Abstract

The contradiction between the field of view (FOV), luminance uniformity (LU) and weight has always restricted the development of augmented reality display systems. An on-axis near-eye display (NED) system based on directional scattering holographic waveguide (DSHW) and curved goggle is proposed in order to realize a large FOV with high LU, light weight, and conformal design capability. The DSHW which consists of a linear volume holographic grating and holographic diffuser is used to deliver the virtual image and construct a transparent directional emission display screen with high LU. The curved goggle is used to project the image on the display screen into human eye and form a large FOV, with a suitable exit pupil diameter (EPD) and eye relief distance (ERF) and while keeping the external scene visible. Our proposed NED achieved an FOV of 44° horizontal (H) × 12° vertical (V) easily, which is almost consistent with the theoretical design. The EPD is 6 mm, ERF is 18.6 mm, and LU is about 88.09% at full viewing angle. The system is lightweight and flexible, which can be further applied in the next-generation, integrated protection-display helmet system through conformal optical design.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics

Dewen Cheng, Yongtian Wang, Chen Xu, Weitao Song, and Guofan Jin
Opt. Express 22(17) 20705-20719 (2014)

Stray light and tolerance analysis of an ultrathin waveguide display

Qiwei Wang, Dewen Cheng, Qichao Hou, Yuan Hu, and Yongtian Wang
Appl. Opt. 54(28) 8354-8362 (2015)

Design of a two-dimensional stray-light-free geometrical waveguide head-up display

