Abstract

We report on a sapphire fiber Raman imaging probe’s use for challenging applications where access is severely restricted. Small-dimension Raman probes have been developed previously for various clinical applications because they show great capability for diagnosing disease states in bodily fluids, cells, and tissues. However, applications of these sub-millimeter diameter Raman probes were constrained by two factors: first, it is difficult to incorporate filters and focusing optics at such small scale; second, the weak Raman signal is often obscured by strong background noise from the fiber probe material, especially the most commonly used silica, which has a strong broad background noise in low wavenumbers (<500-1700 cm−1). Here, we demonstrate the thinnest-known imaging Raman probe with a 60 μm diameter Sapphire multimode fiber in which both excitation and signal collection pass through. This probe takes advantage of the low fluorescence and narrow Raman peaks of Sapphire, its inherent high temperature and corrosion resistance, and large numerical aperture (NA). Raman images of Polystyrene beads, carbon nanotubes, and CaSO4 agglomerations are obtained with a spatial resolution of 1 μm and a field of view of 30 μm. Our imaging results show that single polystyrene bead (~15 µm diameter) can be differentiated from a mixture with CaSO4 agglomerations, which has a close Raman shift.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multimode fibre based imaging for optically cleared samples

Ivan Gusachenko, Jonathan Nylk, Javier A. Tello, and Kishan Dholakia
Biomed. Opt. Express 8(11) 5179-5190 (2017)

Raman imaging through a single multimode fibre

Ivan Gusachenko, Mingzhou Chen, and Kishan Dholakia
Opt. Express 25(12) 13782-13798 (2017)

