Abstract

A typical metamaterial perfect absorber (MPA) is comprised of a metamaterial layer, a dielectric spacer, and a ground plane. The conventional spacer material is usually a lossy dielectric with little-dispersion for the purpose of easing the design and optimization procedure of the MPA. In this paper, we present the design, fabrication, and characterization of metamaterial perfect absorbers with a highly dispersive spacer, which is compatible with functional microelectromechanical systems. The measured dispersive permittivity of a silicon nitride thin film is used in modeling the absorption response of MPAs with rigorous coupled wave analysis. Different designs of MPA structures are fabricated and characterized. Spectroscopy data shows two perfect absorption peaks in wavelengths ranging from 8 μm to 20 μm, which supports the theoretical calculation and numerical simulation. The dispersion of silicon nitride enables the shared resonant modes of the two peak wavelengths and decreases the wavelength shift led by variations in structural parameters. We demonstrate that the use of dispersive dielectric materials in MPAs potentiates various functional devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear terahertz metamaterial perfect absorbers using GaAs [Invited]

Xiaoguang Zhao, Jingdi Zhang, Kebin Fan, Guangwu Duan, Grace D. Metcalfe, Michael Wraback, Xin Zhang, and Richard D. Averitt
Photon. Res. 4(3) A16-A21 (2016)

High contrast switchability of VO2 based metamaterial absorbers with ITO ground plane

Jitendra K. Pradhan, S. Anantha Ramakrishna, Bharathi Rajeswaran, Arun M. Umarji, Venu Gopal Achanta, Amit K. Agarwal, and Amitava Ghosh
Opt. Express 25(8) 9116-9121 (2017)

Electrically controlled Mie-resonance absorber

Jiannan Gao, Chuwen Lan, Qian Zhao, Bo Li, and Ji Zhou
Opt. Express 25(19) 22658-22666 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  2. M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 31010 (2012).
    [Crossref]
  3. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
    [Crossref] [PubMed]
  4. M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(3), 1093–1123 (2014).
    [Crossref]
  5. X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
    [Crossref]
  6. X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303–310 (2018).
    [Crossref]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  8. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
    [Crossref] [PubMed]
  9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  10. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  11. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), 98–181 (2012).
    [PubMed]
  12. Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer, and M. Rinaldi, “Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches,” Nat. Nanotechnol. 12(10), 969–973 (2017).
    [Crossref] [PubMed]
  13. H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with metamaterials,” Opt. Express 19(22), 21620–21626 (2011).
    [Crossref] [PubMed]
  14. W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
    [Crossref] [PubMed]
  15. K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
    [Crossref] [PubMed]
  16. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  17. X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
    [Crossref]
  18. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6Suppl 6), A1078–A1093 (2013).
    [Crossref] [PubMed]
  19. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 24005 (2012).
    [Crossref]
  20. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  21. X. Liu and W. J. Padilla, “Thermochromic infrared metamaterials,” Adv. Mater. 28(5), 871–875 (2016).
    [Crossref] [PubMed]
  22. Y. Hui, J. S. Gomez-Diaz, Z. Qian, A. Alù, and M. Rinaldi, “Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing,” Nat. Commun. 7(1), 11249 (2016).
    [Crossref] [PubMed]
  23. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  24. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
    [Crossref]
  25. X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
    [Crossref]
  26. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).
  27. X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
    [Crossref] [PubMed]
  28. M. Wu, X. Zhao, J. Zhang, J. Schalch, G. Duan, K. Cremin, R. D. Averitt, and X. Zhang, “A three-dimensional all-metal terahertz metamaterial perfect absorber,” Appl. Phys. Lett. 111(5), 051101 (2017).
    [Crossref]
  29. X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
    [Crossref] [PubMed]
  30. K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
    [Crossref]
  31. W.-C. Chen, A. Cardin, M. Koirala, X. Liu, T. Tyler, K. G. West, C. M. Bingham, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Role of surface electromagnetic waves in metamaterial absorbers,” Opt. Express 24(6), 6783–6792 (2016).
    [Crossref] [PubMed]
  32. J. Ma, M. B. Steer, and X. Jiang, “An acoustic filter based on layered structure,” Appl. Phys. Lett. 106(11), 111903 (2015).
    [Crossref] [PubMed]
  33. G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 35128 (2018).
    [Crossref]
  34. H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref] [PubMed]
  35. G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
    [Crossref] [PubMed]
  36. J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
    [Crossref]
  37. C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
    [Crossref] [PubMed]
  38. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099 (1983).
    [Crossref] [PubMed]
  39. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
    [Crossref] [PubMed]
  40. G. Cataldo, J. A. Beall, H.-M. Cho, B. McAndrew, M. D. Niemack, and E. J. Wollack, “Infrared dielectric properties of low-stress silicon nitride,” Opt. Lett. 37(20), 4200–4202 (2012).
    [Crossref] [PubMed]
  41. M. Born, and E. Wolf, Principle of Opics (Cambridge University, 1999).
  42. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
    [Crossref] [PubMed]
  43. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3(11), 1780–1787 (1986).
    [Crossref]
  44. L. Li and C. W. Haggans, “Convergence of the coupled-wave method for metallic lamellar diffraction gratings,” J. Opt. Soc. Am. A 10(6), 1184–1189 (1993).
    [Crossref]
  45. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13(4), 779–784 (1996).
    [Crossref]
  46. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14(10), 2758–2767 (1997).
    [Crossref]
  47. P. Bouchon, F. Pardo, R. Haïdar, G. Vincent, and J.-L. Pelouard, “Reduced scattering-matrix algorithm for high-density plasmonic structures,” Opt. Lett. 35(19), 3222–3224 (2010).
    [Crossref] [PubMed]
  48. R. C. Rumpf, “Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention,” Prog. Electromagntis Res. B 35(1), 241–261 (2011).
    [Crossref]
  49. J. Zhang, X. Zhao, K. Fan, X. Wang, G. F. Zhang, K. Geng, X. Zhang, and R. D. Averitt, “Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna,” Appl. Phys. Lett. 107(23), 231101 (2015).
    [Crossref]
  50. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
    [Crossref]
  51. S. Ma, S. Xiao, and L. Zhou, “Resonant modes in metal/insulator/metal metamaterials: An analytical study on near-field couplings,” Phys. Rev. B 93(4), 45305 (2016).
    [Crossref]
  52. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
    [Crossref]
  53. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  54. Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
    [Crossref] [PubMed]
  55. R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett. 97(24), 241108 (2010).
    [Crossref]

