Abstract

Plasmonic modes at mid-infrared wavelengths in elliptical graphene disk arrays were studied. Theoretically, analytical expressions for the modes and their dependence on the size, Fermi energy and the permittivity of substrate materials of the ellipses were derived. Experimentally, the elliptical graphene disks were fabricated and their plasmonic modes were characterized with the polarization-resolved extinction spectra. Both experimental and analytical results show that two electrical dipole modes, whose dipole moments are orthogonal to each other and along the major and minor axis of the ellipse respectively, exist in the elliptical disks. By adjusting the polarization directions of the incident light, the two orthogonal plasmonic modes could be excited either together or separately, showing that the optical properties of elliptical graphene disks are highly polarization dependent. By using ultraviolet illumination to change the Fermi energy of the elliptical graphene disks, the two modes can be tuned dynamically. Moreover, the highly polarization dependent modes are able to couple with the surface phonons of the substrate, leading to polarized plasmon-phonon polaritons. Thus the elliptical graphene disks can provide more degrees of freedom to design the mid-infrared polarization-resolved photonic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electrical control of second harmonic generation in a graphene-based plasmonic Fano structure

Fajun Xiao, Weiren Zhu, Wuyun Shang, Ting Mei, Malin Premaratne, and Jianlin Zhao
Opt. Express 23(3) 3236-3244 (2015)

Symmetry breaking induced excitations of dark plasmonic modes in multilayer graphene ribbons

Y. Y. Dai, A. Chen, Y. Y. Xia, D. Z. Han, X. H. Liu, L. Shi, and J. Zi
Opt. Express 24(18) 20021-20028 (2016)

Enhanced magnetic circular dichroism by subradiant plasmonic mode in symmetric graphene oligomers at low static magnetic fields