Luo Gu, Dewen Cheng, Qiwei Wang, Qichao Hou, and Yongtian Wang
Appl. Opt. 57(31) 9246-9256 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
    [Crossref]
  2. J. P. Rolland and K. Thompson, “See-Through Head Worn Displays for Mobile Augmented Reality,” Commun. China Comp. Fed. 7(8), 28–37 (2011).
  3. H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” SPIE 2653, 234–242 (1996).
    [Crossref]
  4. http://www.epson.com/cgi-bin/Store/jsp/Moverio/Home.do?BV_UseBVCookie=yes
  5. https://developer.sony.com/develop/smarteyeglass-sed-e1/
  6. http://optinvent.com/wp-content/uploads/2016/03/IDW2010_PRJ2_1.pdf .
  7. http://www.osterhoutgroup.com/introduction
  8. https://buy.metavision.com/#specifications
  9. J. D. Waldern, A. J. Grant, M. M. Popovich, “DigiLens switchable Bragg grating waveguide optics for augmented reality applications,” Digital Optics for Immersive Displays, 106760G (2018).
  10. T. Levola and P. Laakkonen, “Replicated slanted gratings with a high refractive index material for in and outcoupling of light,” Opt. Express 15(5), 2067–2074 (2007).
    [Crossref] [PubMed]
  11. D. Cheng, Y. Wang, H. Hua, and J. Sasian, “Design of a wide-angle, lightweight head-mounted display using free-form optics tiling,” Opt. Lett. 36(11), 2098–2100 (2011).
    [Crossref] [PubMed]
  12. H. Huang and H. Hua, “High-performance integral-imaging-based light field augmented reality display using freeform optics,” Opt. Express 26(13), 17578–17590 (2018).
    [Crossref] [PubMed]
  13. C. M. Bigler, P. A. Blanche, and K. Sarma, “Holographic waveguide heads-up display for longitudinal image magnification and pupil expansion,” Appl. Opt. 57(9), 2007–2013 (2018).
    [Crossref] [PubMed]
  14. J. Yang, P. Twardowski, P. Gérard, and J. Fontaine, “Design of a large field-of-view see-through near to eye display with two geometrical waveguides,” Opt. Lett. 41(23), 5426–5429 (2016).
    [Crossref] [PubMed]
  15. R. Shechter, Y. Amitai, and A. A. Friesem, “Compact beam expander with linear gratings,” Appl. Opt. 41(7), 1236–1240 (2002).
    [Crossref] [PubMed]
  16. R. Shi, J. Liu, H. Zhao, Z. Wu, Y. Liu, Y. Hu, Y. Chen, J. Xie, and Y. Wang, “Chromatic dispersion correction in planar waveguide using one-layer volume holograms based on three-step exposure,” Appl. Opt. 51(20), 4703–4708 (2012).
    [Crossref] [PubMed]
  17. A. Cameron, “The application of holographic optical waveguide technology to Q-Sight family of helmet-mounted displays,” Proc. SPIE 7326, 73260H (2009).
    [Crossref]
  18. M. D. Simmonds and M. S. Valera, “Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same,” US patent, US9664824B2 (2017).
  19. M. Popovich, J. D. Waldern, and A. J. Grant. “DigiLens switchable Bragg grating waveguide optics for augmented reality applications,” Proc. SPIE Digital Optics for Immersive Displays, 15 (2018).
  20. X. Wang, Y. Qin, H. Hua, Y.-H. Lee, and S.-T. Wu, “Digitally switchable multi-focal lens using freeform optics,” Opt. Express 26(8), 11007–11017 (2018).
    [Crossref] [PubMed]
  21. S. Jolly, N. Savidis, B. Datta, D. Smalley, V. M. Bove, “Near-to-eye electroholography via guided-wave acousto-optics for augmented reality,” SPIE OPTO, 101270J (2017).
  22. Q. Gao, J. Liu, J. Han, and X. Li, “Monocular 3D see-through head-mounted display via complex amplitude modulation,” Opt. Express 24(15), 17372–17383 (2016).
    [Crossref] [PubMed]
  23. Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412–8424 (2017).
    [Crossref] [PubMed]
  24. H.-J. Yeom, H.-J. Kim, S.-B. Kim, H. Zhang, B. Li, Y.-M. Ji, S.-H. Kim, and J.-H. Park, “3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation,” Opt. Express 23(25), 32025–32034 (2015).
    [Crossref] [PubMed]
  25. M. Sugawara, M. Suzuki, and N. Miyauchi, “14-5L: Late-News Paper: Retinal Imaging Laser Eyewear with Focus-Free and Augmented Reality,” Sid Symposium Digest of Technical Papers47(1), 164–167 (2016).
  26. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  27. C. Yu, Y. Peng, Q. Zhao, H. Li, and X. Liu, “Highly efficient waveguide display with space-variant volume holographic gratings,” Appl. Opt. 56(34), 9390–9397 (2017).
    [Crossref] [PubMed]
  28. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, and M. Kuwahara, “8.4: distinguished paper: a full color eyewear display using holographic planar waveguides,” SID Symposium Digest of Technical Papers39(1), 89–92 (2012).
  29. L. H. Domash, G. P. Crawford, A. C. Ashmead, R. T. Smith, M. M. Popovich, and J. Storey, “Holographic PDLC for photonic applications,” Proc. SPIE Liquid Crystals IV, 4107 (2000).
    [Crossref]
  30. J. Han, J. Liu, X. Yao, and Y. Wang, “Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms,” Opt. Express 23(3), 3534–3549 (2015).
    [Crossref] [PubMed]
  31. S.-B. Kim and J.-H. Park, “Optical see-through Maxwellian near-to-eye display with an enlarged eyebox,” Opt. Lett. 43(4), 767–770 (2018).
    [Crossref] [PubMed]
  32. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM 36(4), 1– 16 (2017).
  33. C. Gu, J. Hong, J.-R. Lien, and F. Dai, “Diffraction properties of volume holographic diffusers,” J. Opt. Soc. Am. A 13(8), 1704–1711 (1996).
    [Crossref]
  34. K. Murphy, V. Toal, I. Naydenova, and S. Martin, “Holographic beam-shaping diffractive diffusers fabricated by using controlled laser speckle,” Opt. Express 26(7), 8916–8922 (2018).
    [Crossref] [PubMed]
  35. T. Utsugi and M. Yamaguchi, “Reduction of the recorded speckle noise in holographic 3D printer,” Opt. Express 21(1), 662–674 (2013).
    [Crossref] [PubMed]
  36. J. Yeom, J. Jeong, C. Jang, K. Hong, S. G. Park, and B. Lee, “Reflection-type integral imaging system using a diffuser holographic optical element,” Opt. Express 22(24), 29617–29626 (2014).
    [Crossref] [PubMed]

2018 (5)

2017 (3)

2016 (2)

2015 (2)

2014 (1)

2013 (1)

2012 (1)

2011 (3)

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

J. P. Rolland and K. Thompson, “See-Through Head Worn Displays for Mobile Augmented Reality,” Commun. China Comp. Fed. 7(8), 28–37 (2011).