2018 (6)

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303–310 (2018).
[Crossref]

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref] [PubMed]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 35128 (2018).
[Crossref]

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

2017 (4)

M. Wu, X. Zhao, J. Zhang, J. Schalch, G. Duan, K. Cremin, R. D. Averitt, and X. Zhang, “A three-dimensional all-metal terahertz metamaterial perfect absorber,” Appl. Phys. Lett. 111(5), 051101 (2017).
[Crossref]

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref] [PubMed]

K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
[Crossref]

Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer, and M. Rinaldi, “Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches,” Nat. Nanotechnol. 12(10), 969–973 (2017).
[Crossref] [PubMed]

2016 (7)

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

W.-C. Chen, A. Cardin, M. Koirala, X. Liu, T. Tyler, K. G. West, C. M. Bingham, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Role of surface electromagnetic waves in metamaterial absorbers,” Opt. Express 24(6), 6783–6792 (2016).
[Crossref] [PubMed]

X. Liu and W. J. Padilla, “Thermochromic infrared metamaterials,” Adv. Mater. 28(5), 871–875 (2016).
[Crossref] [PubMed]

Y. Hui, J. S. Gomez-Diaz, Z. Qian, A. Alù, and M. Rinaldi, “Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing,” Nat. Commun. 7(1), 11249 (2016).
[Crossref] [PubMed]

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

S. Ma, S. Xiao, and L. Zhou, “Resonant modes in metal/insulator/metal metamaterials: An analytical study on near-field couplings,” Phys. Rev. B 93(4), 45305 (2016).
[Crossref]

2015 (3)

J. Zhang, X. Zhao, K. Fan, X. Wang, G. F. Zhang, K. Geng, X. Zhang, and R. D. Averitt, “Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna,” Appl. Phys. Lett. 107(23), 231101 (2015).
[Crossref]

J. Ma, M. B. Steer, and X. Jiang, “An acoustic filter based on layered structure,” Appl. Phys. Lett. 106(11), 111903 (2015).
[Crossref] [PubMed]

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

2014 (2)

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(3), 1093–1123 (2014).
[Crossref]

2013 (1)

2012 (10)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 24005 (2012).
[Crossref]

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 31010 (2012).
[Crossref]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), 98–181 (2012).
[PubMed]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
[Crossref]

H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012).
[Crossref] [PubMed]