Towards new applications using capillary waveguides

Nicolino Stasio, Atsushi Shibukawa, Ioannis N. Papadopoulos, Salma Farahi, Olivier Simandoux, Jean-Pierre Huignard, Emmanuel Bossy, Christophe Moser, and Demetri Psaltis
Biomed. Opt. Express 6(12) 4619-4631 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Surmacki, B. J. Woodhams, A. Haslehurst, B. A. J. Ponder, and S. E. Bohndiek, “Raman micro-spectroscopy for accurate identification of primary human bronchial epithelial cells,” Sci. Rep. 8(1), 12604 (2018).
    [Crossref] [PubMed]
  2. R. S. Das and Y. K. Agrawal, “Raman spectroscopy: recent advancements, techniques and applications,” Vib. Spectrosc. 57(2), 163–176 (2011).
    [Crossref]
  3. L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
    [Crossref] [PubMed]
  4. S. Deng, L. Liu, Z. Liu, Z. Shen, G. Li, and Y. He, “Line-scanning Raman imaging spectroscopy for detection of fingerprints,” Appl. Opt. 51(17), 3701–3706 (2012).
    [Crossref] [PubMed]
  5. L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, and A. M. Zheltikov, “High-resolution wide-field Raman imaging through a fiber bundle,” Appl. Phys. Lett. 102(16), 161113 (2013).
    [Crossref]
  6. L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, K. V. Anokhin, M. L. Hu, C. Y. Wang, and A. M. Zheltikov, “Raman detection of cell proliferation probes with antiresonance-guiding hollow fibers,” Opt. Lett. 37(22), 4642–4644 (2012).
    [Crossref] [PubMed]
  7. M. Jermyn, J. Desroches, K. Aubertin, K. St-Arnaud, W.-J. Madore, E. De Montigny, M.-C. Guiot, D. Trudel, B. C. Wilson, K. Petrecca, and F. Leblond, “A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology,” Phys. Med. Biol. 61(23), R370–R400 (2016).
    [Crossref] [PubMed]
  8. I. Notingher and L. L. Hench, “Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro,” Expert Rev. Med. Devices 3(2), 215–234 (2006).
    [Crossref] [PubMed]
  9. C. Raml, X. He, M. Han, D. R. Alexander, and Y. Lu, “Raman spectroscopy based on a single-crystal sapphire fiber,” Opt. Lett. 36(7), 1287–1289 (2011).
    [Crossref] [PubMed]
  10. B. Liu, Z. Yu, Z. Tian, D. Homa, C. Hill, A. Wang, and G. Pickrell, “Temperature dependence of sapphire fiber Raman scattering,” Opt. Lett. 40(9), 2041–2044 (2015).
    [Crossref] [PubMed]
  11. H. Ahn, H. Song, D.-M. Shin, K. Kim, and J. Choi, “Emerging optical spectroscopy techniques for biomedical applications—A brief review of recent progress,” Appl. Spectrosc. Rev. 53(2-4), 264–278 (2018).
    [Crossref]
  12. K. A. Esmonde-White, F. W. Esmonde-White, M. D. Morris, and B. J. Roessler, “Fiber-optic Raman spectroscopy of joint tissues,” Analyst (Lond.) 136(8), 1675–1685 (2011).
    [Crossref] [PubMed]
  13. J. C. Day and N. Stone, “A subcutaneous Raman needle probe,” Appl. Spectrosc. 67(3), 349–354 (2013).
    [Crossref] [PubMed]
  14. T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120(5), 2585–2591 (2016).
    [Crossref]
  15. Y. Hattori, Y. Komachi, T. Asakura, T. Shimosegawa, G. Kanai, H. Tashiro, and H. Sato, “In vivo Raman study of the living rat esophagus and stomach using a micro-Raman probe under an endoscope,” Appl. Spectrosc. 61(6), 579–584 (2007).
    [Crossref] [PubMed]
  16. I. E. Iping Petterson, J. C. Day, L. M. Fullwood, B. Gardner, and N. Stone, “Characterisation of a fibre optic Raman probe within a hypodermic needle,” Anal. Bioanal. Chem. 407(27), 8311–8320 (2015).
    [Crossref] [PubMed]
  17. K. Ehrlich, A. Kufcsák, S. McAughtrie, H. Fleming, N. Krstajic, C. J. Campbell, R. K. Henderson, K. Dhaliwal, R. R. Thomson, and M. G. Tanner, “pH sensing through a single optical fibre using SERS and CMOS SPAD line arrays,” Opt. Express 25(25), 30976–30986 (2017).
    [Crossref] [PubMed]
  18. I. Gusachenko, M. Chen, and K. Dholakia, “Raman imaging through a single multimode fibre,” Opt. Express 25(12), 13782–13798 (2017).
    [Crossref] [PubMed]
  19. M. Kirsch, G. Schackert, R. Salzer, and C. Krafft, “Raman spectroscopic imaging for in vivo detection of cerebral brain metastases,” Anal. Bioanal. Chem. 398(4), 1707–1713 (2010).
    [Crossref] [PubMed]
  20. P. Colomban, “Potential and drawbacks of Raman (micro) spectrometry for the understanding of iron and steel corrosion,” in New Trends and Developments in Automotive System Engineering (InTech, 2011).
  21. E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Delivery of focused short pulses through a multimode fiber,” Opt. Express 23(7), 9109–9120 (2015).
    [Crossref] [PubMed]
  22. E. E. Morales-Delgado, D. Psaltis, and C. Moser, “Two-photon imaging through a multimode fiber,” Opt. Express 23(25), 32158–32170 (2015).
    [Crossref] [PubMed]
  23. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
    [Crossref] [PubMed]
  24. D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23(18), 23845–23858 (2015).
    [Crossref] [PubMed]
  25. D. Loterie, S. A. Goorden, D. Psaltis, and C. Moser, “Confocal microscopy through a multimode fiber using optical correlation,” Opt. Lett. 40(24), 5754–5757 (2015).
    [Crossref] [PubMed]
  26. J. W. Czarske, D. Haufe, N. Koukourakis, and L. Büttner, “Transmission of independent signals through a multimode fiber using digital optical phase conjugation,” Opt. Express 24(13), 15128–15136 (2016).
    [Crossref] [PubMed]
  27. N. Verrier and M. Atlan, “Off-axis digital hologram reconstruction: some practical considerations,” Appl. Opt. 50(34), H136–H146 (2011).
    [Crossref] [PubMed]
  28. S. Deng, P. Penchev, J. Liu, Y. Wang, K. Jiang, S. Dimov, Z. Zhang, Y. Liu, J. Leng, and H. Butt, “Laser directed writing of flat lenses on buckypaper,” Nanoscale 7(29), 12405–12410 (2015).
    [Crossref] [PubMed]
  29. I. Gusachenko, J. Nylk, J. A. Tello, and K. Dholakia, “Multimode fibre based imaging for optically cleared samples,” Biomed. Opt. Express 8(11), 5179–5190 (2017).
    [Crossref] [PubMed]

2018 (3)

J. M. Surmacki, B. J. Woodhams, A. Haslehurst, B. A. J. Ponder, and S. E. Bohndiek, “Raman micro-spectroscopy for accurate identification of primary human bronchial epithelial cells,” Sci. Rep. 8(1), 12604 (2018).
[Crossref] [PubMed]

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref] [PubMed]

H. Ahn, H. Song, D.-M. Shin, K. Kim, and J. Choi, “Emerging optical spectroscopy techniques for biomedical applications—A brief review of recent progress,” Appl. Spectrosc. Rev. 53(2-4), 264–278 (2018).
[Crossref]

2017 (3)

2016 (3)

J. W. Czarske, D. Haufe, N. Koukourakis, and L. Büttner, “Transmission of independent signals through a multimode fiber using digital optical phase conjugation,” Opt. Express 24(13), 15128–15136 (2016).
[Crossref] [PubMed]

T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120(5), 2585–2591 (2016).
[Crossref]

