Abstract

The present article is dedicated to the problem of computer-generated holograms application for measurement of optical wavefront curvature with high precision. A holographic wavefront sensor scheme based on a phase-only spatial light modulator, which is used for CGH displaying, is proposed. The presented optical scheme and processing algorithm are validated with numerical simulations and experimental modelling.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
New perspectives in face correlation research: a tutorial

Q. Wang, A. Alfalou, and C. Brosseau
Adv. Opt. Photon. 9(1) 1-78 (2017)

Experimental validation of LIFT for estimation of low-order modes in low-flux wavefront sensing

C. Plantet, S. Meimon, J.-M. Conan, and T. Fusco
Opt. Express 21(14) 16337-16352 (2013)

Spatial light modulator phase mask implementation of wavefront encoded 3D computational-optical microscopy

Sharon V. King, Ana Doblas, Nurmohammed Patwary, Genaro Saavedra, Manuel Martínez-Corral, and Chrysanthe Preza
Appl. Opt. 54(29) 8587-8595 (2015)

References

  • View by:
  • |
  • |
  • |

  1. V. Laude, S. Olivier, C. Dirson, and J.-P. Huignard, “Hartmann wave-front scanner,” Optics Letters,  24, 1796–1798 (1999).
    [Crossref]
  2. B. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” Journal of Refractive Surgery,  17, S573–S577 (2001).
    [Crossref] [PubMed]
  3. B. Pathak and B. R. Boruah, “Improvement in error propagation in the Shack–Hartmann-type zonal wavefront sensors,” J. Opt. Soc. Am. A 34, 2194–2202 (2017).
    [Crossref]
  4. J. Ko and C. C. Davis, “Comparison of the plenoptic sensor and the Shack–Hartmann sensor,” Applied Optics 56, 3689–3698 (2017).
    [Crossref]
  5. F. Xia, D. Sinefeld, B. Li, and C. Xu, “Two-photon Shack–Hartmann wavefront sensor,” Optics Letters 42, 1141–1144 (2017).
    [Crossref]
  6. Z. Li and X. Li, “Fundamental performance of transverse wind estimator from Shack-Hartmann wave-front sensor measurements,” Opt. Express 26, 11859–11876 (2018).
    [Crossref] [PubMed]
  7. B. Dong and M. J. Booth, “Wavefront control in adaptive microscopy using Shack-Hartmann sensors with arbitrarily shaped pupils,” Opt. Express 26, 1655–1669 (2018).
    [Crossref] [PubMed]
  8. P. M. Palomo, A. Zepp, and S. Gladysz, “Characterization of the digital holographic wavefront sensor,” Proceedings of SPIE 9242, 92421T (2014).
    [Crossref]
  9. A. G. Poleshchuk, A. G. Sedukhin, V. I. Trunov, and V. G. Maksimov, “Hartmann wavefront sensor based on multielement amplitude masks with apodized apertures,” Computer Optics 38(4), 695–703 (2014).
    [Crossref]
  10. S. Konwar and B. R. Boruah, “Estimation of inter-modal cross talk in a modal wavefront sensor,” OSA Continuum,  1, 78–91 (2018).
    [Crossref]
  11. G. Andersen, F. Ghebremichael, and K. Gurley, “Holographic Wavefront Sensor – Fast Sensing, No Computing,” Proceedings of SPIE,  6488, 64880I (2007).
    [Crossref]
  12. G. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, “Holographic wavefront sensor,” Optical Engineering,  48, 085801 (2009).
    [Crossref]
  13. S. Dong, T. Haist, W. Osten, T. Ruppel, and O. Sawodny, “Response analysis of holography-based modal wavefront sensor,” Applied Optics,  51, 1318–1327 (2012).
    [Crossref] [PubMed]
  14. A. Zepp, S. Gładysz, and K. Stein, “Holographic wavefront sensor for fast defocus measurement,” Advanced Optical Technologies,  2(5–6), 433–437 (2013).
    [Crossref]
  15. P. M. Palomo, A. Zepp, and S. Gładysz, “Digital holographic wavefront sensor,” Imaging and Applied Optics, OSA Technical Digest, AOT2D.1 (2015).
  16. E. Anzuola, A. Zepp, S. Gładysz, and K. Stein, “Holographic wavefront sensor based on Karhunen-Loève decomposition,” Proceedings of SPIE,  9979, 99790X (2016).
    [Crossref]
  17. F. Kong and A. Lambert, “Improvements to the modal holographic wavefront sensor,” Applied Optics,  55, 3615–3625 (2016).
    [Crossref] [PubMed]
  18. W. J. Dallas, “Computer-generated holograms,” in The Computer in Optical Research, B. R. Frieden, ed. (Springer, 2005), pp. 291–366.
  19. W. J. Dallas, “Computer-generated holograms,” in Digital Holography and Three-Dimensional Display, T.-C. Poon, ed. (Springer, 2006), pp. 1–49.
  20. S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Applied Optics,  48, 6458–6465 (2009).
    [Crossref] [PubMed]
  21. B. Kodatskiy, M. Kovalev, P. Malinina, S. Odinokov, M. Soloviev, and V. Venediktov, “Fourier holography in holographic optical sensors,” Proceedings of SPIE,  10002, 100020K (2016).
    [Crossref]
  22. A. Gorelaya, M. Kovalev, P. Malinina, S. Odinokov, M. Soloviev, A. Sevryugin, and V. Venediktov, “Advanced holographic wavefront sensor,” Proceedings of SPIE,  10233, 102330Z (2017).
    [Crossref]
  23. V. I. Bobrinev, M. L. Galkin, M. S. Kovalev, P. I. Malinina, and S. B. Odinokov, “Investigation of computer-generated Fresnel holograms for wavefront sensors,” Optoelectronics, Instrumentation and Data Processing 54(1), 26–31 (2018).
    [Crossref]
  24. M. S. Kovalev, G. K. Krasin, S. B. Odinokov, A. B. Solomashenko, and V. Y. Venediktov, “Hologram filters in adaptive optics problems,” 2018 International Conference of Laser Optics (ICLO), St. Petersburg (2018).
  25. G. K. Krasin, D. S. Lushnikov, S. B. Odinokov, A. B. Solomashenko, V. Yu. Venediktov, and E. Yu. Zlokazov, “Wavefront sensor with hologram filters in the problem of measuring phase distortions of laser radiation,” Proceedings of SPIE,  10787, 107870D (2018).
  26. J. W. Goodman, Introduction to Fourier Optics (Englewood Colorado: Roberts & Co, 2005).
  27. B. Kumar, A. Mahalanobis, and R. Juday, Correlation Pattern Recognition(Cambridge University, 2015).

