou, Y. Qian, X. Zheng, and Y. Zuo, “Hybrid optimization methodology of variable densities mesh model for the axial supporting design of wide-field survey telescope,” Opt. Eng. 55(3), 35105 (2016).

[Crossref]

J. Wang, H. Wang, H. Hu, B. Luo, Y. Hu, and J. Wang, “On the strain-gradient effects in micro piezoelectric-bimorph circular plate power harvesters,” Smart Mater. Struct. 21(1), 015006 (2012).

[Crossref]

N. Hubin and L. Noethe, “Active optics, adaptive optics, and laser guide stars,” Science 262(5138), 1390–1394 (1993).

[Crossref]
[PubMed]

L. Noethe, “Use of minimum-energy modes for modal-active optics corrections of thin meniscus mirrors,” J. Mod. Opt. 38(6), 1043–1066 (1991).

[Crossref]

R. Wilson, F. Franza, and L. Noethe, “Active Optics,” J. Mod. Opt. 34(4), 485–509 (1987).

[Crossref]

H. Wang, Z. Lou, Y. Qian, X. Zheng, and Y. Zuo, “Hybrid optimization methodology of variable densities mesh model for the axial supporting design of wide-field survey telescope,” Opt. Eng. 55(3), 35105 (2016).

[Crossref]

H. Wang, J. Cheng, Z. Lou, Y. Qian, X. Zheng, Y. Zuo, and J. Yang, “Multi-variable H-β optimization approach for the lateral support design of a wide field survey telescope,” Appl. Opt. 55(31), 8763–8769 (2016).

[Crossref]
[PubMed]

H. Wang, Z. Chen, S. Yang, L. Hu, and M. Hu, “Analysis of a discrete-layout bimorph disk elements piezoelectric deformable mirror,” J. Astron. Telesc. Instrum. Syst. 4(02), 1 (2018).

[Crossref]

H. Wang, J. Cheng, Z. Lou, M. Liang, X. Zheng, Y. Zuo, and J. Yang, “A comparative study of the thermal performance of primary mirror at the four typical sites,” Optik 174, 727–738 (2018).

[Crossref]

H. Wang, “Research on a bimorph piezoelectric deformable mirror for adaptive optics in optical telescope,” Opt. Express 25(7), 8115–8122 (2017).

[Crossref]
[PubMed]

H. Wang and S. Yang, “Modeling and analysis of the thermal effects of a circular bimorph piezoelectric actuator,” Appl. Opt. 55(4), 873–878 (2016).

[Crossref]
[PubMed]

H. Wang, M. Hu, and Z. Li, “Modelling and analysis of circular bimorph piezoelectric actuator for deformable mirror,” Appl. Math. Mech. 37(5), 639–646 (2016).

[Crossref]

H. Wang, J. Cheng, Z. Lou, Y. Qian, X. Zheng, Y. Zuo, and J. Yang, “Multi-variable H-β optimization approach for the lateral support design of a wide field survey telescope,” Appl. Opt. 55(31), 8763–8769 (2016).

[Crossref]
[PubMed]

H. Wang, Z. Lou, Y. Qian, X. Zheng, and Y. Zuo, “Hybrid optimization methodology of variable densities mesh model for the axial supporting design of wide-field survey telescope,” Opt. Eng. 55(3), 35105 (2016).

[Crossref]

H. Wang, “Analytical analysis of a beam flexural-mode piezoelectric actuator for deformable mirrors,” J. Astron. Telesc. Instrum. Syst. 1(4), 49001 (2015).

[Crossref]

H. Wang, X. Xie, Y. Hu, and J. Wang, “Nonlinear analysis of a 5-layer beam-like piezoelectric transformer near resonance,” Acta Mechanica Solida Sinica 27(2), 195–201 (2014).

[Crossref]

H. Wang, H. Hu, J. Yang, and Y. Hu, “Spiral piezoelectric transducer in torsional motion as low-frequency power harvester,” Appl. Math. Mech. 34(5), 589–596 (2013).

[Crossref]

H. Hu, L. Hu, J. Yang, H. Wang, and X. Chen, “A piezoelectric spring-mass system as a low-frequency energy harvester,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(4), 846–850 (2013).