J. Q. Liu, S. Wu, P. Wang, Q. K. Wang, Y. B. Xie, G. H. Sun, and Y. X. Zhou
Opt. Express 27(2) 567-575 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749 (2012).
    [Crossref]
  2. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899 (2014).
    [Crossref]
  3. T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
    [Crossref] [PubMed]
  4. F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1, 135–152 (2014).
    [Crossref]
  5. S. Xiao, X. Zhu, B. H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11, 117801 (2016).
    [Crossref]
  6. F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
    [Crossref] [PubMed]
  7. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630 (2011).
    [Crossref] [PubMed]
  8. Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
    [Crossref] [PubMed]
  9. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. García de Abajo, R. Hillenbrand, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77 (2012).
    [Crossref] [PubMed]
  10. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS nano 6, 431–440 (2011).
    [Crossref] [PubMed]
  11. T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Physics: Condens. Matter 25, 215301 (2013).
  12. H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12, 3766–3771 (2012).
    [Crossref] [PubMed]
  13. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
    [Crossref] [PubMed]
  14. X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon–phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14, 2907–2913 (2014).
    [Crossref] [PubMed]
  15. Y. Dai, A. Chen, Y. Xia, D. Han, X. Liu, L. Shi, and J. Zi, “Symmetry breaking induced excitations of dark plasmonic modes in multilayer graphene ribbons,” Opt. Express 24, 20021–20028 (2016).
    [Crossref] [PubMed]
  16. Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
    [Crossref] [PubMed]
  17. A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
    [Crossref]
  18. V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures,” Nano Lett. 14, 3876–3880 (2014).
    [Crossref] [PubMed]
  19. H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7, 394 (2013).
    [Crossref]
  20. I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide,” ACS Photonics 1, 1151–1155 (2014).
    [Crossref]
  21. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611 (2010).
    [Crossref]
  22. X. Yang, Z. Sun, T. Low, H. Hu, X. Guo, F. J. García de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-based plasmon-enhanced infrared spectroscopy,” Adv. Mater. 30, 1704896 (2018).
    [Crossref]
  23. A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear optics with 2D layered materials,” Adv. Mater. 30, 1705963 (2018).
    [Crossref]
  24. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
    [Crossref] [PubMed]
  25. H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
    [Crossref] [PubMed]
  26. Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
    [Crossref] [PubMed]
  27. X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
    [Crossref] [PubMed]
  28. M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15, 7099–7104 (2015).
    [Crossref] [PubMed]
  29. V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
    [Crossref] [PubMed]
  30. S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7, 12323 (2016).
    [Crossref] [PubMed]
  31. H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage,” Nanoscale 7, 19493–19500 (2015).
    [Crossref] [PubMed]
  32. V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett. 13, 2541–2547 (2013).
    [Crossref] [PubMed]
  33. X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21, 28438–28443 (2013).
    [Crossref]
  34. D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon–plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15, 2582–2587 (2015).
    [Crossref] [PubMed]
  35. Z. Fei, M. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. McLeod, M. Liu, K. Post, S. Zhu, G. Janssen, M. M. Fogler, and D. N. Basov, “Edge and surface plasmons in graphene nanoribbons,” Nano Lett. 15, 8271–8276 (2015).
    [Crossref] [PubMed]
  36. J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
    [Crossref]
  37. E. Mobini, A. Rahimzadegan, R. Alaee, and C. Rockstuhl, “Optical alignment of oval graphene flakes,” Opt. Lett. 42, 1039 (2017).
    [Crossref] [PubMed]
  38. R. Yu, L. M. Liz-Marzán, and F. J. García de Abajo, “Universal analytical modeling of plasmonic nanoparticles,” TUTORIAL REVIEW 8, 175 (2018).
  39. B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8, 318 (2006).
    [Crossref]
  40. E. Hwang and S. D. Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75, 205418 (2007).
    [Crossref]
  41. B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
    [Crossref]
  42. X. Guo, H. Hu, B. Liao, X. Zhu, X. Yang, and Q. Dai, “Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy,” Nanotechnology 29, 184004 (2018).
    [Crossref] [PubMed]
  43. K. J. A. Ooi and D. T. Tan, “Nonlineargraphene plasmonics,” Proc.R.Soc.A 473, 20170433 (2017).
  44. S. de Vega and F. J. García de Abajo, “Plasmon Generation through Electron Tunneling in Graphene,” ACS Photonics 4, 2367 (2017).
    [Crossref]
  45. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).
  46. J. D. Jackson, Classical electrodynamics (John Wiley & Sons, 2012).
  47. Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, L. Shi, and J. Zi, “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
    [Crossref]

2018 (6)

X. Yang, Z. Sun, T. Low, H. Hu, X. Guo, F. J. García de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-based plasmon-enhanced infrared spectroscopy,” Adv. Mater. 30, 1704896 (2018).
[Crossref]

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear optics with 2D layered materials,” Adv. Mater. 30, 1705963 (2018).
[Crossref]

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

R. Yu, L. M. Liz-Marzán, and F. J. García de Abajo, “Universal analytical modeling of plasmonic nanoparticles,” TUTORIAL REVIEW 8, 175 (2018).

X. Guo, H. Hu, B. Liao, X. Zhu, X. Yang, and Q. Dai, “Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy,” Nanotechnology 29, 184004 (2018).
[Crossref] [PubMed]

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, L. Shi, and J. Zi, “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

2017 (3)

K. J. A. Ooi and D. T. Tan, “Nonlineargraphene plasmonics,” Proc.R.Soc.A 473, 20170433 (2017).

S. de Vega and F. J. García de Abajo, “Plasmon Generation through Electron Tunneling in Graphene,” ACS Photonics 4, 2367 (2017).
[Crossref]

E. Mobini, A. Rahimzadegan, R. Alaee, and C. Rockstuhl, “Optical alignment of oval graphene flakes,” Opt. Lett. 42, 1039 (2017).
[Crossref] [PubMed]

2016 (4)

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7, 12323 (2016).
[Crossref] [PubMed]

S. Xiao, X. Zhu, B. H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11, 117801 (2016).
[Crossref]

Y. Dai, A. Chen, Y. Xia, D. Han, X. Liu, L. Shi, and J. Zi, “Symmetry breaking induced excitations of dark plasmonic modes in multilayer graphene ribbons,” Opt. Express 24, 20021–20028 (2016).
[Crossref] [PubMed]

