Abstract

We report, to the best of our knowledge, the first broadband polarization mode splitter (PMS) based on the adiabatic light passage mechanism in the lithium niobate (LiNbO3) waveguide platform. A broad bandwidth of ~140 nm spanning telecom S, C, and L bands at polarization-extinction ratios (PER) of >20 dB and >18 dB for the TE and TM polarization modes, respectively, is found in a five-waveguide adiabatic coupler scheme whose structure is optimized by an adiabaticity engineering process in titanium-diffused LiNbO3 waveguides. When the five-waveguide PMS is integrated with a three-waveguide “shortcut to adiabaticity” structure, we realize a broadband, high splitting-ratio (ηc) mode splitter for spatial separation of TE- (H-) polarized pump (700-850 nm for ηc>99%), TM- (V-) polarized signal (1510-1630 nm for ηc>97%), and TE- (H-) polarized idler (1480-1650 nm for ηc>97%) modes. Such a unique integrated-optical device is of potential for facilitating the on-chip implementation of a pump-filtered, broadband tunable entangled quantum-state generator.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband silicon polarization splitter-rotator based on the multi-mode waveguide

Hongnan Xu and Yaocheng Shi
Opt. Express 25(15) 18485-18491 (2017)

Two-photon interferences on a silica-on-silicon chip with telecom-band photon pairs generated in a fiber

Xing-Yun Li, Feng Zhu, Lu Qin, Jia-Shun Zhang, Mei-Zhen Ren, Jun-Ming An, Wei Zhang, Li-Xing You, Zhen Wang, and Xing-Sheng Xu
Opt. Express 26(22) 29471-29481 (2018)

70 dB long-pass filter on a nanophotonic chip

Xiang Guo, Chang-Ling Zou, and Hong X. Tang
Opt. Express 24(18) 21167-21176 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. C. Cheng and R. V. Ramaswamy, “Symmetrical directional coupler as a wavelength multiplexer-demultiplexer: theory and experiment,” IEEE J. Quantum Electron. 27(3), 567–574 (1991).
    [Crossref]
  2. D. Gu, O. Eknoyan, and H. F. Taylor, “Polarization dependence in Ti-diffused LiNbO3 directional couplers,” Appl. Opt. 41(1), 74–77 (2002).
    [Crossref] [PubMed]
  3. S. Soudi and B. M. A. Rahman, “Design of a compact polarization splitter by using identical coupled silicon nanowires,” J. Lightwave Technol. 34(17), 4169–4177 (2016).
    [Crossref]
  4. G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband Silicon-On-Insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Rep. 7(1), 7246 (2017).
    [Crossref] [PubMed]
  5. K. J. Park, K. Y. Song, Y. K. Kim, J. H. Lee, and B. Y. Kim, “Broadband mode division multiplexer using all-fiber mode selective couplers,” Opt. Express 24(4), 3543–3549 (2016).
    [Crossref] [PubMed]
  6. S. Chen, Y. Shi, S. He, and D. Dai, “Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers,” Opt. Lett. 41(4), 836–839 (2016).
    [Crossref] [PubMed]
  7. L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
    [Crossref] [PubMed]
  8. G. Huang, T. H. Park, and M. C. Oh, “Broadband integrated optic polarization splitters by incorporating polarization mode extracting waveguide,” Sci. Rep. 7(1), 4789 (2017).
    [Crossref] [PubMed]
  9. C.-L. Zou, F.-W. Sun, C.-H. Dong, X.-F. Ren, J.-M. Cui, X.-D. Chen, Z.-F. Han, and G.-C. Guo, “Broadband integrated polarization beam splitter with surface plasmon,” Opt. Lett. 36(18), 3630–3632 (2011).
    [Crossref] [PubMed]
  10. S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98(15), 151101 (2011).
    [Crossref]
  11. D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express 19(19), 18614–18620 (2011).
    [Crossref] [PubMed]
  12. J. Wang, B. Niu, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction,” Opt. Express 22(11), 13565–13571 (2014).
    [Crossref] [PubMed]
  13. H. Wu, Y. Tan, and D. Dai, “Ultra-broadband high-performance polarizing beam splitter on silicon,” Opt. Express 25(6), 6069–6075 (2017).
    [Crossref] [PubMed]
  14. M. Olivero and M. Svalgaard, “Direct UV-written broadband directional planar waveguide couplers,” Opt. Express 13(21), 8390–8399 (2005).
    [Crossref] [PubMed]
  15. W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
    [Crossref]
  16. O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18(10), 104001 (2016).
    [Crossref]
  17. S. Bogdanov, M. Y. Shalaginov, A. Boltasseva, and V. M. Shalaev, “Material platforms for integrated quantum photonics,” Opt. Mater. Express 7(1), 111–132 (2017).
    [Crossref]
  18. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Stat. Sol. A. 201(2), 253–283 (2004).
  19. J. J. G. M. van der Tol and J. H. Laarhuis, “A polarization splitter on LiNbO3 using only titanium diffusion,” J. Lightwave Technol. 9(7), 879–886 (1991).
    [Crossref]
  20. N. Goto and G. L. Yip, “A TE-TM mode splitter in LiNbO3 by proton exchange and Ti diffusion,” J. Lightwave Technol. 7(10), 1567–1574 (1989).
    [Crossref]
  21. W. H. Hsu, K. C. Lin, J. Y. Li, Y. S. Wu, and W. S. Wang, “Polarization splitter with variable TE-TM mode converter using Zn and Ni codiffused LiNbO3 waveguides,” IEEE J. Sel. Top. Quantum Electron. 11(1), 271–277 (2005).
    [Crossref]
  22. K. Habara, “LiNbO3 directional-coupler polarisation splitter,” Electron. Lett. 23(12), 614–616 (1987).
    [Crossref]
  23. H. P. Chung, K. H. Huang, S. L. Yang, W. K. Chang, C. W. Wu, F. Setzpfandt, T. Pertsch, D. N. Neshev, and Y. H. Chen, “Adiabatic light transfer in titanium diffused lithium niobate waveguides,” Opt. Express 23(24), 30641–30650 (2015).
    [Crossref] [PubMed]
  24. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70(3), 1003–1025 (1998).
    [Crossref]
  25. G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92(1), 011106 (2008).
    [Crossref]
  26. S. Longhi, “Adiabatic passage of light in coupled optical waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2 Pt 2), 026607 (2006).
    [Crossref] [PubMed]
  27. H. P. Chung, K. H. Huang, K. Wang, S. L. Yang, S. Y. Yang, C. I. Sung, A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, and Y. H. Chen, “Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation,” Sci. Rep. 7(1), 16841 (2017).
    [Crossref] [PubMed]
  28. H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
    [Crossref] [PubMed]
  29. J. Van Roey, J. van der Donk, and P. E. Lagasse, “Beam-propagation method: analysis and assessment,” J. Opt. Soc. Am. 71(7), 803–810 (1981).
    [Crossref]
  30. M. Bazzan and C. Sada, “Optical waveguides in lithium niobate: Recent developments and applications,” Appl. Phys. Rev. 2(4), 040603 (2015).
    [Crossref]
  31. N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D 4(1), 15–29 (1998).
    [Crossref]
  32. S. Y. Tseng, R. D. Wen, Y. F. Chiu, and X. Chen, “Short and robust directional couplers designed by shortcuts to adiabaticity,” Opt. Express 22(16), 18849–18859 (2014).
    [Crossref] [PubMed]
  33. G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15(20), 12769–12776 (2007).
    [Crossref] [PubMed]
  34. A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
    [Crossref]
  35. C. W. Wu, A. S. Solntsev, D. N. Neshev, and A. A. Sukhorukov, “Photon pair generation and pump filtering in nonlinear adiabatic waveguiding structures,” Opt. Lett. 39(4), 953–956 (2014).
    [Crossref] [PubMed]
  36. C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, “Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter,” Opt. Express 15(5), 2548–2554 (2007).
    [Crossref] [PubMed]
  37. K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. 3(2), 385–391 (1985).
    [Crossref]
  38. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
    [Crossref] [PubMed]
  39. C. H. Lin, Y. H. Chen, S. W. Lin, C. L. Chang, Y. C. Huang, and J. Y. Chang, “Electro-optic narrowband multi-wavelength filter in aperiodically poled lithium niobate,” Opt. Express 15(15), 9859–9866 (2007).
    [Crossref] [PubMed]
  40. W. Ueno, F. Kaneda, H. Suzuki, S. Nagano, A. Syouji, R. Shimizu, K. Suizu, and K. Edamatsu, “Entangled photon generation in two-period quasi-phase-matched parametric down-conversion,” Opt. Express 20(5), 5508–5517 (2012).
    [Crossref] [PubMed]
  41. J. G. Titchener, M. Gräfe, R. Heilmann, A. S. Solntsev, A. Szameit, and A. A. Sukhorukov, “Scalable on-chip quantum state tomography,” Quantum Inf. 4, 19 (2018).
  42. K. Wang, J. G. Titchener, S. S. Kruk, L. Xu, H. P. Chung, M. Parry, I. I. Kravchenko, Y. H. Chen, A. S. Solntsev, Y. S. Kivshar, D. N. Neshev, and A. A. Sukhorukov, “Quantum metasurface for multiphoton interference and state reconstruction,” Science 361(6407), 1104–1108 (2018).
    [Crossref] [PubMed]
  43. T. Kroh, A. Ahlrichs, B. Sprenger, and O. Benson, “Heralded wave packet manipulation and storage of a frequency converted pair photon at telecom wavelength,” Quantum Sci. Technol. 2(3), 034007 (2017).
    [Crossref]
  44. K. Wang, S. V. Suchkov, J. G. Titchener, A. Szameit, and A. A. Sukhorukov, “In-line detection and reconstruction of multi-photon quantum states,” arXiv:1808.05038.
  45. Y. Cao, Y. H. Li, W. J. Zou, Z. P. Li, Q. Shen, S. K. Liao, J. G. Ren, J. Yin, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Bell test over extremely high-loss channels: towards distributing entangled photon pairs between earth and the moon,” Phys. Rev. Lett. 120(14), 140405 (2018).
    [Crossref] [PubMed]
  46. A. Zeilinger, “Light for the quantum. Entangled photons and their applications: a very personal perspective,” Phys. Scr. 92(7), 072501 (2017).
    [Crossref]
  47. A. S. Solntsev, T. Liu, A. Boes, T. G. Nguyen, C. W. Wu, F. Setzpfandt, A. Mitchell, D. N. Neshev, and A. A. Sukhorukov, “Towards on-chip photon-pair bell tests: Spatial pump filtering in a LiNbO3 adiabatic coupler,” Appl. Phys. Lett. 111(26), 261108 (2017).
    [Crossref]
  48. A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
    [Crossref]
  49. R. Menchon-Enrich, A. Llobera, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Adiabatic passage of light in CMOS-compatible silicon oxide integrated rib waveguides,” IEEE Photonics Technol. Lett. 24(7), 536–538 (2012).
    [Crossref]