G. Cataldo, J. A. Beall, H.-M. Cho, B. McAndrew, M. D. Niemack, and E. J. Wollack, “Infrared dielectric properties of low-stress silicon nitride,” Opt. Lett. 37(20), 4200–4202 (2012).
[Crossref] [PubMed]

J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt. 51(28), 6789–6798 (2012).
[Crossref] [PubMed]

2011 (4)

R. C. Rumpf, “Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention,” Prog. Electromagntis Res. B 35(1), 241–261 (2011).
[Crossref]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with metamaterials,” Opt. Express 19(22), 21620–21626 (2011).
[Crossref] [PubMed]

2010 (5)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

P. Bouchon, F. Pardo, R. Haïdar, G. Vincent, and J.-L. Pelouard, “Reduced scattering-matrix algorithm for high-density plasmonic structures,” Opt. Lett. 35(19), 3222–3224 (2010).
[Crossref] [PubMed]

R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett. 97(24), 241108 (2010).
[Crossref]

2009 (1)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

2008 (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2002 (1)

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

1997 (1)

1996 (1)

1993 (1)

1986 (1)

1983 (1)

Adato, R.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Aleksandrova, A.

Alexander, R. W.

Altug, H.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Alù, A.

Y. Hui, J. S. Gomez-Diaz, Z. Qian, A. Alù, and M. Rinaldi, “Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing,” Nat. Commun. 7(1), 11249 (2016).
[Crossref] [PubMed]

Averitt, R. D.

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 35128 (2018).
[Crossref]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref] [PubMed]

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303–310 (2018).
[Crossref]

M. Wu, X. Zhao, J. Zhang, J. Schalch, G. Duan, K. Cremin, R. D. Averitt, and X. Zhang, “A three-dimensional all-metal terahertz metamaterial perfect absorber,” Appl. Phys. Lett. 111(5), 051101 (2017).
[Crossref]

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

J. Zhang, X. Zhao, K. Fan, X. Wang, G. F. Zhang, K. Geng, X. Zhang, and R. D. Averitt, “Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna,” Appl. Phys. Lett. 107(23), 231101 (2015).
[Crossref]

H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with metamaterials,” Opt. Express 19(22), 21620–21626 (2011).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

Azad, A. K.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
[Crossref]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Beall, J. A.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bingham, C. M.

W.-C. Chen, A. Cardin, M. Koirala, X. Liu, T. Tyler, K. G. West, C. M. Bingham, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Role of surface electromagnetic waves in metamaterial absorbers,” Opt. Express 24(6), 6783–6792 (2016).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

Bouchon, P.

Cao, J.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Cardin, A.

Cassella, C.

Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer, and M. Rinaldi, “Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches,” Nat. Nanotechnol. 12(10), 969–973 (2017).
[Crossref] [PubMed]

Cataldo, G.

Chashnikova, M.

Chen, H.-T.

H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
[Crossref]

Chen, K.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Chen, L.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

Chen, Q.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Chen, W.-C.

Chen, X.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

Chen, Y.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Chilkoti, A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Cho, H.-M.

Chowdhury, D. R.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
[Crossref]

Chu, J.

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

Ciracì, C.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Cremin, K.

M. Wu, X. Zhao, J. Zhang, J. Schalch, G. Duan, K. Cremin, R. D. Averitt, and X. Zhang, “A three-dimensional all-metal terahertz metamaterial perfect absorber,” Appl. Phys. Lett. 111(5), 051101 (2017).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Cumming, D. R. S.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Dagens, B.

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

Dai, N.

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Dregely, D.

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 31010 (2012).
[Crossref]

Duan, G.

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 35128 (2018).
[Crossref]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref] [PubMed]

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303–310 (2018).
[Crossref]

M. Wu, X. Zhao, J. Zhang, J. Schalch, G. Duan, K. Cremin, R. D. Averitt, and X. Zhang, “A three-dimensional all-metal terahertz metamaterial perfect absorber,” Appl. Phys. Lett. 111(5), 051101 (2017).
[Crossref]

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

Fan, K.

K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
[Crossref]

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref] [PubMed]

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

J. Zhang, X. Zhao, K. Fan, X. Wang, G. F. Zhang, K. Geng, X. Zhang, and R. D. Averitt, “Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna,” Appl. Phys. Lett. 107(23), 231101 (2015).
[Crossref]

H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with metamaterials,” Opt. Express 19(22), 21620–21626 (2011).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

Fedosenko, O.

Fernández-Domínguez, A. I.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Flores, Y.