2015 (8)

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage,” Nanoscale 7, 19493–19500 (2015).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref] [PubMed]

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15, 7099–7104 (2015).
[Crossref] [PubMed]

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
[Crossref] [PubMed]

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon–plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15, 2582–2587 (2015).
[Crossref] [PubMed]

Z. Fei, M. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. McLeod, M. Liu, K. Post, S. Zhu, G. Janssen, M. M. Fogler, and D. N. Basov, “Edge and surface plasmons in graphene nanoribbons,” Nano Lett. 15, 8271–8276 (2015).
[Crossref] [PubMed]

2014 (7)

Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures,” Nano Lett. 14, 3876–3880 (2014).
[Crossref] [PubMed]

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide,” ACS Photonics 1, 1151–1155 (2014).
[Crossref]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899 (2014).
[Crossref]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
[Crossref] [PubMed]

F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1, 135–152 (2014).
[Crossref]

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon–phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14, 2907–2913 (2014).
[Crossref] [PubMed]

2013 (6)

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Physics: Condens. Matter 25, 215301 (2013).

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7, 394 (2013).
[Crossref]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref] [PubMed]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett. 13, 2541–2547 (2013).
[Crossref] [PubMed]

X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21, 28438–28443 (2013).
[Crossref]

2012 (5)

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749 (2012).
[Crossref]

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12, 3766–3771 (2012).
[Crossref] [PubMed]

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. García de Abajo, R. Hillenbrand, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77 (2012).
[Crossref] [PubMed]

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
[Crossref]

2011 (3)

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS nano 6, 431–440 (2011).
[Crossref] [PubMed]

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630 (2011).
[Crossref] [PubMed]

2010 (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611 (2010).
[Crossref]

2007 (1)

E. Hwang and S. D. Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75, 205418 (2007).
[Crossref]

2006 (1)

B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8, 318 (2006).
[Crossref]

Ajayan, P. M.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref] [PubMed]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref] [PubMed]

Alaee, R.

Alonso-González, P.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. García de Abajo, R. Hillenbrand, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77 (2012).
[Crossref] [PubMed]

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Andreev, G.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Atwater, H.

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures,” Nano Lett. 14, 3876–3880 (2014).
[Crossref] [PubMed]

Atwater, H. A.

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7, 12323 (2016).
[Crossref] [PubMed]

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett. 13, 2541–2547 (2013).
[Crossref] [PubMed]

Autere, A.

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear optics with 2D layered materials,” Adv. Mater. 30, 1705963 (2018).
[Crossref]

Avouris, P.

X. Yang, Z. Sun, T. Low, H. Hu, X. Guo, F. J. García de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-based plasmon-enhanced infrared spectroscopy,” Adv. Mater. 30, 1704896 (2018).
[Crossref]

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon–plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15, 2582–2587 (2015).
[Crossref] [PubMed]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
[Crossref] [PubMed]

Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
[Crossref] [PubMed]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7, 394 (2013).
[Crossref]

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12, 3766–3771 (2012).
[Crossref] [PubMed]

Badioli, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. García de Abajo, R. Hillenbrand, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77 (2012).
[Crossref] [PubMed]

Bai, B.

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage,” Nanoscale 7, 19493–19500 (2015).
[Crossref] [PubMed]

Bai, Y.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, L. Shi, and J. Zi, “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Bao, W.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Basov, D. N.

Z. Fei, M. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. McLeod, M. Liu, K. Post, S. Zhu, G. Janssen, M. M. Fogler, and D. N. Basov, “Edge and surface plasmons in graphene nanoribbons,” Nano Lett. 15, 8271–8276 (2015).
[Crossref] [PubMed]

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630 (2011).
[Crossref] [PubMed]

Bøggild, P.

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon–phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14, 2907–2913 (2014).
[Crossref] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611 (2010).
[Crossref]

Boyd, A. K.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15, 7099–7104 (2015).
[Crossref] [PubMed]

Brar, V. W.