M. Jermyn, J. Desroches, K. Aubertin, K. St-Arnaud, W.-J. Madore, E. De Montigny, M.-C. Guiot, D. Trudel, B. C. Wilson, K. Petrecca, and F. Leblond, “A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology,” Phys. Med. Biol. 61(23), R370–R400 (2016).
[Crossref] [PubMed]

2015 (7)

2013 (2)

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, and A. M. Zheltikov, “High-resolution wide-field Raman imaging through a fiber bundle,” Appl. Phys. Lett. 102(16), 161113 (2013).
[Crossref]

J. C. Day and N. Stone, “A subcutaneous Raman needle probe,” Appl. Spectrosc. 67(3), 349–354 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (4)

C. Raml, X. He, M. Han, D. R. Alexander, and Y. Lu, “Raman spectroscopy based on a single-crystal sapphire fiber,” Opt. Lett. 36(7), 1287–1289 (2011).
[Crossref] [PubMed]

N. Verrier and M. Atlan, “Off-axis digital hologram reconstruction: some practical considerations,” Appl. Opt. 50(34), H136–H146 (2011).
[Crossref] [PubMed]

K. A. Esmonde-White, F. W. Esmonde-White, M. D. Morris, and B. J. Roessler, “Fiber-optic Raman spectroscopy of joint tissues,” Analyst (Lond.) 136(8), 1675–1685 (2011).
[Crossref] [PubMed]

R. S. Das and Y. K. Agrawal, “Raman spectroscopy: recent advancements, techniques and applications,” Vib. Spectrosc. 57(2), 163–176 (2011).
[Crossref]

2010 (1)

M. Kirsch, G. Schackert, R. Salzer, and C. Krafft, “Raman spectroscopic imaging for in vivo detection of cerebral brain metastases,” Anal. Bioanal. Chem. 398(4), 1707–1713 (2010).
[Crossref] [PubMed]

2007 (1)

2006 (1)

I. Notingher and L. L. Hench, “Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro,” Expert Rev. Med. Devices 3(2), 215–234 (2006).
[Crossref] [PubMed]

Abe, T.

T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120(5), 2585–2591 (2016).
[Crossref]

Agrawal, Y. K.

R. S. Das and Y. K. Agrawal, “Raman spectroscopy: recent advancements, techniques and applications,” Vib. Spectrosc. 57(2), 163–176 (2011).
[Crossref]

Ahn, H.

H. Ahn, H. Song, D.-M. Shin, K. Kim, and J. Choi, “Emerging optical spectroscopy techniques for biomedical applications—A brief review of recent progress,” Appl. Spectrosc. Rev. 53(2-4), 264–278 (2018).
[Crossref]

Alexander, D. R.

Anokhin, K. V.

Asakura, T.

Atlan, M.

Aubertin, K.

M. Jermyn, J. Desroches, K. Aubertin, K. St-Arnaud, W.-J. Madore, E. De Montigny, M.-C. Guiot, D. Trudel, B. C. Wilson, K. Petrecca, and F. Leblond, “A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology,” Phys. Med. Biol. 61(23), R370–R400 (2016).
[Crossref] [PubMed]

Bohndiek, S. E.

J. M. Surmacki, B. J. Woodhams, A. Haslehurst, B. A. J. Ponder, and S. E. Bohndiek, “Raman micro-spectroscopy for accurate identification of primary human bronchial epithelial cells,” Sci. Rep. 8(1), 12604 (2018).
[Crossref] [PubMed]

Butt, H.

S. Deng, P. Penchev, J. Liu, Y. Wang, K. Jiang, S. Dimov, Z. Zhang, Y. Liu, J. Leng, and H. Butt, “Laser directed writing of flat lenses on buckypaper,” Nanoscale 7(29), 12405–12410 (2015).
[Crossref] [PubMed]

Büttner, L.

Campbell, C. J.

Chen, M.

Chen, Z.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref] [PubMed]

Choi, J.

H. Ahn, H. Song, D.-M. Shin, K. Kim, and J. Choi, “Emerging optical spectroscopy techniques for biomedical applications—A brief review of recent progress,” Appl. Spectrosc. Rev. 53(2-4), 264–278 (2018).
[Crossref]

Czarske, J. W.

Das, R. S.

R. S. Das and Y. K. Agrawal, “Raman spectroscopy: recent advancements, techniques and applications,” Vib. Spectrosc. 57(2), 163–176 (2011).
[Crossref]

Day, J. C.

I. E. Iping Petterson, J. C. Day, L. M. Fullwood, B. Gardner, and N. Stone, “Characterisation of a fibre optic Raman probe within a hypodermic needle,” Anal. Bioanal. Chem. 407(27), 8311–8320 (2015).
[Crossref] [PubMed]

J. C. Day and N. Stone, “A subcutaneous Raman needle probe,” Appl. Spectrosc. 67(3), 349–354 (2013).
[Crossref] [PubMed]

De Montigny, E.