2018 (4)

J. G. Titchener, M. Gräfe, R. Heilmann, A. S. Solntsev, A. Szameit, and A. A. Sukhorukov, “Scalable on-chip quantum state tomography,” Quantum Inf. 4, 19 (2018).

K. Wang, J. G. Titchener, S. S. Kruk, L. Xu, H. P. Chung, M. Parry, I. I. Kravchenko, Y. H. Chen, A. S. Solntsev, Y. S. Kivshar, D. N. Neshev, and A. A. Sukhorukov, “Quantum metasurface for multiphoton interference and state reconstruction,” Science 361(6407), 1104–1108 (2018).
[Crossref] [PubMed]

Y. Cao, Y. H. Li, W. J. Zou, Z. P. Li, Q. Shen, S. K. Liao, J. G. Ren, J. Yin, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Bell test over extremely high-loss channels: towards distributing entangled photon pairs between earth and the moon,” Phys. Rev. Lett. 120(14), 140405 (2018).
[Crossref] [PubMed]

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

2017 (8)

A. Zeilinger, “Light for the quantum. Entangled photons and their applications: a very personal perspective,” Phys. Scr. 92(7), 072501 (2017).
[Crossref]

A. S. Solntsev, T. Liu, A. Boes, T. G. Nguyen, C. W. Wu, F. Setzpfandt, A. Mitchell, D. N. Neshev, and A. A. Sukhorukov, “Towards on-chip photon-pair bell tests: Spatial pump filtering in a LiNbO3 adiabatic coupler,” Appl. Phys. Lett. 111(26), 261108 (2017).
[Crossref]

T. Kroh, A. Ahlrichs, B. Sprenger, and O. Benson, “Heralded wave packet manipulation and storage of a frequency converted pair photon at telecom wavelength,” Quantum Sci. Technol. 2(3), 034007 (2017).
[Crossref]

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband Silicon-On-Insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Rep. 7(1), 7246 (2017).
[Crossref] [PubMed]

G. Huang, T. H. Park, and M. C. Oh, “Broadband integrated optic polarization splitters by incorporating polarization mode extracting waveguide,” Sci. Rep. 7(1), 4789 (2017).
[Crossref] [PubMed]

H. P. Chung, K. H. Huang, K. Wang, S. L. Yang, S. Y. Yang, C. I. Sung, A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, and Y. H. Chen, “Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation,” Sci. Rep. 7(1), 16841 (2017).
[Crossref] [PubMed]

S. Bogdanov, M. Y. Shalaginov, A. Boltasseva, and V. M. Shalaev, “Material platforms for integrated quantum photonics,” Opt. Mater. Express 7(1), 111–132 (2017).
[Crossref]

H. Wu, Y. Tan, and D. Dai, “Ultra-broadband high-performance polarizing beam splitter on silicon,” Opt. Express 25(6), 6069–6075 (2017).
[Crossref] [PubMed]

2016 (5)

S. Chen, Y. Shi, S. He, and D. Dai, “Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers,” Opt. Lett. 41(4), 836–839 (2016).
[Crossref] [PubMed]

K. J. Park, K. Y. Song, Y. K. Kim, J. H. Lee, and B. Y. Kim, “Broadband mode division multiplexer using all-fiber mode selective couplers,” Opt. Express 24(4), 3543–3549 (2016).
[Crossref] [PubMed]

S. Soudi and B. M. A. Rahman, “Design of a compact polarization splitter by using identical coupled silicon nanowires,” J. Lightwave Technol. 34(17), 4169–4177 (2016).
[Crossref]

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18(10), 104001 (2016).
[Crossref]

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (4)

2012 (2)

R. Menchon-Enrich, A. Llobera, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Adiabatic passage of light in CMOS-compatible silicon oxide integrated rib waveguides,” IEEE Photonics Technol. Lett. 24(7), 536–538 (2012).
[Crossref]

W. Ueno, F. Kaneda, H. Suzuki, S. Nagano, A. Syouji, R. Shimizu, K. Suizu, and K. Edamatsu, “Entangled photon generation in two-period quasi-phase-matched parametric down-conversion,” Opt. Express 20(5), 5508–5517 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (1)

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

2008 (2)

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92(1), 011106 (2008).
[Crossref]

2007 (3)

2006 (1)

S. Longhi, “Adiabatic passage of light in coupled optical waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2 Pt 2), 026607 (2006).
[Crossref] [PubMed]

2005 (2)

W. H. Hsu, K. C. Lin, J. Y. Li, Y. S. Wu, and W. S. Wang, “Polarization splitter with variable TE-TM mode converter using Zn and Ni codiffused LiNbO3 waveguides,” IEEE J. Sel. Top. Quantum Electron. 11(1), 271–277 (2005).
[Crossref]

M. Olivero and M. Svalgaard, “Direct UV-written broadband directional planar waveguide couplers,” Opt. Express 13(21), 8390–8399 (2005).
[Crossref] [PubMed]

2004 (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Stat. Sol. A. 201(2), 253–283 (2004).