Fu, Z.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Gao, Y.

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

Gaylord, T. K.

Geng, K.

J. Zhang, X. Zhao, K. Fan, X. Wang, G. F. Zhang, K. Geng, X. Zhang, and R. D. Averitt, “Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna,” Appl. Phys. Lett. 107(23), 231101 (2015).
[Crossref]

Giessen, H.

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 31010 (2012).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Gilbert Corder, S. N.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Gomez-Diaz, J. S.

Y. Hui, J. S. Gomez-Diaz, Z. Qian, A. Alù, and M. Rinaldi, “Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing,” Nat. Commun. 7(1), 11249 (2016).
[Crossref] [PubMed]

Gruska, B.

Haggans, C. W.

Haïdar, R.

Hao, J.

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

He, Q.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Hentschel, M.

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 31010 (2012).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hill, R. T.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Hong, M.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

Hu, X.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Huang, L.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
[Crossref]

Huang, Z.

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

Hui, Y.

Y. Hui, J. S. Gomez-Diaz, Z. Qian, A. Alù, and M. Rinaldi, “Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing,” Nat. Commun. 7(1), 11249 (2016).
[Crossref] [PubMed]

Jiang, X.

J. Ma, M. B. Steer, and X. Jiang, “An acoustic filter based on layered structure,” Appl. Phys. Lett. 106(11), 111903 (2015).
[Crossref] [PubMed]

John, J.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 24005 (2012).
[Crossref]

Jokerst, N. M.

W.-C. Chen, A. Cardin, M. Koirala, X. Liu, T. Tyler, K. G. West, C. M. Bingham, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Role of surface electromagnetic waves in metamaterial absorbers,” Opt. Express 24(6), 6783–6792 (2016).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kadlec, E. A.

Kang, S.

Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer, and M. Rinaldi, “Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches,” Nat. Nanotechnol. 12(10), 969–973 (2017).
[Crossref] [PubMed]

Keiser, G. R.

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

Kischkat, J.

Kivshar, Y. S.

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(3), 1093–1123 (2014).
[Crossref]

Klinkmüller, M.

Koechlin, C.

Koirala, M.

Lalanne, P.

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

Lapine, M.

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(3), 1093–1123 (2014).
[Crossref]

Li, D.

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

Li, H.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Li, L.

Li, S.

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

Li, W.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Li, X.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Li, Y.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

Liu, M.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref] [PubMed]

K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
[Crossref]

W.-C. Chen, A. Cardin, M. Koirala, X. Liu, T. Tyler, K. G. West, C. M. Bingham, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Role of surface electromagnetic waves in metamaterial absorbers,” Opt. Express 24(6), 6783–6792 (2016).
[Crossref] [PubMed]

X. Liu and W. J. Padilla, “Thermochromic infrared metamaterials,” Adv. Mater. 28(5), 871–875 (2016).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), 98–181 (2012).
[PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Long, L. L.

Luo, S.-N.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
[Crossref]

Luo, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

Ma, J.

J. Ma, M. B. Steer, and X. Jiang, “An acoustic filter based on layered structure,” Appl. Phys. Lett. 106(11), 111903 (2015).
[Crossref] [PubMed]

Ma, S.

S. Ma, S. Xiao, and L. Zhou, “Resonant modes in metal/insulator/metal metamaterials: An analytical study on near-field couplings,” Phys. Rev. B 93(4), 45305 (2016).
[Crossref]

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Ma, X.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

Machulik, S.

Maier, S. A.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Mao, Y.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Markoš, P.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
[Crossref]

Mason, J. A.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Masselink, W. T.

McAndrew, B.

McGruer, N. E.

Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer, and M. Rinaldi, “Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches,” Nat. Nanotechnol. 12(10), 969–973 (2017).
[Crossref] [PubMed]

Meng, X.

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Miao, Z.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Milder, A.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 24005 (2012).
[Crossref]

Mock, J. J.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Moharam, M. G.

Monastyrskyi, G.

Morris, G. M.

Neuner, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 24005 (2012).
[Crossref]

Niemack, M. D.

Omenetto, F. G.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Ordal, M. A.

Padilla, W. J.