2018 (5)

Z. Li and X. Li, “Fundamental performance of transverse wind estimator from Shack-Hartmann wave-front sensor measurements,” Opt. Express 26, 11859–11876 (2018).
[Crossref] [PubMed]

B. Dong and M. J. Booth, “Wavefront control in adaptive microscopy using Shack-Hartmann sensors with arbitrarily shaped pupils,” Opt. Express 26, 1655–1669 (2018).
[Crossref] [PubMed]

S. Konwar and B. R. Boruah, “Estimation of inter-modal cross talk in a modal wavefront sensor,” OSA Continuum,  1, 78–91 (2018).
[Crossref]

V. I. Bobrinev, M. L. Galkin, M. S. Kovalev, P. I. Malinina, and S. B. Odinokov, “Investigation of computer-generated Fresnel holograms for wavefront sensors,” Optoelectronics, Instrumentation and Data Processing 54(1), 26–31 (2018).
[Crossref]

G. K. Krasin, D. S. Lushnikov, S. B. Odinokov, A. B. Solomashenko, V. Yu. Venediktov, and E. Yu. Zlokazov, “Wavefront sensor with hologram filters in the problem of measuring phase distortions of laser radiation,” Proceedings of SPIE,  10787, 107870D (2018).

2017 (4)

A. Gorelaya, M. Kovalev, P. Malinina, S. Odinokov, M. Soloviev, A. Sevryugin, and V. Venediktov, “Advanced holographic wavefront sensor,” Proceedings of SPIE,  10233, 102330Z (2017).
[Crossref]

B. Pathak and B. R. Boruah, “Improvement in error propagation in the Shack–Hartmann-type zonal wavefront sensors,” J. Opt. Soc. Am. A 34, 2194–2202 (2017).
[Crossref]

J. Ko and C. C. Davis, “Comparison of the plenoptic sensor and the Shack–Hartmann sensor,” Applied Optics 56, 3689–3698 (2017).
[Crossref]

F. Xia, D. Sinefeld, B. Li, and C. Xu, “Two-photon Shack–Hartmann wavefront sensor,” Optics Letters 42, 1141–1144 (2017).
[Crossref]

2016 (3)

E. Anzuola, A. Zepp, S. Gładysz, and K. Stein, “Holographic wavefront sensor based on Karhunen-Loève decomposition,” Proceedings of SPIE,  9979, 99790X (2016).
[Crossref]

F. Kong and A. Lambert, “Improvements to the modal holographic wavefront sensor,” Applied Optics,  55, 3615–3625 (2016).
[Crossref] [PubMed]