2002 (1)

1998 (2)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70(3), 1003–1025 (1998).
[Crossref]

N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D 4(1), 15–29 (1998).
[Crossref]

1991 (2)

J. J. G. M. van der Tol and J. H. Laarhuis, “A polarization splitter on LiNbO3 using only titanium diffusion,” J. Lightwave Technol. 9(7), 879–886 (1991).
[Crossref]

H. C. Cheng and R. V. Ramaswamy, “Symmetrical directional coupler as a wavelength multiplexer-demultiplexer: theory and experiment,” IEEE J. Quantum Electron. 27(3), 567–574 (1991).
[Crossref]

1989 (1)

N. Goto and G. L. Yip, “A TE-TM mode splitter in LiNbO3 by proton exchange and Ti diffusion,” J. Lightwave Technol. 7(10), 1567–1574 (1989).
[Crossref]

1987 (2)

K. Habara, “LiNbO3 directional-coupler polarisation splitter,” Electron. Lett. 23(12), 614–616 (1987).
[Crossref]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

1985 (1)

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. 3(2), 385–391 (1985).
[Crossref]

1981 (1)

Ahlrichs, A.

T. Kroh, A. Ahlrichs, B. Sprenger, and O. Benson, “Heralded wave packet manipulation and storage of a frequency converted pair photon at telecom wavelength,” Quantum Sci. Technol. 2(3), 034007 (2017).
[Crossref]

Ahufinger, V.

R. Menchon-Enrich, A. Llobera, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Adiabatic passage of light in CMOS-compatible silicon oxide integrated rib waveguides,” IEEE Photonics Technol. Lett. 24(7), 536–538 (2012).
[Crossref]

Alibart, O.

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18(10), 104001 (2016).
[Crossref]

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Ang, T. Y. L.

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband Silicon-On-Insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Rep. 7(1), 7246 (2017).
[Crossref] [PubMed]

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Stat. Sol. A. 201(2), 253–283 (2004).

Bazzan, M.

M. Bazzan and C. Sada, “Optical waveguides in lithium niobate: Recent developments and applications,” Appl. Phys. Rev. 2(4), 040603 (2015).
[Crossref]

Benson, O.

T. Kroh, A. Ahlrichs, B. Sprenger, and O. Benson, “Heralded wave packet manipulation and storage of a frequency converted pair photon at telecom wavelength,” Quantum Sci. Technol. 2(3), 034007 (2017).
[Crossref]

Bergmann, K.

N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D 4(1), 15–29 (1998).
[Crossref]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70(3), 1003–1025 (1998).
[Crossref]

Boes, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

A. S. Solntsev, T. Liu, A. Boes, T. G. Nguyen, C. W. Wu, F. Setzpfandt, A. Mitchell, D. N. Neshev, and A. A. Sukhorukov, “Towards on-chip photon-pair bell tests: Spatial pump filtering in a LiNbO3 adiabatic coupler,” Appl. Phys. Lett. 111(26), 261108 (2017).
[Crossref]

Bogdanov, S.

Boltasseva, A.

Bowers, J.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Bowers, J. E.

Büchter, D.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Cadarso, V. J.

R. Menchon-Enrich, A. Llobera, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Adiabatic passage of light in CMOS-compatible silicon oxide integrated rib waveguides,” IEEE Photonics Technol. Lett. 24(7), 536–538 (2012).
[Crossref]

Cao, Y.

Y. Cao, Y. H. Li, W. J. Zou, Z. P. Li, Q. Shen, S. K. Liao, J. G. Ren, J. Yin, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Bell test over extremely high-loss channels: towards distributing entangled photon pairs between earth and the moon,” Phys. Rev. Lett. 120(14), 140405 (2018).
[Crossref] [PubMed]

Chang, C. L.

Chang, J. Y.

Chang, L.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Chang, W. K.

Chen, G. F. R.

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband Silicon-On-Insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Rep. 7(1), 7246 (2017).
[Crossref] [PubMed]

Chen, S.

Chen, X.

Chen, X.-D.

Chen, Y. A.

Y. Cao, Y. H. Li, W. J. Zou, Z. P. Li, Q. Shen, S. K. Liao, J. G. Ren, J. Yin, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Bell test over extremely high-loss channels: towards distributing entangled photon pairs between earth and the moon,” Phys. Rev. Lett. 120(14), 140405 (2018).
[Crossref] [PubMed]

Chen, Y. H.

K. Wang, J. G. Titchener, S. S. Kruk, L. Xu, H. P. Chung, M. Parry, I. I. Kravchenko, Y. H. Chen, A. S. Solntsev, Y. S. Kivshar, D. N. Neshev, and A. A. Sukhorukov, “Quantum metasurface for multiphoton interference and state reconstruction,” Science 361(6407), 1104–1108 (2018).
[Crossref] [PubMed]

H. P. Chung, K. H. Huang, K. Wang, S. L. Yang, S. Y. Yang, C. I. Sung, A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, and Y. H. Chen, “Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation,” Sci. Rep. 7(1), 16841 (2017).
[Crossref] [PubMed]

H. P. Chung, K. H. Huang, S. L. Yang, W. K. Chang, C. W. Wu, F. Setzpfandt, T. Pertsch, D. N. Neshev, and Y. H. Chen, “Adiabatic light transfer in titanium diffused lithium niobate waveguides,” Opt. Express 23(24), 30641–30650 (2015).
[Crossref] [PubMed]

C. H. Lin, Y. H. Chen, S. W. Lin, C. L. Chang, Y. C. Huang, and J. Y. Chang, “Electro-optic narrowband multi-wavelength filter in aperiodically poled lithium niobate,” Opt. Express 15(15), 9859–9866 (2007).
[Crossref] [PubMed]

C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, “Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter,” Opt. Express 15(5), 2548–2554 (2007).
[Crossref] [PubMed]

Cheng, H. C.

H. C. Cheng and R. V. Ramaswamy, “Symmetrical directional coupler as a wavelength multiplexer-demultiplexer: theory and experiment,” IEEE J. Quantum Electron. 27(3), 567–574 (1991).
[Crossref]

Chiang, K. S.

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. 3(2), 385–391 (1985).
[Crossref]

Chiu, Y. F.

Chung, H. P.