[Crossref]
[PubMed]

H. Wang, Y. Hu, and J. Wang, “On the nonlinear behavior of a multilayer circular piezoelectric plate-like transformer operating near resonance,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(4), 752–757 (2013).

[Crossref]
[PubMed]

J. Wang, H. Wang, H. Hu, B. Luo, Y. Hu, and J. Wang, “On the strain-gradient effects in micro piezoelectric-bimorph circular plate power harvesters,” Smart Mater. Struct. 21(1), 015006 (2012).

[Crossref]

H. R. Wang, J. M. Xie, X. Xie, Y. T. Hu, and J. Wang, “Nonlinear characteristics of circular-cylinder piezoelectric power harvester near resonance based on flow-induced flexural vibration mode,” Appl. Math. Mech. 35(2), 229–236 (2014).

[Crossref]

H. R. Wang, X. Xie, Y. T. Hu, and J. Wang, “Weakly nonlinear characteristics of a three-layer circular piezoelectric plate-like power harvester near resonance,” J. Mech. 30(01), 97–102 (2014).

[Crossref]

H. R. Wang, X. Xie, Y. T. Hu, and J. Wang, “Weakly nonlinear characteristics of a three-layer circular piezoelectric plate-like power harvester near resonance,” J. Mech. 30(01), 97–102 (2014).

[Crossref]

H. R. Wang, J. M. Xie, X. Xie, Y. T. Hu, and J. Wang, “Nonlinear characteristics of circular-cylinder piezoelectric power harvester near resonance based on flow-induced flexural vibration mode,” Appl. Math. Mech. 35(2), 229–236 (2014).

[Crossref]

H. Wang, X. Xie, Y. Hu, and J. Wang, “Nonlinear analysis of a 5-layer beam-like piezoelectric transformer near resonance,” Acta Mechanica Solida Sinica 27(2), 195–201 (2014).

[Crossref]

H. Wang, Y. Hu, and J. Wang, “On the nonlinear behavior of a multilayer circular piezoelectric plate-like transformer operating near resonance,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(4), 752–757 (2013).

[Crossref]
[PubMed]

J. Wang, H. Wang, H. Hu, B. Luo, Y. Hu, and J. Wang, “On the strain-gradient effects in micro piezoelectric-bimorph circular plate power harvesters,” Smart Mater. Struct. 21(1), 015006 (2012).

[Crossref]

J. Wang, H. Wang, H. Hu, B. Luo, Y. Hu, and J. Wang, “On the strain-gradient effects in micro piezoelectric-bimorph circular plate power harvesters,” Smart Mater. Struct. 21(1), 015006 (2012).

[Crossref]

H. Xue, Y. Hu, Q.-M. Wang, and J. Yang, “Analysis of temperature compensation in a plate thickness mode bulk acoustic wave resonator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(9), 1826–1833 (2007).

[Crossref]
[PubMed]

R. Wilson, F. Franza, and L. Noethe, “Active Optics,” J. Mod. Opt. 34(4), 485–509 (1987).

[Crossref]

H. R. Wang, J. M. Xie, X. Xie, Y. T. Hu, and J. Wang, “Nonlinear characteristics of circular-cylinder piezoelectric power harvester near resonance based on flow-induced flexural vibration mode,” Appl. Math. Mech. 35(2), 229–236 (2014).

[Crossref]

H. R. Wang, J. M. Xie, X. Xie, Y. T. Hu, and J. Wang, “Nonlinear characteristics of circular-cylinder piezoelectric power harvester near resonance based on flow-induced flexural vibration mode,” Appl. Math. Mech. 35(2), 229–236 (2014).

[Crossref]

H. Wang, X. Xie, Y. Hu, and J. Wang, “Nonlinear analysis of a 5-layer beam-like piezoelectric transformer near resonance,” Acta Mechanica Solida Sinica 27(2), 195–201 (2014).

[Crossref]

H. R. Wang, X. Xie, Y. T. Hu, and J. Wang, “Weakly nonlinear characteristics of a three-layer circular piezoelectric plate-like power harvester near resonance,” J. Mech. 30(01), 97–102 (2014).