M. Jermyn, J. Desroches, K. Aubertin, K. St-Arnaud, W.-J. Madore, E. De Montigny, M.-C. Guiot, D. Trudel, B. C. Wilson, K. Petrecca, and F. Leblond, “A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology,” Phys. Med. Biol. 61(23), R370–R400 (2016).
[Crossref] [PubMed]

de Sena-Tomas, C.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref] [PubMed]

Deng, S.

S. Deng, P. Penchev, J. Liu, Y. Wang, K. Jiang, S. Dimov, Z. Zhang, Y. Liu, J. Leng, and H. Butt, “Laser directed writing of flat lenses on buckypaper,” Nanoscale 7(29), 12405–12410 (2015).
[Crossref] [PubMed]

S. Deng, L. Liu, Z. Liu, Z. Shen, G. Li, and Y. He, “Line-scanning Raman imaging spectroscopy for detection of fingerprints,” Appl. Opt. 51(17), 3701–3706 (2012).
[Crossref] [PubMed]

Desroches, J.

M. Jermyn, J. Desroches, K. Aubertin, K. St-Arnaud, W.-J. Madore, E. De Montigny, M.-C. Guiot, D. Trudel, B. C. Wilson, K. Petrecca, and F. Leblond, “A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology,” Phys. Med. Biol. 61(23), R370–R400 (2016).
[Crossref] [PubMed]

Dhaliwal, K.

Dholakia, K.

Dimov, S.

S. Deng, P. Penchev, J. Liu, Y. Wang, K. Jiang, S. Dimov, Z. Zhang, Y. Liu, J. Leng, and H. Butt, “Laser directed writing of flat lenses on buckypaper,” Nanoscale 7(29), 12405–12410 (2015).
[Crossref] [PubMed]

Doi, T.

T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120(5), 2585–2591 (2016).
[Crossref]

Domi, Y.

T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120(5), 2585–2591 (2016).
[Crossref]

Doronina-Amitonova, L. V.

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, and A. M. Zheltikov, “High-resolution wide-field Raman imaging through a fiber bundle,” Appl. Phys. Lett. 102(16), 161113 (2013).
[Crossref]

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, K. V. Anokhin, M. L. Hu, C. Y. Wang, and A. M. Zheltikov, “Raman detection of cell proliferation probes with antiresonance-guiding hollow fibers,” Opt. Lett. 37(22), 4642–4644 (2012).
[Crossref] [PubMed]

Ehrlich, K.

Esmonde-White, F. W.

K. A. Esmonde-White, F. W. Esmonde-White, M. D. Morris, and B. J. Roessler, “Fiber-optic Raman spectroscopy of joint tissues,” Analyst (Lond.) 136(8), 1675–1685 (2011).
[Crossref] [PubMed]

Esmonde-White, K. A.

K. A. Esmonde-White, F. W. Esmonde-White, M. D. Morris, and B. J. Roessler, “Fiber-optic Raman spectroscopy of joint tissues,” Analyst (Lond.) 136(8), 1675–1685 (2011).
[Crossref] [PubMed]

Farahi, S.

Fedotov, A. B.

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, and A. M. Zheltikov, “High-resolution wide-field Raman imaging through a fiber bundle,” Appl. Phys. Lett. 102(16), 161113 (2013).
[Crossref]

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, K. V. Anokhin, M. L. Hu, C. Y. Wang, and A. M. Zheltikov, “Raman detection of cell proliferation probes with antiresonance-guiding hollow fibers,” Opt. Lett. 37(22), 4642–4644 (2012).
[Crossref] [PubMed]

Fedotov, I. V.

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, and A. M. Zheltikov, “High-resolution wide-field Raman imaging through a fiber bundle,” Appl. Phys. Lett. 102(16), 161113 (2013).
[Crossref]

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, K. V. Anokhin, M. L. Hu, C. Y. Wang, and A. M. Zheltikov, “Raman detection of cell proliferation probes with antiresonance-guiding hollow fibers,” Opt. Lett. 37(22), 4642–4644 (2012).
[Crossref] [PubMed]

Fleming, H.

Fullwood, L. M.

I. E. Iping Petterson, J. C. Day, L. M. Fullwood, B. Gardner, and N. Stone, “Characterisation of a fibre optic Raman probe within a hypodermic needle,” Anal. Bioanal. Chem. 407(27), 8311–8320 (2015).
[Crossref] [PubMed]

Gardner, B.

I. E. Iping Petterson, J. C. Day, L. M. Fullwood, B. Gardner, and N. Stone, “Characterisation of a fibre optic Raman probe within a hypodermic needle,” Anal. Bioanal. Chem. 407(27), 8311–8320 (2015).
[Crossref] [PubMed]

Goorden, S. A.

Goy, A.

Guiot, M.-C.