K. Wang, J. G. Titchener, S. S. Kruk, L. Xu, H. P. Chung, M. Parry, I. I. Kravchenko, Y. H. Chen, A. S. Solntsev, Y. S. Kivshar, D. N. Neshev, and A. A. Sukhorukov, “Quantum metasurface for multiphoton interference and state reconstruction,” Science 361(6407), 1104–1108 (2018).
[Crossref] [PubMed]

H. P. Chung, K. H. Huang, K. Wang, S. L. Yang, S. Y. Yang, C. I. Sung, A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, and Y. H. Chen, “Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation,” Sci. Rep. 7(1), 16841 (2017).
[Crossref] [PubMed]

H. P. Chung, K. H. Huang, S. L. Yang, W. K. Chang, C. W. Wu, F. Setzpfandt, T. Pertsch, D. N. Neshev, and Y. H. Chen, “Adiabatic light transfer in titanium diffused lithium niobate waveguides,” Opt. Express 23(24), 30641–30650 (2015).
[Crossref] [PubMed]

Coppa, A.

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92(1), 011106 (2008).
[Crossref]

Corcoran, B.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Crozier, K. B.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98(15), 151101 (2011).
[Crossref]

Cui, J.-M.

D’Auria, V.

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18(10), 104001 (2016).
[Crossref]

Dai, D.

Dai, D. X.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Dong, C.-H.

Doutre, F.

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18(10), 104001 (2016).
[Crossref]

Edamatsu, K.

Eknoyan, O.

Feng, L. T.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Fernandez, T. T.

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92(1), 011106 (2008).
[Crossref]

Foglietti, V.

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92(1), 011106 (2008).
[Crossref]

Fujii, G.

Gan, F.

Gong, Y. X.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Goto, N.

N. Goto and G. L. Yip, “A TE-TM mode splitter in LiNbO3 by proton exchange and Ti diffusion,” J. Lightwave Technol. 7(10), 1567–1574 (1989).
[Crossref]

Gräfe, M.

J. G. Titchener, M. Gräfe, R. Heilmann, A. S. Solntsev, A. Szameit, and A. A. Sukhorukov, “Scalable on-chip quantum state tomography,” Quantum Inf. 4, 19 (2018).

Grundkötter, W.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Gu, D.

Guo, G. C.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Guo, G. P.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Guo, G.-C.

Habara, K.

K. Habara, “LiNbO3 directional-coupler polarisation splitter,” Electron. Lett. 23(12), 614–616 (1987).
[Crossref]

Han, Z.-F.

He, S.

Heilmann, R.

J. G. Titchener, M. Gräfe, R. Heilmann, A. S. Solntsev, A. Szameit, and A. A. Sukhorukov, “Scalable on-chip quantum state tomography,” Quantum Inf. 4, 19 (2018).

Herrmann, H.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

Hsu, W. H.

W. H. Hsu, K. C. Lin, J. Y. Li, Y. S. Wu, and W. S. Wang, “Polarization splitter with variable TE-TM mode converter using Zn and Ni codiffused LiNbO3 waveguides,” IEEE J. Sel. Top. Quantum Electron. 11(1), 271–277 (2005).
[Crossref]

Hu, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Hu, J.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98(15), 151101 (2011).
[Crossref]

Huang, C. Y.

Huang, G.

G. Huang, T. H. Park, and M. C. Oh, “Broadband integrated optic polarization splitters by incorporating polarization mode extracting waveguide,” Sci. Rep. 7(1), 4789 (2017).
[Crossref] [PubMed]

Huang, K. H.

H. P. Chung, K. H. Huang, K. Wang, S. L. Yang, S. Y. Yang, C. I. Sung, A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, and Y. H. Chen, “Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation,” Sci. Rep. 7(1), 16841 (2017).
[Crossref] [PubMed]

H. P. Chung, K. H. Huang, S. L. Yang, W. K. Chang, C. W. Wu, F. Setzpfandt, T. Pertsch, D. N. Neshev, and Y. H. Chen, “Adiabatic light transfer in titanium diffused lithium niobate waveguides,” Opt. Express 23(24), 30641–30650 (2015).
[Crossref] [PubMed]

Huang, Y. C.

Inoue, S.

Issautier, A.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Jin, H.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Kaiser, F.

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18(10), 104001 (2016).
[Crossref]

Kaneda, F.

Kim, B. Y.

Kim, Y. K.

Kivshar, Y. S.

K. Wang, J. G. Titchener, S. S. Kruk, L. Xu, H. P. Chung, M. Parry, I. I. Kravchenko, Y. H. Chen, A. S. Solntsev, Y. S. Kivshar, D. N. Neshev, and A. A. Sukhorukov, “Quantum metasurface for multiphoton interference and state reconstruction,” Science 361(6407), 1104–1108 (2018).
[Crossref] [PubMed]

Kravchenko, I. I.

K. Wang, J. G. Titchener, S. S. Kruk, L. Xu, H. P. Chung, M. Parry, I. I. Kravchenko, Y. H. Chen, A. S. Solntsev, Y. S. Kivshar, D. N. Neshev, and A. A. Sukhorukov, “Quantum metasurface for multiphoton interference and state reconstruction,” Science 361(6407), 1104–1108 (2018).
[Crossref] [PubMed]

Kroh, T.

T. Kroh, A. Ahlrichs, B. Sprenger, and O. Benson, “Heralded wave packet manipulation and storage of a frequency converted pair photon at telecom wavelength,” Quantum Sci. Technol. 2(3), 034007 (2017).
[Crossref]

Kruk, S. S.

K. Wang, J. G. Titchener, S. S. Kruk, L. Xu, H. P. Chung, M. Parry, I. I. Kravchenko, Y. H. Chen, A. S. Solntsev, Y. S. Kivshar, D. N. Neshev, and A. A. Sukhorukov, “Quantum metasurface for multiphoton interference and state reconstruction,” Science 361(6407), 1104–1108 (2018).
[Crossref] [PubMed]

Kurimura, S.

Laarhuis, J. H.

J. J. G. M. van der Tol and J. H. Laarhuis, “A polarization splitter on LiNbO3 using only titanium diffusion,” J. Lightwave Technol. 9(7), 879–886 (1991).
[Crossref]

Labonté, L.

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18(10), 104001 (2016).
[Crossref]

Lagasse, P. E.

Laporta, P.

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92(1), 011106 (2008).
[Crossref]

Lee, J. H.

Li, J. Y.

W. H. Hsu, K. C. Lin, J. Y. Li, Y. S. Wu, and W. S. Wang, “Polarization splitter with variable TE-TM mode converter using Zn and Ni codiffused LiNbO3 waveguides,” IEEE J. Sel. Top. Quantum Electron. 11(1), 271–277 (2005).
[Crossref]

Li, M.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Li, W.

Li, Y. H.

Y. Cao, Y. H. Li, W. J. Zou, Z. P. Li, Q. Shen, S. K. Liao, J. G. Ren, J. Yin, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Bell test over extremely high-loss channels: towards distributing entangled photon pairs between earth and the moon,” Phys. Rev. Lett. 120(14), 140405 (2018).
[Crossref] [PubMed]

Li, Z. P.

Y. Cao, Y. H. Li, W. J. Zou, Z. P. Li, Q. Shen, S. K. Liao, J. G. Ren, J. Yin, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Bell test over extremely high-loss channels: towards distributing entangled photon pairs between earth and the moon,” Phys. Rev. Lett. 120(14), 140405 (2018).
[Crossref] [PubMed]

Liao, S. K.

Y. Cao, Y. H. Li, W. J. Zou, Z. P. Li, Q. Shen, S. K. Liao, J. G. Ren, J. Yin, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Bell test over extremely high-loss channels: towards distributing entangled photon pairs between earth and the moon,” Phys. Rev. Lett. 120(14), 140405 (2018).
[Crossref] [PubMed]

Lim, S. T.

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband Silicon-On-Insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Rep. 7(1), 7246 (2017).
[Crossref] [PubMed]

Lin, C. H.

Lin, K. C.