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7, 12323 (2016).
[Crossref] [PubMed]

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures,” Nano Lett. 14, 3876–3880 (2014).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett. 13, 2541–2547 (2013).
[Crossref] [PubMed]

Cai, X.

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref] [PubMed]

Camara, N.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. García de Abajo, R. Hillenbrand, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77 (2012).
[Crossref] [PubMed]

Carrega, M.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Castro-Neto, A. H.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Centeno, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. García de Abajo, R. Hillenbrand, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77 (2012).
[Crossref] [PubMed]

Chang, D. E.

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref] [PubMed]

Chen, A.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, L. Shi, and J. Zi, “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Y. Dai, A. Chen, Y. Xia, D. Han, X. Liu, L. Shi, and J. Zi, “Symmetry breaking induced excitations of dark plasmonic modes in multilayer graphene ribbons,” Opt. Express 24, 20021–20028 (2016).
[Crossref] [PubMed]

Chen, H.

Chen, J.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. García de Abajo, R. Hillenbrand, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77 (2012).
[Crossref] [PubMed]

Chen, X.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

Choi, M.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures,” Nano Lett. 14, 3876–3880 (2014).
[Crossref] [PubMed]

Christensen, J.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS nano 6, 431–440 (2011).
[Crossref] [PubMed]

Dai, Q.

X. Guo, H. Hu, B. Liao, X. Zhu, X. Yang, and Q. Dai, “Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy,” Nanotechnology 29, 184004 (2018).
[Crossref] [PubMed]

X. Yang, Z. Sun, T. Low, H. Hu, X. Guo, F. J. García de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-based plasmon-enhanced infrared spectroscopy,” Adv. Mater. 30, 1704896 (2018).
[Crossref]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage,” Nanoscale 7, 19493–19500 (2015).
[Crossref] [PubMed]

Dai, S.

Z. Fei, M. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. McLeod, M. Liu, K. Post, S. Zhu, G. Janssen, M. M. Fogler, and D. N. Basov, “Edge and surface plasmons in graphene nanoribbons,” Nano Lett. 15, 8271–8276 (2015).
[Crossref] [PubMed]

Dai, Y.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, L. Shi, and J. Zi, “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear optics with 2D layered materials,” Adv. Mater. 30, 1705963 (2018).
[Crossref]

Y. Dai, A. Chen, Y. Xia, D. Han, X. Liu, L. Shi, and J. Zi, “Symmetry breaking induced excitations of dark plasmonic modes in multilayer graphene ribbons,” Opt. Express 24, 20021–20028 (2016).
[Crossref] [PubMed]

X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21, 28438–28443 (2013).
[Crossref]

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Physics: Condens. Matter 25, 215301 (2013).

Daniels, K. M.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15, 7099–7104 (2015).
[Crossref] [PubMed]

de Vega, S.

S. de Vega and F. J. García de Abajo, “Plasmon Generation through Electron Tunneling in Graphene,” ACS Photonics 4, 2367 (2017).
[Crossref]

Dominguez, G.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Drew, H. D.

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref] [PubMed]

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15, 7099–7104 (2015).
[Crossref] [PubMed]

Du, G.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, L. Shi, and J. Zi, “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Dubey, M.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899 (2014).
[Crossref]

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Faist, J.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide,” ACS Photonics 1, 1151–1155 (2014).
[Crossref]

Fang, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref] [PubMed]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref] [PubMed]

Farmer, D. B.

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon–plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15, 2582–2587 (2015).
[Crossref] [PubMed]

Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
[Crossref] [PubMed]

Fei, Z.

Z. Fei, M. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. McLeod, M. Liu, K. Post, S. Zhu, G. Janssen, M. M. Fogler, and D. N. Basov, “Edge and surface plasmons in graphene nanoribbons,” Nano Lett. 15, 8271–8276 (2015).
[Crossref] [PubMed]

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Ferrari, A.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611 (2010).
[Crossref]

Fogler, M. M.