M. Jermyn, J. Desroches, K. Aubertin, K. St-Arnaud, W.-J. Madore, E. De Montigny, M.-C. Guiot, D. Trudel, B. C. Wilson, K. Petrecca, and F. Leblond, “A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology,” Phys. Med. Biol. 61(23), R370–R400 (2016).
[Crossref] [PubMed]

Gusachenko, I.

Han, M.

Haslehurst, A.

J. M. Surmacki, B. J. Woodhams, A. Haslehurst, B. A. J. Ponder, and S. E. Bohndiek, “Raman micro-spectroscopy for accurate identification of primary human bronchial epithelial cells,” Sci. Rep. 8(1), 12604 (2018).
[Crossref] [PubMed]

Hattori, Y.

Haufe, D.

He, X.

He, Y.

Hench, L. L.

I. Notingher and L. L. Hench, “Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro,” Expert Rev. Med. Devices 3(2), 215–234 (2006).
[Crossref] [PubMed]

Henderson, R. K.

Hill, C.

Homa, D.

Hu, M. L.

Iping Petterson, I. E.

I. E. Iping Petterson, J. C. Day, L. M. Fullwood, B. Gardner, and N. Stone, “Characterisation of a fibre optic Raman probe within a hypodermic needle,” Anal. Bioanal. Chem. 407(27), 8311–8320 (2015).
[Crossref] [PubMed]

Jermyn, M.

M. Jermyn, J. Desroches, K. Aubertin, K. St-Arnaud, W.-J. Madore, E. De Montigny, M.-C. Guiot, D. Trudel, B. C. Wilson, K. Petrecca, and F. Leblond, “A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology,” Phys. Med. Biol. 61(23), R370–R400 (2016).
[Crossref] [PubMed]

Jiang, K.

S. Deng, P. Penchev, J. Liu, Y. Wang, K. Jiang, S. Dimov, Z. Zhang, Y. Liu, J. Leng, and H. Butt, “Laser directed writing of flat lenses on buckypaper,” Nanoscale 7(29), 12405–12410 (2015).
[Crossref] [PubMed]

Kanai, G.

Kim, K.

H. Ahn, H. Song, D.-M. Shin, K. Kim, and J. Choi, “Emerging optical spectroscopy techniques for biomedical applications—A brief review of recent progress,” Appl. Spectrosc. Rev. 53(2-4), 264–278 (2018).
[Crossref]

Kirsch, M.

M. Kirsch, G. Schackert, R. Salzer, and C. Krafft, “Raman spectroscopic imaging for in vivo detection of cerebral brain metastases,” Anal. Bioanal. Chem. 398(4), 1707–1713 (2010).
[Crossref] [PubMed]

Komachi, Y.

Koukourakis, N.

Krafft, C.

M. Kirsch, G. Schackert, R. Salzer, and C. Krafft, “Raman spectroscopic imaging for in vivo detection of cerebral brain metastases,” Anal. Bioanal. Chem. 398(4), 1707–1713 (2010).
[Crossref] [PubMed]

Krstajic, N.

Kufcsák, A.

Leblond, F.

M. Jermyn, J. Desroches, K. Aubertin, K. St-Arnaud, W.-J. Madore, E. De Montigny, M.-C. Guiot, D. Trudel, B. C. Wilson, K. Petrecca, and F. Leblond, “A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology,” Phys. Med. Biol. 61(23), R370–R400 (2016).
[Crossref] [PubMed]

Leng, J.

S. Deng, P. Penchev, J. Liu, Y. Wang, K. Jiang, S. Dimov, Z. Zhang, Y. Liu, J. Leng, and H. Butt, “Laser directed writing of flat lenses on buckypaper,” Nanoscale 7(29), 12405–12410 (2015).
[Crossref] [PubMed]

Li, G.

Liu, B.

Liu, C.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref] [PubMed]

Liu, J.

S. Deng, P. Penchev, J. Liu, Y. Wang, K. Jiang, S. Dimov, Z. Zhang, Y. Liu, J. Leng, and H. Butt, “Laser directed writing of flat lenses on buckypaper,” Nanoscale 7(29), 12405–12410 (2015).
[Crossref] [PubMed]

Liu, L.

Liu, Y.

S. Deng, P. Penchev, J. Liu, Y. Wang, K. Jiang, S. Dimov, Z. Zhang, Y. Liu, J. Leng, and H. Butt, “Laser directed writing of flat lenses on buckypaper,” Nanoscale 7(29), 12405–12410 (2015).
[Crossref] [PubMed]

Liu, Z.

Loterie, D.

Lu, Y.

Madore, W.-J.

M. Jermyn, J. Desroches, K. Aubertin, K. St-Arnaud, W.-J. Madore, E. De Montigny, M.-C. Guiot, D. Trudel, B. C. Wilson, K. Petrecca, and F. Leblond, “A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology,” Phys. Med. Biol. 61(23), R370–R400 (2016).
[Crossref] [PubMed]

McAughtrie, S.