B. Kodatskiy, M. Kovalev, P. Malinina, S. Odinokov, M. Soloviev, and V. Venediktov, “Fourier holography in holographic optical sensors,” Proceedings of SPIE,  10002, 100020K (2016).
[Crossref]

2014 (2)

P. M. Palomo, A. Zepp, and S. Gladysz, “Characterization of the digital holographic wavefront sensor,” Proceedings of SPIE 9242, 92421T (2014).
[Crossref]

A. G. Poleshchuk, A. G. Sedukhin, V. I. Trunov, and V. G. Maksimov, “Hartmann wavefront sensor based on multielement amplitude masks with apodized apertures,” Computer Optics 38(4), 695–703 (2014).
[Crossref]

2013 (1)

A. Zepp, S. Gładysz, and K. Stein, “Holographic wavefront sensor for fast defocus measurement,” Advanced Optical Technologies,  2(5–6), 433–437 (2013).
[Crossref]

2012 (1)

S. Dong, T. Haist, W. Osten, T. Ruppel, and O. Sawodny, “Response analysis of holography-based modal wavefront sensor,” Applied Optics,  51, 1318–1327 (2012).
[Crossref] [PubMed]

2009 (2)

G. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, “Holographic wavefront sensor,” Optical Engineering,  48, 085801 (2009).
[Crossref]

S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Applied Optics,  48, 6458–6465 (2009).
[Crossref] [PubMed]

2007 (1)

G. Andersen, F. Ghebremichael, and K. Gurley, “Holographic Wavefront Sensor – Fast Sensing, No Computing,” Proceedings of SPIE,  6488, 64880I (2007).
[Crossref]

2001 (1)

B. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” Journal of Refractive Surgery,  17, S573–S577 (2001).
[Crossref] [PubMed]

1999 (1)

V. Laude, S. Olivier, C. Dirson, and J.-P. Huignard, “Hartmann wave-front scanner,” Optics Letters,  24, 1796–1798 (1999).
[Crossref]

Andersen, G.

G. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, “Holographic wavefront sensor,” Optical Engineering,  48, 085801 (2009).
[Crossref]

G. Andersen, F. Ghebremichael, and K. Gurley, “Holographic Wavefront Sensor – Fast Sensing, No Computing,” Proceedings of SPIE,  6488, 64880I (2007).
[Crossref]

Anzuola, E.

E. Anzuola, A. Zepp, S. Gładysz, and K. Stein, “Holographic wavefront sensor based on Karhunen-Loève decomposition,” Proceedings of SPIE,  9979, 99790X (2016).
[Crossref]

Bhatt, R.

S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Applied Optics,  48, 6458–6465 (2009).
[Crossref] [PubMed]

Bobrinev, V. I.

V. I. Bobrinev, M. L. Galkin, M. S. Kovalev, P. I. Malinina, and S. B. Odinokov, “Investigation of computer-generated Fresnel holograms for wavefront sensors,” Optoelectronics, Instrumentation and Data Processing 54(1), 26–31 (2018).
[Crossref]

Booth, M. J.

Boruah, B. R.

Chen, K.

G. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, “Holographic wavefront sensor,” Optical Engineering,  48, 085801 (2009).
[Crossref]

Dallas, W. J.

W. J. Dallas, “Computer-generated holograms,” in The Computer in Optical Research, B. R. Frieden, ed. (Springer, 2005), pp. 291–366.

W. J. Dallas, “Computer-generated holograms,” in Digital Holography and Three-Dimensional Display, T.-C. Poon, ed. (Springer, 2006), pp. 1–49.

Davis, C. C.

J. Ko and C. C. Davis, “Comparison of the plenoptic sensor and the Shack–Hartmann sensor,” Applied Optics 56, 3689–3698 (2017).
[Crossref]

Dirson, C.

V. Laude, S. Olivier, C. Dirson, and J.-P. Huignard, “Hartmann wave-front scanner,” Optics Letters,  24, 1796–1798 (1999).
[Crossref]

Dong, B.

Dong, S.

S. Dong, T. Haist, W. Osten, T. Ruppel, and O. Sawodny, “Response analysis of holography-based modal wavefront sensor,” Applied Optics,  51, 1318–1327 (2012).
[Crossref] [PubMed]

Dussan, L.

G. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, “Holographic wavefront sensor,” Optical Engineering,  48, 085801 (2009).
[Crossref]

Galkin, M. L.

V. I. Bobrinev, M. L. Galkin, M. S. Kovalev, P. I. Malinina, and S. B. Odinokov, “Investigation of computer-generated Fresnel holograms for wavefront sensors,” Optoelectronics, Instrumentation and Data Processing 54(1), 26–31 (2018).
[Crossref]

Ghebremichael, F.

G. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, “Holographic wavefront sensor,” Optical Engineering,  48, 085801 (2009).
[Crossref]

G. Andersen, F. Ghebremichael, and K. Gurley, “Holographic Wavefront Sensor – Fast Sensing, No Computing,” Proceedings of SPIE,  6488, 64880I (2007).
[Crossref]

Gladysz, S.

E. Anzuola, A. Zepp, S. Gładysz, and K. Stein, “Holographic wavefront sensor based on Karhunen-Loève decomposition,” Proceedings of SPIE,  9979, 99790X (2016).
[Crossref]

P. M. Palomo, A. Zepp, and S. Gladysz, “Characterization of the digital holographic wavefront sensor,” Proceedings of SPIE 9242, 92421T (2014).
[Crossref]

A. Zepp, S. Gładysz, and K. Stein, “Holographic wavefront sensor for fast defocus measurement,” Advanced Optical Technologies,  2(5–6), 433–437 (2013).
[Crossref]

P. M. Palomo, A. Zepp, and S. Gładysz, “Digital holographic wavefront sensor,” Imaging and Applied Optics, OSA Technical Digest, AOT2D.1 (2015).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Englewood Colorado: Roberts & Co, 2005).

Gorelaya, A.

A. Gorelaya, M. Kovalev, P. Malinina, S. Odinokov, M. Soloviev, A. Sevryugin, and V. Venediktov, “Advanced holographic wavefront sensor,” Proceedings of SPIE,  10233, 102330Z (2017).
[Crossref]

Gupta, A. K.

S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Applied Optics,  48, 6458–6465 (2009).
[Crossref] [PubMed]

Gurley, K.

G. Andersen, F. Ghebremichael, and K. Gurley, “Holographic Wavefront Sensor – Fast Sensing, No Computing,” Proceedings of SPIE,  6488, 64880I (2007).
[Crossref]

Haist, T.

S. Dong, T. Haist, W. Osten, T. Ruppel, and O. Sawodny, “Response analysis of holography-based modal wavefront sensor,” Applied Optics,  51, 1318–1327 (2012).
[Crossref] [PubMed]

Huignard, J.-P.

V. Laude, S. Olivier, C. Dirson, and J.-P. Huignard, “Hartmann wave-front scanner,” Optics Letters,  24, 1796–1798 (1999).
[Crossref]

Juday, R.

B. Kumar, A. Mahalanobis, and R. Juday, Correlation Pattern Recognition(Cambridge University, 2015).

Ko, J.

J. Ko and C. C. Davis, “Comparison of the plenoptic sensor and the Shack–Hartmann sensor,” Applied Optics 56, 3689–3698 (2017).
[Crossref]

Kodatskiy, B.

B. Kodatskiy, M. Kovalev, P. Malinina, S. Odinokov, M. Soloviev, and V. Venediktov, “Fourier holography in holographic optical sensors,” Proceedings of SPIE,  10002, 100020K (2016).
[Crossref]

Kong, F.

F. Kong and A. Lambert, “Improvements to the modal holographic wavefront sensor,” Applied Optics,  55, 3615–3625 (2016).
[Crossref] [PubMed]

Konwar, S.

Kovalev, M.

A. Gorelaya, M. Kovalev, P. Malinina, S. Odinokov, M. Soloviev, A. Sevryugin, and V. Venediktov, “Advanced holographic wavefront sensor,” Proceedings of SPIE,  10233, 102330Z (2017).
[Crossref]

B. Kodatskiy, M. Kovalev, P. Malinina, S. Odinokov, M. Soloviev, and V. Venediktov, “Fourier holography in holographic optical sensors,” Proceedings of SPIE,  10002, 100020K (2016).
[Crossref]

Kovalev, M. S.

V. I. Bobrinev, M. L. Galkin, M. S. Kovalev, P. I. Malinina, and S. B. Odinokov, “Investigation of computer-generated Fresnel holograms for wavefront sensors,” Optoelectronics, Instrumentation and Data Processing 54(1), 26–31 (2018).
[Crossref]

M. S. Kovalev, G. K. Krasin, S. B. Odinokov, A. B. Solomashenko, and V. Y. Venediktov, “Hologram filters in adaptive optics problems,” 2018 International Conference of Laser Optics (ICLO), St. Petersburg (2018).

Krasin, G. K.

G. K. Krasin, D. S. Lushnikov, S. B. Odinokov, A. B. Solomashenko, V. Yu. Venediktov, and E. Yu. Zlokazov, “Wavefront sensor with hologram filters in the problem of measuring phase distortions of laser radiation,” Proceedings of SPIE,  10787, 107870D (2018).