K. Fan, J. Y. Suen, X. Liu, and W. J. Padilla, “All-dielectric metasurface absorbers for uncooled terahertz imaging,” Optica 4(6), 601–604 (2017).
[Crossref]

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref] [PubMed]

W.-C. Chen, A. Cardin, M. Koirala, X. Liu, T. Tyler, K. G. West, C. M. Bingham, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Role of surface electromagnetic waves in metamaterial absorbers,” Opt. Express 24(6), 6783–6792 (2016).
[Crossref] [PubMed]

X. Liu and W. J. Padilla, “Thermochromic infrared metamaterials,” Adv. Mater. 28(5), 871–875 (2016).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), 98–181 (2012).
[PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with metamaterials,” Opt. Express 19(22), 21620–21626 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Pan, X.

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

Pardo, F.

Pelouard, J.-L.

Pendry, J. B.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Peters, S.

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

Pu, M.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

Qian, Z.

Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer, and M. Rinaldi, “Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches,” Nat. Nanotechnol. 12(10), 969–973 (2017).
[Crossref] [PubMed]

Y. Hui, J. S. Gomez-Diaz, Z. Qian, A. Alù, and M. Rinaldi, “Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing,” Nat. Commun. 7(1), 11249 (2016).
[Crossref] [PubMed]

Qiu, M.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Qu, C.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Rajaram, V.

Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer, and M. Rinaldi, “Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches,” Nat. Nanotechnol. 12(10), 969–973 (2017).
[Crossref] [PubMed]

Ramani, S.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
[Crossref]

Reiten, M. T.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
[Crossref]

Rinaldi, M.

Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer, and M. Rinaldi, “Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches,” Nat. Nanotechnol. 12(10), 969–973 (2017).
[Crossref] [PubMed]

Y. Hui, J. S. Gomez-Diaz, Z. Qian, A. Alù, and M. Rinaldi, “Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing,” Nat. Commun. 7(1), 11249 (2016).
[Crossref] [PubMed]

Rockstuhl, C.

R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett. 97(24), 241108 (2010).
[Crossref]

Rumpf, R. C.

R. C. Rumpf, “Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention,” Prog. Electromagntis Res. B 35(1), 241–261 (2011).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Savoy, S.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 24005 (2012).
[Crossref]

Schäferling, M.

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 31010 (2012).
[Crossref]

Schalch, J.

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 35128 (2018).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref] [PubMed]

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303–310 (2018).
[Crossref]

M. Wu, X. Zhao, J. Zhang, J. Schalch, G. Duan, K. Cremin, R. D. Averitt, and X. Zhang, “A three-dimensional all-metal terahertz metamaterial perfect absorber,” Appl. Phys. Lett. 111(5), 051101 (2017).
[Crossref]

Schultz, S.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Semtsiv, M.

Seren, H. R.

Shadrivov, I. V.

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref] [PubMed]

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(3), 1093–1123 (2014).
[Crossref]

Shaner, E. A.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shen, Y.

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

Shi, Z.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

Shvets, G.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 24005 (2012).
[Crossref]

Singh, R.

R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett. 97(24), 241108 (2010).
[Crossref]

Smith, D. R.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
[Crossref]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Smith, S.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Soukoulis, C. M.

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
[Crossref]

Starr, A. F.

W.-C. Chen, A. Cardin, M. Koirala, X. Liu, T. Tyler, K. G. West, C. M. Bingham, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Role of surface electromagnetic waves in metamaterial absorbers,” Opt. Express 24(6), 6783–6792 (2016).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Starr, T.

W.-C. Chen, A. Cardin, M. Koirala, X. Liu, T. Tyler, K. G. West, C. M. Bingham, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Role of surface electromagnetic waves in metamaterial absorbers,” Opt. Express 24(6), 6783–6792 (2016).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Steer, M. B.

J. Ma, M. B. Steer, and X. Jiang, “An acoustic filter based on layered structure,” Appl. Phys. Lett. 106(11), 111903 (2015).
[Crossref] [PubMed]

Strikwerda, A. C.

H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with metamaterials,” Opt. Express 19(22), 21620–21626 (2011).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

Suen, J. Y.

Sun, J.

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

Sun, L.

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

Sun, S.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Sun, Y.

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

Tao, H.

H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with metamaterials,” Opt. Express 19(22), 21620–21626 (2011).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

Tao, T. H.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Taylor, A. J.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
[Crossref]

Tyler, T.

W.-C. Chen, A. Cardin, M. Koirala, X. Liu, T. Tyler, K. G. West, C. M. Bingham, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Role of surface electromagnetic waves in metamaterial absorbers,” Opt. Express 24(6), 6783–6792 (2016).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Urzhumov, Y.

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

Valentine, J.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Vincent, G.