[Crossref]

H. Xue, Y. Hu, Q.-M. Wang, and J. Yang, “Analysis of temperature compensation in a plate thickness mode bulk acoustic wave resonator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(9), 1826–1833 (2007).

[Crossref]
[PubMed]

H. Wang, J. Cheng, Z. Lou, M. Liang, X. Zheng, Y. Zuo, and J. Yang, “A comparative study of the thermal performance of primary mirror at the four typical sites,” Optik 174, 727–738 (2018).

[Crossref]

H. Wang, J. Cheng, Z. Lou, Y. Qian, X. Zheng, Y. Zuo, and J. Yang, “Multi-variable H-β optimization approach for the lateral support design of a wide field survey telescope,” Appl. Opt. 55(31), 8763–8769 (2016).

[Crossref]
[PubMed]

H. Hu, L. Hu, J. Yang, H. Wang, and X. Chen, “A piezoelectric spring-mass system as a low-frequency energy harvester,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(4), 846–850 (2013).

[Crossref]
[PubMed]

H. Wang, H. Hu, J. Yang, and Y. Hu, “Spiral piezoelectric transducer in torsional motion as low-frequency power harvester,” Appl. Math. Mech. 34(5), 589–596 (2013).

[Crossref]

H. Xue, Y. Hu, Q.-M. Wang, and J. Yang, “Analysis of temperature compensation in a plate thickness mode bulk acoustic wave resonator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(9), 1826–1833 (2007).

[Crossref]
[PubMed]

H. Wang, Z. Chen, S. Yang, L. Hu, and M. Hu, “Analysis of a discrete-layout bimorph disk elements piezoelectric deformable mirror,” J. Astron. Telesc. Instrum. Syst. 4(02), 1 (2018).

[Crossref]

H. Wang and S. Yang, “Modeling and analysis of the thermal effects of a circular bimorph piezoelectric actuator,” Appl. Opt. 55(4), 873–878 (2016).

[Crossref]
[PubMed]

H. Wang, J. Cheng, Z. Lou, M. Liang, X. Zheng, Y. Zuo, and J. Yang, “A comparative study of the thermal performance of primary mirror at the four typical sites,” Optik 174, 727–738 (2018).

[Crossref]

H. Wang, J. Cheng, Z. Lou, Y. Qian, X. Zheng, Y. Zuo, and J. Yang, “Multi-variable H-β optimization approach for the lateral support design of a wide field survey telescope,” Appl. Opt. 55(31), 8763–8769 (2016).

[Crossref]
[PubMed]

H. Wang, Z. Lou, Y. Qian, X. Zheng, and Y. Zuo, “Hybrid optimization methodology of variable densities mesh model for the axial supporting design of wide-field survey telescope,” Opt. Eng. 55(3), 35105 (2016).

[Crossref]

H. Wang, J. Cheng, Z. Lou, M. Liang, X. Zheng, Y. Zuo, and J. Yang, “A comparative study of the thermal performance of primary mirror at the four typical sites,” Optik 174, 727–738 (2018).

[Crossref]

H. Wang, J. Cheng, Z. Lou, Y. Qian, X. Zheng, Y. Zuo, and J. Yang, “Multi-variable H-β optimization approach for the lateral support design of a wide field survey telescope,” Appl. Opt. 55(31), 8763–8769 (2016).

[Crossref]
[PubMed]

H. Wang, Z. Lou, Y. Qian, X. Zheng, and Y. Zuo, “Hybrid optimization methodology of variable densities mesh model for the axial supporting design of wide-field survey telescope,” Opt. Eng. 55(3), 35105 (2016).

[Crossref]

H. Wang, X. Xie, Y. Hu, and J. Wang, “Nonlinear analysis of a 5-layer beam-like piezoelectric transformer near resonance,” Acta Mechanica Solida Sinica 27(2), 195–201 (2014).

[Crossref]

H. R. Wang, J. M. Xie, X. Xie, Y. T. Hu, and J. Wang, “Nonlinear characteristics of circular-cylinder piezoelectric power harvester near resonance based on flow-induced flexural vibration mode,” Appl. Math. Mech. 35(2), 229–236 (2014).

[Crossref]

H. Wang, M. Hu, and Z. Li, “Modelling and analysis of circular bimorph piezoelectric actuator for deformable mirror,” Appl. Math. Mech. 37(5), 639–646 (2016).