M. S. Kovalev, G. K. Krasin, S. B. Odinokov, A. B. Solomashenko, and V. Y. Venediktov, “Hologram filters in adaptive optics problems,” 2018 International Conference of Laser Optics (ICLO), St. Petersburg (2018).

Kumar, B.

B. Kumar, A. Mahalanobis, and R. Juday, Correlation Pattern Recognition(Cambridge University, 2015).

Lambert, A.

F. Kong and A. Lambert, “Improvements to the modal holographic wavefront sensor,” Applied Optics,  55, 3615–3625 (2016).
[Crossref] [PubMed]

Laude, V.

V. Laude, S. Olivier, C. Dirson, and J.-P. Huignard, “Hartmann wave-front scanner,” Optics Letters,  24, 1796–1798 (1999).
[Crossref]

Li, B.

F. Xia, D. Sinefeld, B. Li, and C. Xu, “Two-photon Shack–Hartmann wavefront sensor,” Optics Letters 42, 1141–1144 (2017).
[Crossref]

Li, X.

Li, Z.

Lushnikov, D. S.

G. K. Krasin, D. S. Lushnikov, S. B. Odinokov, A. B. Solomashenko, V. Yu. Venediktov, and E. Yu. Zlokazov, “Wavefront sensor with hologram filters in the problem of measuring phase distortions of laser radiation,” Proceedings of SPIE,  10787, 107870D (2018).

Mahalanobis, A.

B. Kumar, A. Mahalanobis, and R. Juday, Correlation Pattern Recognition(Cambridge University, 2015).

Maksimov, V. G.

A. G. Poleshchuk, A. G. Sedukhin, V. I. Trunov, and V. G. Maksimov, “Hartmann wavefront sensor based on multielement amplitude masks with apodized apertures,” Computer Optics 38(4), 695–703 (2014).
[Crossref]

Malinina, P.

A. Gorelaya, M. Kovalev, P. Malinina, S. Odinokov, M. Soloviev, A. Sevryugin, and V. Venediktov, “Advanced holographic wavefront sensor,” Proceedings of SPIE,  10233, 102330Z (2017).
[Crossref]

B. Kodatskiy, M. Kovalev, P. Malinina, S. Odinokov, M. Soloviev, and V. Venediktov, “Fourier holography in holographic optical sensors,” Proceedings of SPIE,  10002, 100020K (2016).
[Crossref]

Malinina, P. I.

V. I. Bobrinev, M. L. Galkin, M. S. Kovalev, P. I. Malinina, and S. B. Odinokov, “Investigation of computer-generated Fresnel holograms for wavefront sensors,” Optoelectronics, Instrumentation and Data Processing 54(1), 26–31 (2018).
[Crossref]

Mishra, S. K.

S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Applied Optics,  48, 6458–6465 (2009).
[Crossref] [PubMed]

Mohan, D.

S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Applied Optics,  48, 6458–6465 (2009).
[Crossref] [PubMed]

Odinokov, S.

A. Gorelaya, M. Kovalev, P. Malinina, S. Odinokov, M. Soloviev, A. Sevryugin, and V. Venediktov, “Advanced holographic wavefront sensor,” Proceedings of SPIE,  10233, 102330Z (2017).
[Crossref]

B. Kodatskiy, M. Kovalev, P. Malinina, S. Odinokov, M. Soloviev, and V. Venediktov, “Fourier holography in holographic optical sensors,” Proceedings of SPIE,  10002, 100020K (2016).
[Crossref]

Odinokov, S. B.

V. I. Bobrinev, M. L. Galkin, M. S. Kovalev, P. I. Malinina, and S. B. Odinokov, “Investigation of computer-generated Fresnel holograms for wavefront sensors,” Optoelectronics, Instrumentation and Data Processing 54(1), 26–31 (2018).
[Crossref]

G. K. Krasin, D. S. Lushnikov, S. B. Odinokov, A. B. Solomashenko, V. Yu. Venediktov, and E. Yu. Zlokazov, “Wavefront sensor with hologram filters in the problem of measuring phase distortions of laser radiation,” Proceedings of SPIE,  10787, 107870D (2018).

M. S. Kovalev, G. K. Krasin, S. B. Odinokov, A. B. Solomashenko, and V. Y. Venediktov, “Hologram filters in adaptive optics problems,” 2018 International Conference of Laser Optics (ICLO), St. Petersburg (2018).

Olivier, S.

V. Laude, S. Olivier, C. Dirson, and J.-P. Huignard, “Hartmann wave-front scanner,” Optics Letters,  24, 1796–1798 (1999).
[Crossref]

Osten, W.