D. Cheng, Y. Wang, H. Hua, and J. Sasian, “Design of a wide-angle, lightweight head-mounted display using free-form optics tiling,” Opt. Lett. 36(11), 2098–2100 (2011).
[Crossref] [PubMed]

2009 (1)

A. Cameron, “The application of holographic optical waveguide technology to Q-Sight family of helmet-mounted displays,” Proc. SPIE 7326, 73260H (2009).
[Crossref]

2007 (1)

2002 (1)

1996 (2)

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” SPIE 2653, 234–242 (1996).
[Crossref]

C. Gu, J. Hong, J.-R. Lien, and F. Dai, “Diffraction properties of volume holographic diffusers,” J. Opt. Soc. Am. A 13(8), 1704–1711 (1996).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Akiyama, T.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” SPIE 2653, 234–242 (1996).
[Crossref]

Akutsu, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, and M. Kuwahara, “8.4: distinguished paper: a full color eyewear display using holographic planar waveguides,” SID Symposium Digest of Technical Papers39(1), 89–92 (2012).

Amitai, Y.

Anisetti, M.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Ashmead, A. C.

L. H. Domash, G. P. Crawford, A. C. Ashmead, R. T. Smith, M. M. Popovich, and J. Storey, “Holographic PDLC for photonic applications,” Proc. SPIE Liquid Crystals IV, 4107 (2000).
[Crossref]

Bigler, C. M.

Blanche, P. A.

Cameron, A.

A. Cameron, “The application of holographic optical waveguide technology to Q-Sight family of helmet-mounted displays,” Proc. SPIE 7326, 73260H (2009).
[Crossref]

Carmigniani, J.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Ceravolo, P.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Chen, Y.

Cheng, D.

Crawford, G. P.

L. H. Domash, G. P. Crawford, A. C. Ashmead, R. T. Smith, M. M. Popovich, and J. Storey, “Holographic PDLC for photonic applications,” Proc. SPIE Liquid Crystals IV, 4107 (2000).
[Crossref]

Dai, F.

Damiani, E.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Domash, L. H.

L. H. Domash, G. P. Crawford, A. C. Ashmead, R. T. Smith, M. M. Popovich, and J. Storey, “Holographic PDLC for photonic applications,” Proc. SPIE Liquid Crystals IV, 4107 (2000).
[Crossref]

Duan, X.

Fontaine, J.

Friesem, A. A.

Furht, B.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Gao, Q.

Georgiou, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM 36(4), 1– 16 (2017).

Gérard, P.

Gu, C.

Han, J.

Hong, J.

Hong, K.

Hoshi, H.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” SPIE 2653, 234–242 (1996).
[Crossref]

Hu, Y.

Hua, H.

Huang, H.

Ivkovic, M.

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Jang, C.

Jeong, J.

Ji, Y.-M.

Kim, H.-J.

Kim, S.-B.

Kim, S.-H.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kollin, J. S.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM 36(4), 1– 16 (2017).

Kuwahara, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, and M. Kuwahara, “8.4: distinguished paper: a full color eyewear display using holographic planar waveguides,” SID Symposium Digest of Technical Papers39(1), 89–92 (2012).

Laakkonen, P.

Lee, B.

Lee, Y.-H.

Levola, T.

Li, B.

Li, H.

Li, X.

Lien, J.-R.

Liu, J.

Liu, P.

Liu, X.

Liu, Y.

Maimone, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM 36(4), 1– 16 (2017).

Martin, S.

Matsumura, I.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, and M. Kuwahara, “8.4: distinguished paper: a full color eyewear display using holographic planar waveguides,” SID Symposium Digest of Technical Papers39(1), 89–92 (2012).

Miyauchi, N.

M. Sugawara, M. Suzuki, and N. Miyauchi, “14-5L: Late-News Paper: Retinal Imaging Laser Eyewear with Focus-Free and Augmented Reality,” Sid Symposium Digest of Technical Papers47(1), 164–167 (2016).

Morishima, H.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” SPIE 2653, 234–242 (1996).
[Crossref]

Mukawa, H.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, and M. Kuwahara, “8.4: distinguished paper: a full color eyewear display using holographic planar waveguides,” SID Symposium Digest of Technical Papers39(1), 89–92 (2012).

Murphy, K.

Nakano, S.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, and M. Kuwahara, “8.4: distinguished paper: a full color eyewear display using holographic planar waveguides,” SID Symposium Digest of Technical Papers39(1), 89–92 (2012).

Naydenova, I.

Okuyama, A.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” SPIE 2653, 234–242 (1996).
[Crossref]

Park, J.-H.

Park, S. G.

Peng, Y.

Popovich, M. M.

L. H. Domash, G. P. Crawford, A. C. Ashmead, R. T. Smith, M. M. Popovich, and J. Storey, “Holographic PDLC for photonic applications,” Proc. SPIE Liquid Crystals IV, 4107 (2000).
[Crossref]

Qin, Y.