W. H. Hsu, K. C. Lin, J. Y. Li, Y. S. Wu, and W. S. Wang, “Polarization splitter with variable TE-TM mode converter using Zn and Ni codiffused LiNbO3 waveguides,” IEEE J. Sel. Top. Quantum Electron. 11(1), 271–277 (2005).
[Crossref]

Lin, S.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98(15), 151101 (2011).
[Crossref]

Lin, S. W.

Liu, F. M.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Liu, T.

A. S. Solntsev, T. Liu, A. Boes, T. G. Nguyen, C. W. Wu, F. Setzpfandt, A. Mitchell, D. N. Neshev, and A. A. Sukhorukov, “Towards on-chip photon-pair bell tests: Spatial pump filtering in a LiNbO3 adiabatic coupler,” Appl. Phys. Lett. 111(26), 261108 (2017).
[Crossref]

Llobera, A.

R. Menchon-Enrich, A. Llobera, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Adiabatic passage of light in CMOS-compatible silicon oxide integrated rib waveguides,” IEEE Photonics Technol. Lett. 24(7), 536–538 (2012).
[Crossref]

Longhi, S.

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92(1), 011106 (2008).
[Crossref]

S. Longhi, “Adiabatic passage of light in coupled optical waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2 Pt 2), 026607 (2006).
[Crossref] [PubMed]

Lunghi, T.

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18(10), 104001 (2016).
[Crossref]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

Martin, A.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Menchon-Enrich, R.

R. Menchon-Enrich, A. Llobera, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Adiabatic passage of light in CMOS-compatible silicon oxide integrated rib waveguides,” IEEE Photonics Technol. Lett. 24(7), 536–538 (2012).
[Crossref]

Micheli, M. D.

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18(10), 104001 (2016).
[Crossref]

Min, Y.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Mitchell, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

A. S. Solntsev, T. Liu, A. Boes, T. G. Nguyen, C. W. Wu, F. Setzpfandt, A. Mitchell, D. N. Neshev, and A. A. Sukhorukov, “Towards on-chip photon-pair bell tests: Spatial pump filtering in a LiNbO3 adiabatic coupler,” Appl. Phys. Lett. 111(26), 261108 (2017).
[Crossref]

Mompart, J.

R. Menchon-Enrich, A. Llobera, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Adiabatic passage of light in CMOS-compatible silicon oxide integrated rib waveguides,” IEEE Photonics Technol. Lett. 24(7), 536–538 (2012).
[Crossref]

Motoya, M.

Nagano, S.

Namekata, N.

Neshev, D. N.

K. Wang, J. G. Titchener, S. S. Kruk, L. Xu, H. P. Chung, M. Parry, I. I. Kravchenko, Y. H. Chen, A. S. Solntsev, Y. S. Kivshar, D. N. Neshev, and A. A. Sukhorukov, “Quantum metasurface for multiphoton interference and state reconstruction,” Science 361(6407), 1104–1108 (2018).
[Crossref] [PubMed]

A. S. Solntsev, T. Liu, A. Boes, T. G. Nguyen, C. W. Wu, F. Setzpfandt, A. Mitchell, D. N. Neshev, and A. A. Sukhorukov, “Towards on-chip photon-pair bell tests: Spatial pump filtering in a LiNbO3 adiabatic coupler,” Appl. Phys. Lett. 111(26), 261108 (2017).
[Crossref]

H. P. Chung, K. H. Huang, K. Wang, S. L. Yang, S. Y. Yang, C. I. Sung, A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, and Y. H. Chen, “Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation,” Sci. Rep. 7(1), 16841 (2017).
[Crossref] [PubMed]

H. P. Chung, K. H. Huang, S. L. Yang, W. K. Chang, C. W. Wu, F. Setzpfandt, T. Pertsch, D. N. Neshev, and Y. H. Chen, “Adiabatic light transfer in titanium diffused lithium niobate waveguides,” Opt. Express 23(24), 30641–30650 (2015).
[Crossref] [PubMed]

C. W. Wu, A. S. Solntsev, D. N. Neshev, and A. A. Sukhorukov, “Photon pair generation and pump filtering in nonlinear adiabatic waveguiding structures,” Opt. Lett. 39(4), 953–956 (2014).
[Crossref] [PubMed]

Nguyen, T. G.

A. S. Solntsev, T. Liu, A. Boes, T. G. Nguyen, C. W. Wu, F. Setzpfandt, A. Mitchell, D. N. Neshev, and A. A. Sukhorukov, “Towards on-chip photon-pair bell tests: Spatial pump filtering in a LiNbO3 adiabatic coupler,” Appl. Phys. Lett. 111(26), 261108 (2017).
[Crossref]

Niu, B.

Nouroozi, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Oh, M. C.

G. Huang, T. H. Park, and M. C. Oh, “Broadband integrated optic polarization splitters by incorporating polarization mode extracting waveguide,” Sci. Rep. 7(1), 4789 (2017).
[Crossref] [PubMed]

Olivero, M.

Ong, J. R.

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband Silicon-On-Insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Rep. 7(1), 7246 (2017).
[Crossref] [PubMed]

Orlov, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Ornigotti, M.

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92(1), 011106 (2008).
[Crossref]

Ostrowsky, D. B.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

Pan, J. W.

Y. Cao, Y. H. Li, W. J. Zou, Z. P. Li, Q. Shen, S. K. Liao, J. G. Ren, J. Yin, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Bell test over extremely high-loss channels: towards distributing entangled photon pairs between earth and the moon,” Phys. Rev. Lett. 120(14), 140405 (2018).
[Crossref] [PubMed]

Park, K. J.

Park, T. H.

G. Huang, T. H. Park, and M. C. Oh, “Broadband integrated optic polarization splitters by incorporating polarization mode extracting waveguide,” Sci. Rep. 7(1), 4789 (2017).
[Crossref] [PubMed]

Parry, M.

K. Wang, J. G. Titchener, S. S. Kruk, L. Xu, H. P. Chung, M. Parry, I. I. Kravchenko, Y. H. Chen, A. S. Solntsev, Y. S. Kivshar, D. N. Neshev, and A. A. Sukhorukov, “Quantum metasurface for multiphoton interference and state reconstruction,” Science 361(6407), 1104–1108 (2018).
[Crossref] [PubMed]

Peng, C. Z.

Y. Cao, Y. H. Li, W. J. Zou, Z. P. Li, Q. Shen, S. K. Liao, J. G. Ren, J. Yin, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Bell test over extremely high-loss channels: towards distributing entangled photon pairs between earth and the moon,” Phys. Rev. Lett. 120(14), 140405 (2018).
[Crossref] [PubMed]

Pertsch, T.

Picholle, É.

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18(10), 104001 (2016).
[Crossref]

Png, C. E.

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband Silicon-On-Insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Rep. 7(1), 7246 (2017).
[Crossref] [PubMed]

Qi, M.

Quiring, V.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Rahman, B. M. A.

Ramaswamy, R. V.

H. C. Cheng and R. V. Ramaswamy, “Symmetrical directional coupler as a wavelength multiplexer-demultiplexer: theory and experiment,” IEEE J. Quantum Electron. 27(3), 567–574 (1991).
[Crossref]

Ren, J. G.

Y. Cao, Y. H. Li, W. J. Zou, Z. P. Li, Q. Shen, S. K. Liao, J. G. Ren, J. Yin, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Bell test over extremely high-loss channels: towards distributing entangled photon pairs between earth and the moon,” Phys. Rev. Lett. 120(14), 140405 (2018).
[Crossref] [PubMed]

Ren, X. F.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Ren, X.-F.

Reza, S.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Ricken, R.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Sada, C.