S. Dong, T. Haist, W. Osten, T. Ruppel, and O. Sawodny, “Response analysis of holography-based modal wavefront sensor,” Applied Optics,  51, 1318–1327 (2012).
[Crossref] [PubMed]

Palomo, P. M.

P. M. Palomo, A. Zepp, and S. Gladysz, “Characterization of the digital holographic wavefront sensor,” Proceedings of SPIE 9242, 92421T (2014).
[Crossref]

P. M. Palomo, A. Zepp, and S. Gładysz, “Digital holographic wavefront sensor,” Imaging and Applied Optics, OSA Technical Digest, AOT2D.1 (2015).

Pathak, B.

Platt, B.

B. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” Journal of Refractive Surgery,  17, S573–S577 (2001).
[Crossref] [PubMed]

Poleshchuk, A. G.

A. G. Poleshchuk, A. G. Sedukhin, V. I. Trunov, and V. G. Maksimov, “Hartmann wavefront sensor based on multielement amplitude masks with apodized apertures,” Computer Optics 38(4), 695–703 (2014).
[Crossref]

Ruppel, T.

S. Dong, T. Haist, W. Osten, T. Ruppel, and O. Sawodny, “Response analysis of holography-based modal wavefront sensor,” Applied Optics,  51, 1318–1327 (2012).
[Crossref] [PubMed]

Sawodny, O.

S. Dong, T. Haist, W. Osten, T. Ruppel, and O. Sawodny, “Response analysis of holography-based modal wavefront sensor,” Applied Optics,  51, 1318–1327 (2012).
[Crossref] [PubMed]

Sedukhin, A. G.

A. G. Poleshchuk, A. G. Sedukhin, V. I. Trunov, and V. G. Maksimov, “Hartmann wavefront sensor based on multielement amplitude masks with apodized apertures,” Computer Optics 38(4), 695–703 (2014).
[Crossref]

Sevryugin, A.

A. Gorelaya, M. Kovalev, P. Malinina, S. Odinokov, M. Soloviev, A. Sevryugin, and V. Venediktov, “Advanced holographic wavefront sensor,” Proceedings of SPIE,  10233, 102330Z (2017).
[Crossref]

Shack, R.

B. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” Journal of Refractive Surgery,  17, S573–S577 (2001).
[Crossref] [PubMed]

Sharma, A.

S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Applied Optics,  48, 6458–6465 (2009).
[Crossref] [PubMed]

Sinefeld, D.

F. Xia, D. Sinefeld, B. Li, and C. Xu, “Two-photon Shack–Hartmann wavefront sensor,” Optics Letters 42, 1141–1144 (2017).
[Crossref]

Solomashenko, A. B.

G. K. Krasin, D. S. Lushnikov, S. B. Odinokov, A. B. Solomashenko, V. Yu. Venediktov, and E. Yu. Zlokazov, “Wavefront sensor with hologram filters in the problem of measuring phase distortions of laser radiation,” Proceedings of SPIE,  10787, 107870D (2018).

M. S. Kovalev, G. K. Krasin, S. B. Odinokov, A. B. Solomashenko, and V. Y. Venediktov, “Hologram filters in adaptive optics problems,” 2018 International Conference of Laser Optics (ICLO), St. Petersburg (2018).

Soloviev, M.

A. Gorelaya, M. Kovalev, P. Malinina, S. Odinokov, M. Soloviev, A. Sevryugin, and V. Venediktov, “Advanced holographic wavefront sensor,” Proceedings of SPIE,  10233, 102330Z (2017).
[Crossref]

B. Kodatskiy, M. Kovalev, P. Malinina, S. Odinokov, M. Soloviev, and V. Venediktov, “Fourier holography in holographic optical sensors,” Proceedings of SPIE,  10002, 100020K (2016).
[Crossref]

Stein, K.

E. Anzuola, A. Zepp, S. Gładysz, and K. Stein, “Holographic wavefront sensor based on Karhunen-Loève decomposition,” Proceedings of SPIE,  9979, 99790X (2016).
[Crossref]

A. Zepp, S. Gładysz, and K. Stein, “Holographic wavefront sensor for fast defocus measurement,” Advanced Optical Technologies,  2(5–6), 433–437 (2013).
[Crossref]

Trunov, V. I.

A. G. Poleshchuk, A. G. Sedukhin, V. I. Trunov, and V. G. Maksimov, “Hartmann wavefront sensor based on multielement amplitude masks with apodized apertures,” Computer Optics 38(4), 695–703 (2014).
[Crossref]

Venediktov, V.