[Crossref]

H. Wang, H. Hu, J. Yang, and Y. Hu, “Spiral piezoelectric transducer in torsional motion as low-frequency power harvester,” Appl. Math. Mech. 34(5), 589–596 (2013).

[Crossref]

H. Wang and S. Yang, “Modeling and analysis of the thermal effects of a circular bimorph piezoelectric actuator,” Appl. Opt. 55(4), 873–878 (2016).

[Crossref]
[PubMed]

H. Wang, J. Cheng, Z. Lou, Y. Qian, X. Zheng, Y. Zuo, and J. Yang, “Multi-variable H-β optimization approach for the lateral support design of a wide field survey telescope,” Appl. Opt. 55(31), 8763–8769 (2016).

[Crossref]
[PubMed]

H. Wang, Y. Hu, and J. Wang, “On the nonlinear behavior of a multilayer circular piezoelectric plate-like transformer operating near resonance,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(4), 752–757 (2013).

[Crossref]
[PubMed]

H. Hu, L. Hu, J. Yang, H. Wang, and X. Chen, “A piezoelectric spring-mass system as a low-frequency energy harvester,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(4), 846–850 (2013).

[Crossref]
[PubMed]

H. Xue, Y. Hu, Q.-M. Wang, and J. Yang, “Analysis of temperature compensation in a plate thickness mode bulk acoustic wave resonator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(9), 1826–1833 (2007).

[Crossref]
[PubMed]

H. Wang, Z. Chen, S. Yang, L. Hu, and M. Hu, “Analysis of a discrete-layout bimorph disk elements piezoelectric deformable mirror,” J. Astron. Telesc. Instrum. Syst. 4(02), 1 (2018).

[Crossref]

H. Wang, “Analytical analysis of a beam flexural-mode piezoelectric actuator for deformable mirrors,” J. Astron. Telesc. Instrum. Syst. 1(4), 49001 (2015).

[Crossref]

H. R. Wang, X. Xie, Y. T. Hu, and J. Wang, “Weakly nonlinear characteristics of a three-layer circular piezoelectric plate-like power harvester near resonance,” J. Mech. 30(01), 97–102 (2014).

[Crossref]

L. Noethe, “Use of minimum-energy modes for modal-active optics corrections of thin meniscus mirrors,” J. Mod. Opt. 38(6), 1043–1066 (1991).

[Crossref]

R. Wilson, F. Franza, and L. Noethe, “Active Optics,” J. Mod. Opt. 34(4), 485–509 (1987).

[Crossref]

H. Wang, Z. Lou, Y. Qian, X. Zheng, and Y. Zuo, “Hybrid optimization methodology of variable densities mesh model for the axial supporting design of wide-field survey telescope,” Opt. Eng. 55(3), 35105 (2016).

[Crossref]

H. Wang, J. Cheng, Z. Lou, M. Liang, X. Zheng, Y. Zuo, and J. Yang, “A comparative study of the thermal performance of primary mirror at the four typical sites,” Optik 174, 727–738 (2018).

[Crossref]

N. Hubin and L. Noethe, “Active optics, adaptive optics, and laser guide stars,” Science 262(5138), 1390–1394 (1993).

[Crossref]
[PubMed]

J. Wang, H. Wang, H. Hu, B. Luo, Y. Hu, and J. Wang, “On the strain-gradient effects in micro piezoelectric-bimorph circular plate power harvesters,” Smart Mater. Struct. 21(1), 015006 (2012).

[Crossref]

B. A. Auld, Acoustic fields and waves in solids (Рипол Классик, 1973).

P. Schipani, F. Perrotta, and L. Marty, “Active Optics Correction Forces for the VST 2.6 m primary mirror,” in Astronomical Telescopes and Instrumentation, (International Society for Optics and Photonics, 2006), 62733A–62712.

D. Fang, J. Wang, and W. Chen, Analysis of piezoelectric structures and devices (Walter de Gruyter, 2013).

G. Luan, J. Zhang, and R. Wang, “Piezoelectric transducer and transducer array,” Peking University Press: Beijing, China, 326–435 (2005).