Rolland, J. P.

J. P. Rolland and K. Thompson, “See-Through Head Worn Displays for Mobile Augmented Reality,” Commun. China Comp. Fed. 7(8), 28–37 (2011).

Sarma, K.

Sasian, J.

Shechter, R.

Shi, R.

Smith, R. T.

L. H. Domash, G. P. Crawford, A. C. Ashmead, R. T. Smith, M. M. Popovich, and J. Storey, “Holographic PDLC for photonic applications,” Proc. SPIE Liquid Crystals IV, 4107 (2000).
[Crossref]

Storey, J.

L. H. Domash, G. P. Crawford, A. C. Ashmead, R. T. Smith, M. M. Popovich, and J. Storey, “Holographic PDLC for photonic applications,” Proc. SPIE Liquid Crystals IV, 4107 (2000).
[Crossref]

Sugawara, M.

M. Sugawara, M. Suzuki, and N. Miyauchi, “14-5L: Late-News Paper: Retinal Imaging Laser Eyewear with Focus-Free and Augmented Reality,” Sid Symposium Digest of Technical Papers47(1), 164–167 (2016).

Suzuki, M.

M. Sugawara, M. Suzuki, and N. Miyauchi, “14-5L: Late-News Paper: Retinal Imaging Laser Eyewear with Focus-Free and Augmented Reality,” Sid Symposium Digest of Technical Papers47(1), 164–167 (2016).

Taniguchi, N.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” SPIE 2653, 234–242 (1996).
[Crossref]

Thompson, K.

J. P. Rolland and K. Thompson, “See-Through Head Worn Displays for Mobile Augmented Reality,” Commun. China Comp. Fed. 7(8), 28–37 (2011).

Toal, V.

Twardowski, P.

Utsugi, T.

Wang, X.

Wang, Y.

Wu, S.-T.

Wu, Z.

Xie, J.

Yamaguchi, M.

Yamazaki, S.

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” SPIE 2653, 234–242 (1996).
[Crossref]

Yang, J.

Yao, X.

Yeom, H.-J.

Yeom, J.

Yoshida, T.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, and M. Kuwahara, “8.4: distinguished paper: a full color eyewear display using holographic planar waveguides,” SID Symposium Digest of Technical Papers39(1), 89–92 (2012).

Yu, C.

Zhang, H.

Zhao, H.

Zhao, Q.

Zhao, T.

ACM (1)

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM 36(4), 1– 16 (2017).

Appl. Opt. (4)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Commun. China Comp. Fed. (1)

J. P. Rolland and K. Thompson, “See-Through Head Worn Displays for Mobile Augmented Reality,” Commun. China Comp. Fed. 7(8), 28–37 (2011).

J. Opt. Soc. Am. A (1)

Multimedia Tools Appl. (1)

J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic, “Augmented reality technologies, systems and applications,” Multimedia Tools Appl. 51(1), 341–377 (2011).
[Crossref]

Opt. Express (10)

H. Huang and H. Hua, “High-performance integral-imaging-based light field augmented reality display using freeform optics,” Opt. Express 26(13), 17578–17590 (2018).
[Crossref] [PubMed]

T. Levola and P. Laakkonen, “Replicated slanted gratings with a high refractive index material for in and outcoupling of light,” Opt. Express 15(5), 2067–2074 (2007).
[Crossref] [PubMed]

K. Murphy, V. Toal, I. Naydenova, and S. Martin, “Holographic beam-shaping diffractive diffusers fabricated by using controlled laser speckle,” Opt. Express 26(7), 8916–8922 (2018).
[Crossref] [PubMed]

T. Utsugi and M. Yamaguchi, “Reduction of the recorded speckle noise in holographic 3D printer,” Opt. Express 21(1), 662–674 (2013).
[Crossref] [PubMed]

J. Yeom, J. Jeong, C. Jang, K. Hong, S. G. Park, and B. Lee, “Reflection-type integral imaging system using a diffuser holographic optical element,” Opt. Express 22(24), 29617–29626 (2014).
[Crossref] [PubMed]

J. Han, J. Liu, X. Yao, and Y. Wang, “Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms,” Opt. Express 23(3), 3534–3549 (2015).
[Crossref] [PubMed]

X. Wang, Y. Qin, H. Hua, Y.-H. Lee, and S.-T. Wu, “Digitally switchable multi-focal lens using freeform optics,” Opt. Express 26(8), 11007–11017 (2018).
[Crossref] [PubMed]