A. Gorelaya, M. Kovalev, P. Malinina, S. Odinokov, M. Soloviev, A. Sevryugin, and V. Venediktov, “Advanced holographic wavefront sensor,” Proceedings of SPIE,  10233, 102330Z (2017).
[Crossref]

B. Kodatskiy, M. Kovalev, P. Malinina, S. Odinokov, M. Soloviev, and V. Venediktov, “Fourier holography in holographic optical sensors,” Proceedings of SPIE,  10002, 100020K (2016).
[Crossref]

Venediktov, V. Y.

M. S. Kovalev, G. K. Krasin, S. B. Odinokov, A. B. Solomashenko, and V. Y. Venediktov, “Hologram filters in adaptive optics problems,” 2018 International Conference of Laser Optics (ICLO), St. Petersburg (2018).

Venediktov, V. Yu.

G. K. Krasin, D. S. Lushnikov, S. B. Odinokov, A. B. Solomashenko, V. Yu. Venediktov, and E. Yu. Zlokazov, “Wavefront sensor with hologram filters in the problem of measuring phase distortions of laser radiation,” Proceedings of SPIE,  10787, 107870D (2018).

Xia, F.

F. Xia, D. Sinefeld, B. Li, and C. Xu, “Two-photon Shack–Hartmann wavefront sensor,” Optics Letters 42, 1141–1144 (2017).
[Crossref]

Xu, C.

F. Xia, D. Sinefeld, B. Li, and C. Xu, “Two-photon Shack–Hartmann wavefront sensor,” Optics Letters 42, 1141–1144 (2017).
[Crossref]

Zepp, A.

E. Anzuola, A. Zepp, S. Gładysz, and K. Stein, “Holographic wavefront sensor based on Karhunen-Loève decomposition,” Proceedings of SPIE,  9979, 99790X (2016).
[Crossref]

P. M. Palomo, A. Zepp, and S. Gladysz, “Characterization of the digital holographic wavefront sensor,” Proceedings of SPIE 9242, 92421T (2014).
[Crossref]

A. Zepp, S. Gładysz, and K. Stein, “Holographic wavefront sensor for fast defocus measurement,” Advanced Optical Technologies,  2(5–6), 433–437 (2013).
[Crossref]

P. M. Palomo, A. Zepp, and S. Gładysz, “Digital holographic wavefront sensor,” Imaging and Applied Optics, OSA Technical Digest, AOT2D.1 (2015).

Zlokazov, E. Yu.

G. K. Krasin, D. S. Lushnikov, S. B. Odinokov, A. B. Solomashenko, V. Yu. Venediktov, and E. Yu. Zlokazov, “Wavefront sensor with hologram filters in the problem of measuring phase distortions of laser radiation,” Proceedings of SPIE,  10787, 107870D (2018).

Advanced Optical Technologies (1)

A. Zepp, S. Gładysz, and K. Stein, “Holographic wavefront sensor for fast defocus measurement,” Advanced Optical Technologies,  2(5–6), 433–437 (2013).
[Crossref]

Applied Optics (4)

S. Dong, T. Haist, W. Osten, T. Ruppel, and O. Sawodny, “Response analysis of holography-based modal wavefront sensor,” Applied Optics,  51, 1318–1327 (2012).
[Crossref] [PubMed]

F. Kong and A. Lambert, “Improvements to the modal holographic wavefront sensor,” Applied Optics,  55, 3615–3625 (2016).
[Crossref] [PubMed]

J. Ko and C. C. Davis, “Comparison of the plenoptic sensor and the Shack–Hartmann sensor,” Applied Optics 56, 3689–3698 (2017).
[Crossref]

S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Applied Optics,  48, 6458–6465 (2009).
[Crossref] [PubMed]

Computer Optics (1)

A. G. Poleshchuk, A. G. Sedukhin, V. I. Trunov, and V. G. Maksimov, “Hartmann wavefront sensor based on multielement amplitude masks with apodized apertures,” Computer Optics 38(4), 695–703 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

Journal of Refractive Surgery (1)

B. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” Journal of Refractive Surgery,  17, S573–S577 (2001).
[Crossref] [PubMed]

Opt. Express (2)

Optical Engineering (1)

G. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, “Holographic wavefront sensor,” Optical Engineering,  48, 085801 (2009).
[Crossref]

Optics Letters (2)

V. Laude, S. Olivier, C. Dirson, and J.-P. Huignard, “Hartmann wave-front scanner,” Optics Letters,  24, 1796–1798 (1999).
[Crossref]

F. Xia, D. Sinefeld, B. Li, and C. Xu, “Two-photon Shack–Hartmann wavefront sensor,” Optics Letters 42, 1141–1144 (2017).
[Crossref]

Optoelectronics, Instrumentation and Data Processing (1)