Min, W.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref] [PubMed]

Morales-Delgado, E. E.

Morris, M. D.

K. A. Esmonde-White, F. W. Esmonde-White, M. D. Morris, and B. J. Roessler, “Fiber-optic Raman spectroscopy of joint tissues,” Analyst (Lond.) 136(8), 1675–1685 (2011).
[Crossref] [PubMed]

Moser, C.

Nakagawa, H.

T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120(5), 2585–2591 (2016).
[Crossref]

Notingher, I.

I. Notingher and L. L. Hench, “Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro,” Expert Rev. Med. Devices 3(2), 215–234 (2006).
[Crossref] [PubMed]

Nylk, J.

Ochida, M.

T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120(5), 2585–2591 (2016).
[Crossref]

Ogumi, Z.

T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120(5), 2585–2591 (2016).
[Crossref]

Papadopoulos, I.

Papadopoulos, I. N.

Penchev, P.

S. Deng, P. Penchev, J. Liu, Y. Wang, K. Jiang, S. Dimov, Z. Zhang, Y. Liu, J. Leng, and H. Butt, “Laser directed writing of flat lenses on buckypaper,” Nanoscale 7(29), 12405–12410 (2015).
[Crossref] [PubMed]

Petrecca, K.

M. Jermyn, J. Desroches, K. Aubertin, K. St-Arnaud, W.-J. Madore, E. De Montigny, M.-C. Guiot, D. Trudel, B. C. Wilson, K. Petrecca, and F. Leblond, “A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology,” Phys. Med. Biol. 61(23), R370–R400 (2016).
[Crossref] [PubMed]

Pickrell, G.

Ponder, B. A. J.

J. M. Surmacki, B. J. Woodhams, A. Haslehurst, B. A. J. Ponder, and S. E. Bohndiek, “Raman micro-spectroscopy for accurate identification of primary human bronchial epithelial cells,” Sci. Rep. 8(1), 12604 (2018).
[Crossref] [PubMed]

Psaltis, D.

Raml, C.

Roessler, B. J.

K. A. Esmonde-White, F. W. Esmonde-White, M. D. Morris, and B. J. Roessler, “Fiber-optic Raman spectroscopy of joint tissues,” Analyst (Lond.) 136(8), 1675–1685 (2011).
[Crossref] [PubMed]

Salzer, R.

M. Kirsch, G. Schackert, R. Salzer, and C. Krafft, “Raman spectroscopic imaging for in vivo detection of cerebral brain metastases,” Anal. Bioanal. Chem. 398(4), 1707–1713 (2010).
[Crossref] [PubMed]

Sato, H.

Schackert, G.

M. Kirsch, G. Schackert, R. Salzer, and C. Krafft, “Raman spectroscopic imaging for in vivo detection of cerebral brain metastases,” Anal. Bioanal. Chem. 398(4), 1707–1713 (2010).
[Crossref] [PubMed]

Shen, Y.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref] [PubMed]

Shen, Z.

Shi, L.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref] [PubMed]

Shimosegawa, T.

Shin, D.-M.

H. Ahn, H. Song, D.-M. Shin, K. Kim, and J. Choi, “Emerging optical spectroscopy techniques for biomedical applications—A brief review of recent progress,” Appl. Spectrosc. Rev. 53(2-4), 264–278 (2018).
[Crossref]

Silveira, E. S.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref] [PubMed]

Song, H.

H. Ahn, H. Song, D.-M. Shin, K. Kim, and J. Choi, “Emerging optical spectroscopy techniques for biomedical applications—A brief review of recent progress,” Appl. Spectrosc. Rev. 53(2-4), 264–278 (2018).
[Crossref]

St-Arnaud, K.

M. Jermyn, J. Desroches, K. Aubertin, K. St-Arnaud, W.-J. Madore, E. De Montigny, M.-C. Guiot, D. Trudel, B. C. Wilson, K. Petrecca, and F. Leblond, “A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology,” Phys. Med. Biol. 61(23), R370–R400 (2016).
[Crossref] [PubMed]

Stone, N.

I. E. Iping Petterson, J. C. Day, L. M. Fullwood, B. Gardner, and N. Stone, “Characterisation of a fibre optic Raman probe within a hypodermic needle,” Anal. Bioanal. Chem. 407(27), 8311–8320 (2015).
[Crossref] [PubMed]

J. C. Day and N. Stone, “A subcutaneous Raman needle probe,” Appl. Spectrosc. 67(3), 349–354 (2013).
[Crossref] [PubMed]

Surmacki, J. M.