M. Bazzan and C. Sada, “Optical waveguides in lithium niobate: Recent developments and applications,” Appl. Phys. Rev. 2(4), 040603 (2015).
[Crossref]

Setzpfandt, F.

A. S. Solntsev, T. Liu, A. Boes, T. G. Nguyen, C. W. Wu, F. Setzpfandt, A. Mitchell, D. N. Neshev, and A. A. Sukhorukov, “Towards on-chip photon-pair bell tests: Spatial pump filtering in a LiNbO3 adiabatic coupler,” Appl. Phys. Lett. 111(26), 261108 (2017).
[Crossref]

H. P. Chung, K. H. Huang, S. L. Yang, W. K. Chang, C. W. Wu, F. Setzpfandt, T. Pertsch, D. N. Neshev, and Y. H. Chen, “Adiabatic light transfer in titanium diffused lithium niobate waveguides,” Opt. Express 23(24), 30641–30650 (2015).
[Crossref] [PubMed]

Shalaev, V. M.

Shalaginov, M. Y.

Shen, Q.

Y. Cao, Y. H. Li, W. J. Zou, Z. P. Li, Q. Shen, S. K. Liao, J. G. Ren, J. Yin, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Bell test over extremely high-loss channels: towards distributing entangled photon pairs between earth and the moon,” Phys. Rev. Lett. 120(14), 140405 (2018).
[Crossref] [PubMed]

Sheng, Z.

Shi, B. S.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Shi, Y.

Shimizu, R.

Shore, B. W.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70(3), 1003–1025 (1998).
[Crossref]

N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D 4(1), 15–29 (1998).
[Crossref]

Sohler, W.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Solntsev, A. S.

J. G. Titchener, M. Gräfe, R. Heilmann, A. S. Solntsev, A. Szameit, and A. A. Sukhorukov, “Scalable on-chip quantum state tomography,” Quantum Inf. 4, 19 (2018).

K. Wang, J. G. Titchener, S. S. Kruk, L. Xu, H. P. Chung, M. Parry, I. I. Kravchenko, Y. H. Chen, A. S. Solntsev, Y. S. Kivshar, D. N. Neshev, and A. A. Sukhorukov, “Quantum metasurface for multiphoton interference and state reconstruction,” Science 361(6407), 1104–1108 (2018).
[Crossref] [PubMed]

A. S. Solntsev, T. Liu, A. Boes, T. G. Nguyen, C. W. Wu, F. Setzpfandt, A. Mitchell, D. N. Neshev, and A. A. Sukhorukov, “Towards on-chip photon-pair bell tests: Spatial pump filtering in a LiNbO3 adiabatic coupler,” Appl. Phys. Lett. 111(26), 261108 (2017).
[Crossref]

H. P. Chung, K. H. Huang, K. Wang, S. L. Yang, S. Y. Yang, C. I. Sung, A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, and Y. H. Chen, “Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation,” Sci. Rep. 7(1), 16841 (2017).
[Crossref] [PubMed]

C. W. Wu, A. S. Solntsev, D. N. Neshev, and A. A. Sukhorukov, “Photon pair generation and pump filtering in nonlinear adiabatic waveguiding structures,” Opt. Lett. 39(4), 953–956 (2014).
[Crossref] [PubMed]

Song, K. Y.

Soudi, S.

Sprenger, B.

T. Kroh, A. Ahlrichs, B. Sprenger, and O. Benson, “Heralded wave packet manipulation and storage of a frequency converted pair photon at telecom wavelength,” Quantum Sci. Technol. 2(3), 034007 (2017).
[Crossref]

Suche, H.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Suizu, K.

Sukhorukov, A. A.

K. Wang, J. G. Titchener, S. S. Kruk, L. Xu, H. P. Chung, M. Parry, I. I. Kravchenko, Y. H. Chen, A. S. Solntsev, Y. S. Kivshar, D. N. Neshev, and A. A. Sukhorukov, “Quantum metasurface for multiphoton interference and state reconstruction,” Science 361(6407), 1104–1108 (2018).
[Crossref] [PubMed]

J. G. Titchener, M. Gräfe, R. Heilmann, A. S. Solntsev, A. Szameit, and A. A. Sukhorukov, “Scalable on-chip quantum state tomography,” Quantum Inf. 4, 19 (2018).

A. S. Solntsev, T. Liu, A. Boes, T. G. Nguyen, C. W. Wu, F. Setzpfandt, A. Mitchell, D. N. Neshev, and A. A. Sukhorukov, “Towards on-chip photon-pair bell tests: Spatial pump filtering in a LiNbO3 adiabatic coupler,” Appl. Phys. Lett. 111(26), 261108 (2017).
[Crossref]

H. P. Chung, K. H. Huang, K. Wang, S. L. Yang, S. Y. Yang, C. I. Sung, A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, and Y. H. Chen, “Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation,” Sci. Rep. 7(1), 16841 (2017).
[Crossref] [PubMed]

C. W. Wu, A. S. Solntsev, D. N. Neshev, and A. A. Sukhorukov, “Photon pair generation and pump filtering in nonlinear adiabatic waveguiding structures,” Opt. Lett. 39(4), 953–956 (2014).
[Crossref] [PubMed]

Sun, F.-W.

Sung, C. I.

H. P. Chung, K. H. Huang, K. Wang, S. L. Yang, S. Y. Yang, C. I. Sung, A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, and Y. H. Chen, “Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation,” Sci. Rep. 7(1), 16841 (2017).
[Crossref] [PubMed]

Suzuki, H.

Svalgaard, M.

Syouji, A.

Szameit, A.

J. G. Titchener, M. Gräfe, R. Heilmann, A. S. Solntsev, A. Szameit, and A. A. Sukhorukov, “Scalable on-chip quantum state tomography,” Quantum Inf. 4, 19 (2018).

Tan, D. T. H.

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband Silicon-On-Insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Rep. 7(1), 7246 (2017).
[Crossref] [PubMed]

Tan, Y.

Tanzilli, S.

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18(10), 104001 (2016).
[Crossref]

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Taylor, H. F.

Theuer, H.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70(3), 1003–1025 (1998).
[Crossref]

Titchener, J. G.

J. G. Titchener, M. Gräfe, R. Heilmann, A. S. Solntsev, A. Szameit, and A. A. Sukhorukov, “Scalable on-chip quantum state tomography,” Quantum Inf. 4, 19 (2018).

K. Wang, J. G. Titchener, S. S. Kruk, L. Xu, H. P. Chung, M. Parry, I. I. Kravchenko, Y. H. Chen, A. S. Solntsev, Y. S. Kivshar, D. N. Neshev, and A. A. Sukhorukov, “Quantum metasurface for multiphoton interference and state reconstruction,” Science 361(6407), 1104–1108 (2018).
[Crossref] [PubMed]

Tseng, S. Y.

Ueno, W.

Valle, G. D.

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92(1), 011106 (2008).
[Crossref]

van der Donk, J.

van der Tol, J. J. G. M.

J. J. G. M. van der Tol and J. H. Laarhuis, “A polarization splitter on LiNbO3 using only titanium diffusion,” J. Lightwave Technol. 9(7), 879–886 (1991).
[Crossref]

Van Roey, J.

Vannahme, C.

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Vitanov, N. V.

N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D 4(1), 15–29 (1998).
[Crossref]

Wang, J.

Wang, K.