V. I. Bobrinev, M. L. Galkin, M. S. Kovalev, P. I. Malinina, and S. B. Odinokov, “Investigation of computer-generated Fresnel holograms for wavefront sensors,” Optoelectronics, Instrumentation and Data Processing 54(1), 26–31 (2018).
[Crossref]

OSA Continuum (1)

Proceedings of SPIE (6)

G. Andersen, F. Ghebremichael, and K. Gurley, “Holographic Wavefront Sensor – Fast Sensing, No Computing,” Proceedings of SPIE,  6488, 64880I (2007).
[Crossref]

P. M. Palomo, A. Zepp, and S. Gladysz, “Characterization of the digital holographic wavefront sensor,” Proceedings of SPIE 9242, 92421T (2014).
[Crossref]

E. Anzuola, A. Zepp, S. Gładysz, and K. Stein, “Holographic wavefront sensor based on Karhunen-Loève decomposition,” Proceedings of SPIE,  9979, 99790X (2016).
[Crossref]

B. Kodatskiy, M. Kovalev, P. Malinina, S. Odinokov, M. Soloviev, and V. Venediktov, “Fourier holography in holographic optical sensors,” Proceedings of SPIE,  10002, 100020K (2016).
[Crossref]

A. Gorelaya, M. Kovalev, P. Malinina, S. Odinokov, M. Soloviev, A. Sevryugin, and V. Venediktov, “Advanced holographic wavefront sensor,” Proceedings of SPIE,  10233, 102330Z (2017).
[Crossref]

G. K. Krasin, D. S. Lushnikov, S. B. Odinokov, A. B. Solomashenko, V. Yu. Venediktov, and E. Yu. Zlokazov, “Wavefront sensor with hologram filters in the problem of measuring phase distortions of laser radiation,” Proceedings of SPIE,  10787, 107870D (2018).

Other (6)

J. W. Goodman, Introduction to Fourier Optics (Englewood Colorado: Roberts & Co, 2005).

B. Kumar, A. Mahalanobis, and R. Juday, Correlation Pattern Recognition(Cambridge University, 2015).

M. S. Kovalev, G. K. Krasin, S. B. Odinokov, A. B. Solomashenko, and V. Y. Venediktov, “Hologram filters in adaptive optics problems,” 2018 International Conference of Laser Optics (ICLO), St. Petersburg (2018).

W. J. Dallas, “Computer-generated holograms,” in The Computer in Optical Research, B. R. Frieden, ed. (Springer, 2005), pp. 291–366.

W. J. Dallas, “Computer-generated holograms,” in Digital Holography and Three-Dimensional Display, T.-C. Poon, ed. (Springer, 2006), pp. 1–49.

P. M. Palomo, A. Zepp, and S. Gładysz, “Digital holographic wavefront sensor,” Imaging and Applied Optics, OSA Technical Digest, AOT2D.1 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Optical scheme of WFD based on reflection type phase only modulator
Fig. 2
Fig. 2 The model of astigmatism with curvature depth of 10λ (a); numeric result of output light field intensity calculation and thresholding for the case when read-out beam curvature coincident to the model curvature t ( x , y ) = f r e f ( x , y ) (b);profile function of output light field from Fig. 2(b) in logarithmic scale (c); CGH of wavefront model from Fig. 2 (d); numeric result of output light field intensity calculation and thresholding for the case a / λ = 2.5 (e); profile function of output light field from Fig. 2(e) in logarithmic scale (f)
Fig. 3
Fig. 3 Dependence of correlation intensity maximum from curvature coefficient offset: for the different basis functions used in the model (a); for the case when “astigmatism” and “coma” aberrations are combined in the model (b).
Fig. 4
Fig. 4 Reconstructed images for 6λ defocused input light beam and CGHs with encoded defocused aberration model with curvature depth value of 6λ (a), 3λ (b), PCE value in dependance of curvature offset (c).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

f r e f ( x , y ) = n C n Z n ( x , y ) ,
h a m p ( x , y ) = 1 + cos  [ 2 π ( Δ λ F x f r e f ( x , y ) ) ] .
h p h ( x , y ) = exp  [ i π h a m p ( x , y ) ] = n i n J n ( π ) r n * ( x , y ) exp  [ i 2 π λ F n Δ x ] ,
r n ( x , y ) = exp  [ i 2 π n f r e f ( x , y ) ]
O ( ξ , η ) = n i n J n ( π ) t ( x , y ) r n * ( x , y ) exp [ i 2 π λ F ( ( ξ n Δ ) x + η y ) ] d x d y = n i n J n ( π ) [ R n ( ξ n Δ , η ) T ( ξ n Δ , η ) ] ,
P S R = O ( Δ , 0 ) M σ ,

Metrics