Wan, W.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Wang, H.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6Suppl 6), A1078–A1093 (2013).
[Crossref] [PubMed]

Wang, J.

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, L.

Wang, X.

J. Zhang, X. Zhao, K. Fan, X. Wang, G. F. Zhang, K. Geng, X. Zhang, and R. D. Averitt, “Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna,” Appl. Phys. Lett. 107(23), 231101 (2015).
[Crossref]

Wang, Y.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

Ward, C. A.

Wasserman, D.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), 98–181 (2012).
[PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wen, L.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Wen, Z.

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

West, K. G.

Wollack, E. J.

Wu, C.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 24005 (2012).
[Crossref]

Wu, M.

M. Wu, X. Zhao, J. Zhang, J. Schalch, G. Duan, K. Cremin, R. D. Averitt, and X. Zhang, “A three-dimensional all-metal terahertz metamaterial perfect absorber,” Appl. Phys. Lett. 111(5), 051101 (2017).
[Crossref]

Xiao, S.

S. Ma, S. Xiao, and L. Zhou, “Resonant modes in metal/insulator/metal metamaterials: An analytical study on near-field couplings,” Phys. Rev. B 93(4), 45305 (2016).
[Crossref]

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Xu, G.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Xu, H.

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

Yu, W.

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Zhang, B.

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

Zhang, G. F.

J. Zhang, X. Zhao, K. Fan, X. Wang, G. F. Zhang, K. Geng, X. Zhang, and R. D. Averitt, “Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna,” Appl. Phys. Lett. 107(23), 231101 (2015).
[Crossref]

Zhang, J.

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 35128 (2018).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref] [PubMed]

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303–310 (2018).
[Crossref]

M. Wu, X. Zhao, J. Zhang, J. Schalch, G. Duan, K. Cremin, R. D. Averitt, and X. Zhang, “A three-dimensional all-metal terahertz metamaterial perfect absorber,” Appl. Phys. Lett. 111(5), 051101 (2017).
[Crossref]

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

J. Zhang, X. Zhao, K. Fan, X. Wang, G. F. Zhang, K. Geng, X. Zhang, and R. D. Averitt, “Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna,” Appl. Phys. Lett. 107(23), 231101 (2015).
[Crossref]

Zhang, S.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Zhang, W.

R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett. 97(24), 241108 (2010).
[Crossref]

Zhang, X.

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 35128 (2018).
[Crossref]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref] [PubMed]

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303–310 (2018).
[Crossref]

M. Wu, X. Zhao, J. Zhang, J. Schalch, G. Duan, K. Cremin, R. D. Averitt, and X. Zhang, “A three-dimensional all-metal terahertz metamaterial perfect absorber,” Appl. Phys. Lett. 111(5), 051101 (2017).
[Crossref]

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

J. Zhang, X. Zhao, K. Fan, X. Wang, G. F. Zhang, K. Geng, X. Zhang, and R. D. Averitt, “Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna,” Appl. Phys. Lett. 107(23), 231101 (2015).
[Crossref]

H. Tao, E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, “Microwave and terahertz wave sensing with metamaterials,” Opt. Express 19(22), 21620–21626 (2011).
[Crossref] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

Zhang, Y.

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Zhao, X.

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 35128 (2018).
[Crossref]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
[Crossref]

X. Zhao, J. Schalch, J. Zhang, H. R. Seren, G. Duan, R. D. Averitt, and X. Zhang, “Electromechanically tunable metasurface transmission waveplate at terahertz frequencies,” Optica 5(3), 303–310 (2018).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies,” Opt. Express 26(3), 2242–2251 (2018).
[Crossref] [PubMed]

M. Wu, X. Zhao, J. Zhang, J. Schalch, G. Duan, K. Cremin, R. D. Averitt, and X. Zhang, “A three-dimensional all-metal terahertz metamaterial perfect absorber,” Appl. Phys. Lett. 111(5), 051101 (2017).
[Crossref]

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

J. Zhang, X. Zhao, K. Fan, X. Wang, G. F. Zhang, K. Geng, X. Zhang, and R. D. Averitt, “Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna,” Appl. Phys. Lett. 107(23), 231101 (2015).
[Crossref]

Zhao, Y.

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Zhao, Z.

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

Zhou, L.

S. Ma, S. Xiao, and L. Zhou, “Resonant modes in metal/insulator/metal metamaterials: An analytical study on near-field couplings,” Phys. Rev. B 93(4), 45305 (2016).
[Crossref]

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zhou, T.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Zhou, Z.