K. Wang, J. G. Titchener, S. S. Kruk, L. Xu, H. P. Chung, M. Parry, I. I. Kravchenko, Y. H. Chen, A. S. Solntsev, Y. S. Kivshar, D. N. Neshev, and A. A. Sukhorukov, “Quantum metasurface for multiphoton interference and state reconstruction,” Science 361(6407), 1104–1108 (2018).
[Crossref] [PubMed]

H. P. Chung, K. H. Huang, K. Wang, S. L. Yang, S. Y. Yang, C. I. Sung, A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, and Y. H. Chen, “Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation,” Sci. Rep. 7(1), 16841 (2017).
[Crossref] [PubMed]

Wang, W.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Wang, W. S.

W. H. Hsu, K. C. Lin, J. Y. Li, Y. S. Wu, and W. S. Wang, “Polarization splitter with variable TE-TM mode converter using Zn and Ni codiffused LiNbO3 waveguides,” IEEE J. Sel. Top. Quantum Electron. 11(1), 271–277 (2005).
[Crossref]

Wang, X.

Wen, R. D.

Wu, A.

Wu, C. W.

Wu, H.

Wu, Y. S.

W. H. Hsu, K. C. Lin, J. Y. Li, Y. S. Wu, and W. S. Wang, “Polarization splitter with variable TE-TM mode converter using Zn and Ni codiffused LiNbO3 waveguides,” IEEE J. Sel. Top. Quantum Electron. 11(1), 271–277 (2005).
[Crossref]

Xia, J. L.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Xiong, X.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Xu, L.

K. Wang, J. G. Titchener, S. S. Kruk, L. Xu, H. P. Chung, M. Parry, I. I. Kravchenko, Y. H. Chen, A. S. Solntsev, Y. S. Kivshar, D. N. Neshev, and A. A. Sukhorukov, “Quantum metasurface for multiphoton interference and state reconstruction,” Science 361(6407), 1104–1108 (2018).
[Crossref] [PubMed]

Xu, P.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Yang, S. L.

H. P. Chung, K. H. Huang, K. Wang, S. L. Yang, S. Y. Yang, C. I. Sung, A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, and Y. H. Chen, “Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation,” Sci. Rep. 7(1), 16841 (2017).
[Crossref] [PubMed]

H. P. Chung, K. H. Huang, S. L. Yang, W. K. Chang, C. W. Wu, F. Setzpfandt, T. Pertsch, D. N. Neshev, and Y. H. Chen, “Adiabatic light transfer in titanium diffused lithium niobate waveguides,” Opt. Express 23(24), 30641–30650 (2015).
[Crossref] [PubMed]

Yang, S. Y.

H. P. Chung, K. H. Huang, K. Wang, S. L. Yang, S. Y. Yang, C. I. Sung, A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, and Y. H. Chen, “Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation,” Sci. Rep. 7(1), 16841 (2017).
[Crossref] [PubMed]

Yin, J.

Y. Cao, Y. H. Li, W. J. Zou, Z. P. Li, Q. Shen, S. K. Liao, J. G. Ren, J. Yin, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Bell test over extremely high-loss channels: towards distributing entangled photon pairs between earth and the moon,” Phys. Rev. Lett. 120(14), 140405 (2018).
[Crossref] [PubMed]

Yip, G. L.

N. Goto and G. L. Yip, “A TE-TM mode splitter in LiNbO3 by proton exchange and Ti diffusion,” J. Lightwave Technol. 7(10), 1567–1574 (1989).
[Crossref]

Yu, L.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Yuan, Y.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Zeilinger, A.

A. Zeilinger, “Light for the quantum. Entangled photons and their applications: a very personal perspective,” Phys. Scr. 92(7), 072501 (2017).
[Crossref]

Zhang, M.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Zhong, M. L.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Zhou, J. W.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Zhou, Z. Y.

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

Zhu, S. N.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

Zou, C.-L.

Zou, S.

Zou, W. J.

Y. Cao, Y. H. Li, W. J. Zou, Z. P. Li, Q. Shen, S. K. Liao, J. G. Ren, J. Yin, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Bell test over extremely high-loss channels: towards distributing entangled photon pairs between earth and the moon,” Phys. Rev. Lett. 120(14), 140405 (2018).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

A. S. Solntsev, T. Liu, A. Boes, T. G. Nguyen, C. W. Wu, F. Setzpfandt, A. Mitchell, D. N. Neshev, and A. A. Sukhorukov, “Towards on-chip photon-pair bell tests: Spatial pump filtering in a LiNbO3 adiabatic coupler,” Appl. Phys. Lett. 111(26), 261108 (2017).
[Crossref]

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” Appl. Phys. Lett. 98(15), 151101 (2011).
[Crossref]

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92(1), 011106 (2008).
[Crossref]

Appl. Phys. Rev. (1)

M. Bazzan and C. Sada, “Optical waveguides in lithium niobate: Recent developments and applications,” Appl. Phys. Rev. 2(4), 040603 (2015).
[Crossref]

Electron. Lett. (1)

K. Habara, “LiNbO3 directional-coupler polarisation splitter,” Electron. Lett. 23(12), 614–616 (1987).
[Crossref]

Eur. Phys. J. D (1)

N. V. Vitanov, B. W. Shore, and K. Bergmann, “Adiabatic population transfer in multistate chains via dressed intermediate states,” Eur. Phys. J. D 4(1), 15–29 (1998).
[Crossref]

IEEE J. Quantum Electron. (1)

H. C. Cheng and R. V. Ramaswamy, “Symmetrical directional coupler as a wavelength multiplexer-demultiplexer: theory and experiment,” IEEE J. Quantum Electron. 27(3), 567–574 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. H. Hsu, K. C. Lin, J. Y. Li, Y. S. Wu, and W. S. Wang, “Polarization splitter with variable TE-TM mode converter using Zn and Ni codiffused LiNbO3 waveguides,” IEEE J. Sel. Top. Quantum Electron. 11(1), 271–277 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

R. Menchon-Enrich, A. Llobera, V. J. Cadarso, J. Mompart, and V. Ahufinger, “Adiabatic passage of light in CMOS-compatible silicon oxide integrated rib waveguides,” IEEE Photonics Technol. Lett. 24(7), 536–538 (2012).
[Crossref]

J. Lightwave Technol. (4)

K. S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol. 3(2), 385–391 (1985).
[Crossref]

J. J. G. M. van der Tol and J. H. Laarhuis, “A polarization splitter on LiNbO3 using only titanium diffusion,” J. Lightwave Technol. 9(7), 879–886 (1991).
[Crossref]

N. Goto and G. L. Yip, “A TE-TM mode splitter in LiNbO3 by proton exchange and Ti diffusion,” J. Lightwave Technol. 7(10), 1567–1574 (1989).
[Crossref]

S. Soudi and B. M. A. Rahman, “Design of a compact polarization splitter by using identical coupled silicon nanowires,” J. Lightwave Technol. 34(17), 4169–4177 (2016).
[Crossref]

J. Opt. (1)

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18(10), 104001 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

Laser Photonics Rev. (1)

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).
[Crossref]

Nat. Commun. (1)

L. T. Feng, M. Zhang, Z. Y. Zhou, M. Li, X. Xiong, L. Yu, B. S. Shi, G. P. Guo, D. X. Dai, X. F. Ren, and G. C. Guo, “On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom,” Nat. Commun. 7(1), 11985 (2016).
[Crossref] [PubMed]

New J. Phys. (1)

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Opt. Express (11)

M. Olivero and M. Svalgaard, “Direct UV-written broadband directional planar waveguide couplers,” Opt. Express 13(21), 8390–8399 (2005).
[Crossref] [PubMed]

C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, “Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter,” Opt. Express 15(5), 2548–2554 (2007).
[Crossref] [PubMed]