Q. Gao, J. Liu, J. Han, and X. Li, “Monocular 3D see-through head-mounted display via complex amplitude modulation,” Opt. Express 24(15), 17372–17383 (2016).
[Crossref] [PubMed]

Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412–8424 (2017).
[Crossref] [PubMed]

H.-J. Yeom, H.-J. Kim, S.-B. Kim, H. Zhang, B. Li, Y.-M. Ji, S.-H. Kim, and J.-H. Park, “3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation,” Opt. Express 23(25), 32025–32034 (2015).
[Crossref] [PubMed]

Opt. Lett. (3)

Proc. SPIE (1)

A. Cameron, “The application of holographic optical waveguide technology to Q-Sight family of helmet-mounted displays,” Proc. SPIE 7326, 73260H (2009).
[Crossref]

SPIE (1)

H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, S. Yamazaki, and A. Okuyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” SPIE 2653, 234–242 (1996).
[Crossref]

Other (12)

http://www.epson.com/cgi-bin/Store/jsp/Moverio/Home.do?BV_UseBVCookie=yes

https://developer.sony.com/develop/smarteyeglass-sed-e1/

http://optinvent.com/wp-content/uploads/2016/03/IDW2010_PRJ2_1.pdf .

http://www.osterhoutgroup.com/introduction

https://buy.metavision.com/#specifications

J. D. Waldern, A. J. Grant, M. M. Popovich, “DigiLens switchable Bragg grating waveguide optics for augmented reality applications,” Digital Optics for Immersive Displays, 106760G (2018).

M. D. Simmonds and M. S. Valera, “Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same,” US patent, US9664824B2 (2017).

M. Popovich, J. D. Waldern, and A. J. Grant. “DigiLens switchable Bragg grating waveguide optics for augmented reality applications,” Proc. SPIE Digital Optics for Immersive Displays, 15 (2018).

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, and M. Kuwahara, “8.4: distinguished paper: a full color eyewear display using holographic planar waveguides,” SID Symposium Digest of Technical Papers39(1), 89–92 (2012).

L. H. Domash, G. P. Crawford, A. C. Ashmead, R. T. Smith, M. M. Popovich, and J. Storey, “Holographic PDLC for photonic applications,” Proc. SPIE Liquid Crystals IV, 4107 (2000).
[Crossref]

S. Jolly, N. Savidis, B. Datta, D. Smalley, V. M. Bove, “Near-to-eye electroholography via guided-wave acousto-optics for augmented reality,” SPIE OPTO, 101270J (2017).

M. Sugawara, M. Suzuki, and N. Miyauchi, “14-5L: Late-News Paper: Retinal Imaging Laser Eyewear with Focus-Free and Augmented Reality,” Sid Symposium Digest of Technical Papers47(1), 164–167 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The illustration of our proposed NED.
Fig. 2
Fig. 2 Schematics of (a) the in-coupler H1 and (b) out-coupler H2.
Fig. 3
Fig. 3 The optical path diagram of STG.
Fig. 4
Fig. 4 Calculation model of FOV, EPD and ERF.
Fig. 5
Fig. 5 The surface local height of (a) front aspheric surface and (b) rear aspheric surface; (c)The simulation results of virtual image and (d) external real scene.
Fig. 6
Fig. 6 (a) Schematic diagram of holographic exposure; (b) STG and DSHW components; (c) Actual ray tracing of DSHW (The black curtain makes light visible and measurable).
Fig. 7
Fig. 7 Experimental setup.
Fig. 8
Fig. 8 Experimental results.
Fig. 9
Fig. 9 Test of luminance uniformity.

Tables (2)

Tables Icon

Table 1 Optical parameters of DSHW and STG.

Tables Icon

Table 2 Luminance uniformity of different FOV.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

η =th 2 ( ν )
η= sin 2 ( ν )
ν= πΔnd λ cos( θ p )cos( θ r )
1 L ' = 2 R + 1 L
Y= L ' L W
VFOV=2arctan( L ' 2( L+ L ' ) )
VFOV=2arctan( W R )
AD ¯ 2 K 2 KW/2 tan( φ s /2) +L= OD ¯
sin(α)=K/ AD ¯
γ= φ s 2α
β= φ s /2γ
ERF= Ksin(γ) sin(β)sin( φ s /2) EPD 2tan(β) + W 2tan( φ s /2)
W<2 D w cot( θ d )

Metrics