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Zollars, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 24005 (2012).
[Crossref]

ACS Nano (1)

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012).
[Crossref] [PubMed]

Adv. Mater. (2)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), 98–181 (2012).
[PubMed]

X. Liu and W. J. Padilla, “Thermochromic infrared metamaterials,” Adv. Mater. 28(5), 871–875 (2016).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

X. Pan, H. Xu, Y. Gao, Y. Zhang, L. Sun, D. Li, Z. Wen, S. Li, W. Yu, Z. Huang, J. Wang, B. Zhang, Y. Sun, J. Sun, X. Meng, X. Chen, B. Dagens, J. Hao, Y. Shen, N. Dai, and J. Chu, “Spatial and frequency selective plasmonic metasurface for long wavelength infrared spectral region,” Adv. Opt. Mater. 6(20), 1800337 (2018).
[Crossref]

Adv. Sci. (Weinh.) (1)

Z. Zhou, T. Zhou, S. Zhang, Z. Shi, Y. Chen, W. Wan, X. Li, X. Chen, S. N. Gilbert Corder, Z. Fu, L. Chen, Y. Mao, J. Cao, F. G. Omenetto, M. Liu, H. Li, and T. H. Tao, “Multicolor T-ray imaging using multispectral metamaterials,” Adv. Sci. (Weinh.) 5(7), 1700982 (2018).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (8)

R. Singh, C. Rockstuhl, and W. Zhang, “Strong influence of packing density in terahertz metamaterials,” Appl. Phys. Lett. 97(24), 241108 (2010).
[Crossref]

J. Zhang, X. Zhao, K. Fan, X. Wang, G. F. Zhang, K. Geng, X. Zhang, and R. D. Averitt, “Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna,” Appl. Phys. Lett. 107(23), 231101 (2015).
[Crossref]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. K. Azad, A. J. Taylor, and H.-T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101(10), 101102 (2012).
[Crossref]

M. Wu, X. Zhao, J. Zhang, J. Schalch, G. Duan, K. Cremin, R. D. Averitt, and X. Zhang, “A three-dimensional all-metal terahertz metamaterial perfect absorber,” Appl. Phys. Lett. 111(5), 051101 (2017).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

J. Ma, M. B. Steer, and X. Jiang, “An acoustic filter based on layered structure,” Appl. Phys. Lett. 106(11), 111903 (2015).
[Crossref] [PubMed]

J. Schalch, G. Duan, X. Zhao, X. Zhang, and R. D. Averitt, “Terahertz metamaterial perfect absorber with continuously tunable air spacer layer,” Appl. Phys. Lett. 113(6), 61113 (2018).
[Crossref]

J. Opt. (1)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 24005 (2012).
[Crossref]

J. Opt. Soc. Am. A (4)

Laser Photonics Rev. (1)

X. Hu, G. Xu, L. Wen, H. Wang, Y. Zhao, Y. Zhang, D. R. S. Cumming, and Q. Chen, “Metamaterial absorber integrated microfluidic terahertz sensors,” Laser Photonics Rev. 10(6), 962–969 (2016).
[Crossref]

Microsyst. Nanoeng. (1)

X. Zhao, K. Fan, J. Zhang, G. R. Keiser, G. Duan, R. D. Averitt, and X. Zhang, “Voltage-tunable dual-layer terahertz metamaterials,” Microsyst. Nanoeng. 2(1), 16025 (2016).
[Crossref]

Nano Lett. (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Hui, J. S. Gomez-Diaz, Z. Qian, A. Alù, and M. Rinaldi, “Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing,” Nat. Commun. 7(1), 11249 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

Z. Qian, S. Kang, V. Rajaram, C. Cassella, N. E. McGruer, and M. Rinaldi, “Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches,” Nat. Nanotechnol. 12(10), 969–973 (2017).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (3)

Optica (2)

Phys. Rev. B (3)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B 78(24), 241103 (2008).