C. H. Lin, Y. H. Chen, S. W. Lin, C. L. Chang, Y. C. Huang, and J. Y. Chang, “Electro-optic narrowband multi-wavelength filter in aperiodically poled lithium niobate,” Opt. Express 15(15), 9859–9866 (2007).
[Crossref] [PubMed]

G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15(20), 12769–12776 (2007).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express 19(19), 18614–18620 (2011).
[Crossref] [PubMed]

K. J. Park, K. Y. Song, Y. K. Kim, J. H. Lee, and B. Y. Kim, “Broadband mode division multiplexer using all-fiber mode selective couplers,” Opt. Express 24(4), 3543–3549 (2016).
[Crossref] [PubMed]

W. Ueno, F. Kaneda, H. Suzuki, S. Nagano, A. Syouji, R. Shimizu, K. Suizu, and K. Edamatsu, “Entangled photon generation in two-period quasi-phase-matched parametric down-conversion,” Opt. Express 20(5), 5508–5517 (2012).
[Crossref] [PubMed]

J. Wang, B. Niu, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction,” Opt. Express 22(11), 13565–13571 (2014).
[Crossref] [PubMed]

S. Y. Tseng, R. D. Wen, Y. F. Chiu, and X. Chen, “Short and robust directional couplers designed by shortcuts to adiabaticity,” Opt. Express 22(16), 18849–18859 (2014).
[Crossref] [PubMed]

H. P. Chung, K. H. Huang, S. L. Yang, W. K. Chang, C. W. Wu, F. Setzpfandt, T. Pertsch, D. N. Neshev, and Y. H. Chen, “Adiabatic light transfer in titanium diffused lithium niobate waveguides,” Opt. Express 23(24), 30641–30650 (2015).
[Crossref] [PubMed]

H. Wu, Y. Tan, and D. Dai, “Ultra-broadband high-performance polarizing beam splitter on silicon,” Opt. Express 25(6), 6069–6075 (2017).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Mater. Express (1)

Opt. Photonics News (1)

W. Sohler, H. Hu, R. Ricken, V. Quiring, C. Vannahme, H. Herrmann, D. Büchter, S. Reza, W. Grundkötter, S. Orlov, H. Suche, R. Nouroozi, and Y. Min, “Integrated optical devices in lithium niobate,” Opt. Photonics News 19(1), 24–31 (2008).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. Longhi, “Adiabatic passage of light in coupled optical waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2 Pt 2), 026607 (2006).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113(10), 103601 (2014).
[Crossref] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987).
[Crossref] [PubMed]

Y. Cao, Y. H. Li, W. J. Zou, Z. P. Li, Q. Shen, S. K. Liao, J. G. Ren, J. Yin, Y. A. Chen, C. Z. Peng, and J. W. Pan, “Bell test over extremely high-loss channels: towards distributing entangled photon pairs between earth and the moon,” Phys. Rev. Lett. 120(14), 140405 (2018).
[Crossref] [PubMed]

Phys. Scr. (1)

A. Zeilinger, “Light for the quantum. Entangled photons and their applications: a very personal perspective,” Phys. Scr. 92(7), 072501 (2017).
[Crossref]

Phys. Stat. Sol. A. (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Stat. Sol. A. 201(2), 253–283 (2004).

Quantum Inf. (1)

J. G. Titchener, M. Gräfe, R. Heilmann, A. S. Solntsev, A. Szameit, and A. A. Sukhorukov, “Scalable on-chip quantum state tomography,” Quantum Inf. 4, 19 (2018).

Quantum Sci. Technol. (1)

T. Kroh, A. Ahlrichs, B. Sprenger, and O. Benson, “Heralded wave packet manipulation and storage of a frequency converted pair photon at telecom wavelength,” Quantum Sci. Technol. 2(3), 034007 (2017).
[Crossref]

Rev. Mod. Phys. (1)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70(3), 1003–1025 (1998).
[Crossref]

Sci. Rep. (3)

H. P. Chung, K. H. Huang, K. Wang, S. L. Yang, S. Y. Yang, C. I. Sung, A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, and Y. H. Chen, “Asymmetric adiabatic couplers for fully-integrated broadband quantum-polarization state preparation,” Sci. Rep. 7(1), 16841 (2017).
[Crossref] [PubMed]

G. Huang, T. H. Park, and M. C. Oh, “Broadband integrated optic polarization splitters by incorporating polarization mode extracting waveguide,” Sci. Rep. 7(1), 4789 (2017).
[Crossref] [PubMed]

G. F. R. Chen, J. R. Ong, T. Y. L. Ang, S. T. Lim, C. E. Png, and D. T. H. Tan, “Broadband Silicon-On-Insulator directional couplers using a combination of straight and curved waveguide sections,” Sci. Rep. 7(1), 7246 (2017).
[Crossref] [PubMed]

Science (1)

K. Wang, J. G. Titchener, S. S. Kruk, L. Xu, H. P. Chung, M. Parry, I. I. Kravchenko, Y. H. Chen, A. S. Solntsev, Y. S. Kivshar, D. N. Neshev, and A. A. Sukhorukov, “Quantum metasurface for multiphoton interference and state reconstruction,” Science 361(6407), 1104–1108 (2018).
[Crossref] [PubMed]

Other (1)

K. Wang, S. V. Suchkov, J. G. Titchener, A. Szameit, and A. A. Sukhorukov, “In-line detection and reconstruction of multi-photon quantum states,” arXiv:1808.05038.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic configuration of a five-channel-waveguide adiabatic coupler built in Ti:LiNbO3 as a broadband polarization mode splitter. (b) and (c) Simulated evolutions of the wave intensity in such a five-waveguide adiabatic coupler system for TE- and TM-polarized 1550-nm fundamental modes initially excited in waveguide a, respectively.
Fig. 2
Fig. 2 Calculated (a) splitting ratio and (b) PER of the five-waveguide PMS as a function of the excitation wavelength for both TE- and TM-polarized fundamental modes.
Fig. 3
Fig. 3 (a) Schematic of the integrated adiabatic waveguide polarization mode-splitter (IAPMS) device. (b) Simulated evolutions of the wave intensity in the IAPMS for TE (or H)-polarized pump at 775 nm, TM (or V)- and TE (or H)-polarized signal and idler waves at 1550 nm.
Fig. 4
Fig. 4 Schematic of a pump-filtered, broadband tunable Bell-state generator based on the on-chip integration of the IAPMS with a type-II PPLN SPDC pumped by a laser tunable around 775 nm.
Fig. 5
Fig. 5 Calculated splitting ratios obtained from the three output ports Os, Oi, and Op of the IAPMS device and the two arms of a typical heterogeneous Y-branch PMS as a function of the waveguide depth for the input of a 1550-nm TM-polarized wave.
Fig. 6
Fig. 6 Measured and calculated normalized output powers from the three output ports of the LiNbO3 IAPMS as a function of wavelength for (a) TE- and (b) TM-polarized modes.
Fig. 7
Fig. 7 Captured output mode intensity profiles from the device for several different excitation wavelengths.

Tables (2)

Tables Icon

Table 1 Summary of the structure and fabrication parameters of the devices developed in this work and in [27]

Tables Icon

Table 2 Summary of the output characteristics, built-in functions, and range of the quantum photonic applications of the devices studied in this work and in [27]

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

| Ψ ± = 1 2 (| H A (λ)| V B (λ)± e iφ | V A (λ)| H B (λ))
|Ψ= 1 2 (| H λ s | V λ i + e iφ | V λ s | H λ i )
|Ψ= 1 2 (| H λ s | H λ i + e iφ | V λ s | V λ i )

Metrics