J. M. Surmacki, B. J. Woodhams, A. Haslehurst, B. A. J. Ponder, and S. E. Bohndiek, “Raman micro-spectroscopy for accurate identification of primary human bronchial epithelial cells,” Sci. Rep. 8(1), 12604 (2018).
[Crossref] [PubMed]

Tanner, M. G.

Targoff, K.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref] [PubMed]

Tashiro, H.

Tello, J. A.

Thomson, R. R.

Tian, Z.

Trudel, D.

M. Jermyn, J. Desroches, K. Aubertin, K. St-Arnaud, W.-J. Madore, E. De Montigny, M.-C. Guiot, D. Trudel, B. C. Wilson, K. Petrecca, and F. Leblond, “A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology,” Phys. Med. Biol. 61(23), R370–R400 (2016).
[Crossref] [PubMed]

Tsubouchi, S.

T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120(5), 2585–2591 (2016).
[Crossref]

Verrier, N.

Wang, A.

Wang, C. Y.

Wang, Y.

S. Deng, P. Penchev, J. Liu, Y. Wang, K. Jiang, S. Dimov, Z. Zhang, Y. Liu, J. Leng, and H. Butt, “Laser directed writing of flat lenses on buckypaper,” Nanoscale 7(29), 12405–12410 (2015).
[Crossref] [PubMed]

Wei, M.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref] [PubMed]

Wilson, B. C.

M. Jermyn, J. Desroches, K. Aubertin, K. St-Arnaud, W.-J. Madore, E. De Montigny, M.-C. Guiot, D. Trudel, B. C. Wilson, K. Petrecca, and F. Leblond, “A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology,” Phys. Med. Biol. 61(23), R370–R400 (2016).
[Crossref] [PubMed]

Woodhams, B. J.

J. M. Surmacki, B. J. Woodhams, A. Haslehurst, B. A. J. Ponder, and S. E. Bohndiek, “Raman micro-spectroscopy for accurate identification of primary human bronchial epithelial cells,” Sci. Rep. 8(1), 12604 (2018).
[Crossref] [PubMed]

Yamanaka, T.

T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120(5), 2585–2591 (2016).
[Crossref]

Yu, Z.

Zhang, L.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref] [PubMed]

Zhang, Z.

S. Deng, P. Penchev, J. Liu, Y. Wang, K. Jiang, S. Dimov, Z. Zhang, Y. Liu, J. Leng, and H. Butt, “Laser directed writing of flat lenses on buckypaper,” Nanoscale 7(29), 12405–12410 (2015).
[Crossref] [PubMed]

Zheltikov, A. M.

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, and A. M. Zheltikov, “High-resolution wide-field Raman imaging through a fiber bundle,” Appl. Phys. Lett. 102(16), 161113 (2013).
[Crossref]

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, K. V. Anokhin, M. L. Hu, C. Y. Wang, and A. M. Zheltikov, “Raman detection of cell proliferation probes with antiresonance-guiding hollow fibers,” Opt. Lett. 37(22), 4642–4644 (2012).
[Crossref] [PubMed]

Zheng, C.

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (2)

I. E. Iping Petterson, J. C. Day, L. M. Fullwood, B. Gardner, and N. Stone, “Characterisation of a fibre optic Raman probe within a hypodermic needle,” Anal. Bioanal. Chem. 407(27), 8311–8320 (2015).
[Crossref] [PubMed]

M. Kirsch, G. Schackert, R. Salzer, and C. Krafft, “Raman spectroscopic imaging for in vivo detection of cerebral brain metastases,” Anal. Bioanal. Chem. 398(4), 1707–1713 (2010).
[Crossref] [PubMed]

Analyst (Lond.) (1)

K. A. Esmonde-White, F. W. Esmonde-White, M. D. Morris, and B. J. Roessler, “Fiber-optic Raman spectroscopy of joint tissues,” Analyst (Lond.) 136(8), 1675–1685 (2011).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, and A. M. Zheltikov, “High-resolution wide-field Raman imaging through a fiber bundle,” Appl. Phys. Lett. 102(16), 161113 (2013).
[Crossref]

Appl. Spectrosc. (2)

Appl. Spectrosc. Rev. (1)

H. Ahn, H. Song, D.-M. Shin, K. Kim, and J. Choi, “Emerging optical spectroscopy techniques for biomedical applications—A brief review of recent progress,” Appl. Spectrosc. Rev. 53(2-4), 264–278 (2018).
[Crossref]

Biomed. Opt. Express (1)

Expert Rev. Med. Devices (1)

I. Notingher and L. L. Hench, “Raman microspectroscopy: a noninvasive tool for studies of individual living cells in vitro,” Expert Rev. Med. Devices 3(2), 215–234 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

T. Yamanaka, H. Nakagawa, M. Ochida, S. Tsubouchi, Y. Domi, T. Doi, T. Abe, and Z. Ogumi, “Ultrafine fiber Raman probe with high spatial resolution and fluorescence noise reduction,” J. Phys. Chem. C 120(5), 2585–2591 (2016).
[Crossref]