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 35128 (2018).
[Crossref]

S. Ma, S. Xiao, and L. Zhou, “Resonant modes in metal/insulator/metal metamaterials: An analytical study on near-field couplings,” Phys. Rev. B 93(4), 45305 (2016).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B Condens. Matter Mater. Phys. 65(19), 195104 (2002).
[Crossref]

Phys. Rev. Lett. (5)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 31010 (2012).
[Crossref]

Prog. Electromagntis Res. B (1)

R. C. Rumpf, “Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention,” Prog. Electromagntis Res. B 35(1), 241–261 (2011).
[Crossref]

Rev. Mod. Phys. (1)

M. Lapine, I. V. Shadrivov, and Y. S. Kivshar, “Colloquium: Nonlinear metamaterials,” Rev. Mod. Phys. 86(3), 1093–1123 (2014).
[Crossref]

Sci. Adv. (1)

X. Li, L. Chen, Y. Li, X. Zhang, M. Pu, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, “Multicolor 3D meta-holography by broadband plasmonic modulation,” Sci. Adv. 2(11), e1601102 (2016).
[Crossref] [PubMed]

Science (3)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337(6098), 1072–1074 (2012).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Other (1)

M. Born, and E. Wolf, Principle of Opics (Cambridge University, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Measured reflectance of a free-standing LPCVD SiNx thin film using Fourier transfer infrared (FTIR) spectroscopy along with the fitting reflectance and corresponding residue. Inset: the schematic of the SiNx thin film characterization. (b) The retrieved permittivity of the SiNx thin film. (c) Schematic of the metamaterial perfect absorber (MPA), where a and P are the side-width and periodicity of the unit cell, respectively, and t (400 nm) is the thickness of the SiNx spacer. Inset: the cross-sectional illustrative view of the MPA. Region I: free-space, Region II: metamaterial layer, Region III: SiNx layer, and Region IV: gold ground plane. (d) Absorption spectra for different side-widths calculated by the rigorous coupled wave analysis (RCWA).
Fig. 2
Fig. 2 (a) A false colored scanning electron microscope (SEM) image of the metamaterial with side-width (a)/periodicity (P) of 3.6 μm/5.2 μm. (b) Experimentally measured absorption spectra for varied side-width and periodicity by using FTIR spectroscopy.
Fig. 3
Fig. 3 The experimental (solid), finite difference time domain (FDTD) simulation (dash), and RCWA calculation (dot) results for MPAs with different geometries.
Fig. 4
Fig. 4 The cross-sectional view of the simulated field distribution of the MPA with a side-width of 3.1 μm and periodicity of 4.2 μm. Central yellow parts represent the metamaterial resonators. Green parts represent the spacer material SiNx. The bottom yellow parts represent the ground plane. The arrows in each figure represents the corresponding simulated electric or magnetic fields: electric (a) and magnetic (b) field distribution at the wavelength of 8.6 μm; and electric (c) and magnetic (d) field distribution at the wavelength of 17 μm. The magnetic field is in the out-of-plane direction in (b) and (d).
Fig. 5
Fig. 5 Extracted effective permittivity (ε) and permeability (μ) of the MPA with side-width of 3.6 μm and periodicity of 5.2 μm. The impedance match between the MPA and free-space is achieved at the wavelength of 8.6 μm.
Fig. 6
Fig. 6 (a) Experimentally measured absorption spectrum and FDTD simulation results with dispersive SiNx permittivity, and constant permittivity of εm1 and εm2. (b) The peak absorption (resonance) wavelengths for the mode 1 and 2 versus the side-width of the metamaterial unit cell.
Fig. 7
Fig. 7 Simulated absorption spectrum with an MPA side-width of 3.1 μm and varying periodicity. The blue dashed line corresponds to the geometry in the fabricated sample for the design with the periodicity of 4.2 μm.

Tables (1)

Tables Icon

Table 1 Fit parameter of the LPCVD grown SiNx thin film with M = 5.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E I = e j k 0 z + m n ρ m,n e j( k xm x+ k yn y k zmn z)
ε r (x,y)= p=M M q=N N a p,q e j( 2πpx Λ x + 2πqy Λ y )
E II = m n S m,n II (z) e j( k xm x+ k yn y+ k zmn z)
d 2 S m,n II (z) d z 2 j2 k 0 d S m,n II (z) dz =( k xm 2 + k yn 2 ) S m,n II (z) k 0 2 p q a p,q S mp,nq II (z)
R = r 12 2 + r 23 2 +2 r 12 r 23 cos2β 1+ r 12 2 r 23 2 +2 r 12 r 23 cos2β
r 12 = n 1 n SiNx n 1 + n SiNx
r23= n SiNx n 3 n SiNx + n 3
ε SiNx = ε + j=1 M Δ ε j ω T j 2 ω T j 2 ω 2 iω Γ j ' (ω)
Γ j ' (ω)= Γ j exp[ α j ( ω T j 2 ω 2 ω Γ j ) 2 ]
Res= | R R | 2

Metrics