Nanoscale (1)

S. Deng, P. Penchev, J. Liu, Y. Wang, K. Jiang, S. Dimov, Z. Zhang, Y. Liu, J. Leng, and H. Butt, “Laser directed writing of flat lenses on buckypaper,” Nanoscale 7(29), 12405–12410 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

L. Shi, C. Zheng, Y. Shen, Z. Chen, E. S. Silveira, L. Zhang, M. Wei, C. Liu, C. de Sena-Tomas, K. Targoff, and W. Min, “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9(1), 2995 (2018).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (4)

Phys. Med. Biol. (1)

M. Jermyn, J. Desroches, K. Aubertin, K. St-Arnaud, W.-J. Madore, E. De Montigny, M.-C. Guiot, D. Trudel, B. C. Wilson, K. Petrecca, and F. Leblond, “A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology,” Phys. Med. Biol. 61(23), R370–R400 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

J. M. Surmacki, B. J. Woodhams, A. Haslehurst, B. A. J. Ponder, and S. E. Bohndiek, “Raman micro-spectroscopy for accurate identification of primary human bronchial epithelial cells,” Sci. Rep. 8(1), 12604 (2018).
[Crossref] [PubMed]

Vib. Spectrosc. (1)

R. S. Das and Y. K. Agrawal, “Raman spectroscopy: recent advancements, techniques and applications,” Vib. Spectrosc. 57(2), 163–176 (2011).
[Crossref]

Other (1)

P. Colomban, “Potential and drawbacks of Raman (micro) spectrometry for the understanding of iron and steel corrosion,” in New Trends and Developments in Automotive System Engineering (InTech, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental Setup. The beam is expanded by the telescope formed by lenses L1-L2 and is split in two arms with the polarizing beam splitter PBS1. The other beam is focused on the sapphire fiber facet with the objective OBJ2. The output of the fiber is imaged on the CMOS sensor through the 4f imaging system (OBJ1 and L3). The reference beam is combined with the image by reflecting on the non-polarizing beam splitter BS1 to generate a hologram. The phase conjugation beam is generated by the reference beam reading out the computed phase pattern loaded onto the SLM. The phase pattern was obtained by Fourier transform. The phase conjugation beam is redirected towards the fiber by reflecting again on BS1. The quality of the generated focus is examined by the imaging system composed by OBJ2, BS2 and L4 on camera 2 in reflection.
Fig. 2
Fig. 2 (a) Schematic of DPC spots with difference distances from the sapphire fiber face. (b-e) DPC spot beam shape on the fiber axis at 30 μm, 90 μm, 270 μm, and 450 μm away from the facet, respectively. (f-i) enlarged images of corresponding spots at 30 μm, 90 μm, 270 μm, and 450 μm from the fiberwith spot sizes 0.63 μm, 1.01 μm, 2.03 μm, and 3.33 μm. The sizes was calculated by the full width at half maximum of curves in (b)-(e).
Fig. 3
Fig. 3 Raman signal from sapphire fiber. The spectrum was taken when the DPC spot is on the fiber facet, with the object beam blocked. The illumination light is 532 nm wavelength laser (Verdi-10V, Coherent, Santa Clara, CA), with power on the fiber facet approximately 13.7 mW.
Fig. 4
Fig. 4 Raman imaging of Polystyrene beads. (a) Optical image of multiple polystyrene beads (the speckled image comes from the coherent 532 nm illumination through the sapphire). (b) Raman spectrum of the beads in (a), when the DPC spots focus on one of the beads. (c) Raman image taken at 1005.4 cm−1 in the scanning area of 30 µm × 30 µm shown in (a), step size 1 µm. (d) Optical image of two polystyrene beads. (e) Raman image taken at 1005.4 obtained with scanning step 0.5 µm (f) Raman image of the single bead in (e) taken 14 hours later.
Fig. 5
Fig. 5 Raman images of single polystyrene bead and CaSO4 agglomerations. (a) Optical image of single polystyrene bead and CaSO4 agglomerations with white light as illumination. (b) Raman spectrum of polystyrene bead (1005.4 cm−1) and CaSO4 agglomerations (1011.1 cm−1). (c, d) Scanned Raman image taken at 1005.4 cm−1 and 1011.1 cm−1 respectively with scanning step 0.5 µm.
Fig. 6
Fig. 6 Raman imaging of Carbon Nanotube (CNT) paper. (a) Optical image of CNT paper. The yellow rectangle (30 µm × 30 µm) is the scanning area, with step 1 µm. (b) Raman spectrum when the DPC spot focus on CNT paper, with power around 12-14 mW, acquisition time 30 s. (c) Raman imaging of CNT paper reconstructed by the Raman peak 1597.6 cm−1.

Metrics