Z. Fei, M. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. McLeod, M. Liu, K. Post, S. Zhu, G. Janssen, M. M. Fogler, and D. N. Basov, “Edge and surface plasmons in graphene nanoribbons,” Nano Lett. 15, 8271–8276 (2015).
[Crossref] [PubMed]

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Freitag, M.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7, 394 (2013).
[Crossref]

Fuhrer, M. S.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15, 7099–7104 (2015).
[Crossref] [PubMed]

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref] [PubMed]

G. De Abajo, F. J.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Gan, C. H.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide,” ACS Photonics 1, 1151–1155 (2014).
[Crossref]

Gao, Y.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

García de Abajo, F. J.

X. Yang, Z. Sun, T. Low, H. Hu, X. Guo, F. J. García de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-based plasmon-enhanced infrared spectroscopy,” Adv. Mater. 30, 1704896 (2018).
[Crossref]

R. Yu, L. M. Liz-Marzán, and F. J. García de Abajo, “Universal analytical modeling of plasmonic nanoparticles,” TUTORIAL REVIEW 8, 175 (2018).

S. de Vega and F. J. García de Abajo, “Plasmon Generation through Electron Tunneling in Graphene,” ACS Photonics 4, 2367 (2017).
[Crossref]

F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1, 135–152 (2014).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref] [PubMed]

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref] [PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS nano 6, 431–440 (2011).
[Crossref] [PubMed]

García de Abajo, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. García de Abajo, R. Hillenbrand, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77 (2012).
[Crossref] [PubMed]

Gaskill, D. K.

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref] [PubMed]

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15, 7099–7104 (2015).
[Crossref] [PubMed]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630 (2011).
[Crossref] [PubMed]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630 (2011).
[Crossref] [PubMed]

Godignon, P.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. García de Abajo, R. Hillenbrand, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77 (2012).
[Crossref] [PubMed]

Goldflam, M.

Z. Fei, M. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. McLeod, M. Liu, K. Post, S. Zhu, G. Janssen, M. M. Fogler, and D. N. Basov, “Edge and surface plasmons in graphene nanoribbons,” Nano Lett. 15, 8271–8276 (2015).
[Crossref] [PubMed]

Grigorenko, A.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749 (2012).
[Crossref]

Guan, F.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, L. Shi, and J. Zi, “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Guinea, F.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7, 394 (2013).
[Crossref]

B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8, 318 (2006).
[Crossref]

Guo, X.

X. Guo, H. Hu, B. Liao, X. Zhu, X. Yang, and Q. Dai, “Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy,” Nanotechnology 29, 184004 (2018).
[Crossref] [PubMed]

X. Yang, Z. Sun, T. Low, H. Hu, X. Guo, F. J. García de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-based plasmon-enhanced infrared spectroscopy,” Adv. Mater. 30, 1704896 (2018).
[Crossref]

Halas, N. J.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref] [PubMed]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref] [PubMed]

Han, D.

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630 (2011).
[Crossref] [PubMed]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611 (2010).
[Crossref]

Heinz, T. F.

Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
[Crossref] [PubMed]

Hillenbrand, R.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. García de Abajo, R. Hillenbrand, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77 (2012).
[Crossref] [PubMed]

Hone, J.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630 (2011).
[Crossref] [PubMed]

Hu, D.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage,” Nanoscale 7, 19493–19500 (2015).
[Crossref] [PubMed]

Hu, H.

X. Yang, Z. Sun, T. Low, H. Hu, X. Guo, F. J. García de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-based plasmon-enhanced infrared spectroscopy,” Adv. Mater. 30, 1704896 (2018).
[Crossref]

X. Guo, H. Hu, B. Liao, X. Zhu, X. Yang, and Q. Dai, “Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy,” Nanotechnology 29, 184004 (2018).
[Crossref] [PubMed]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage,” Nanoscale 7, 19493–19500 (2015).
[Crossref] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).

Huth, F.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. García de Abajo, R. Hillenbrand, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77 (2012).
[Crossref] [PubMed]

Hwang, E.

E. Hwang and S. D. Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75, 205418 (2007).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical electrodynamics (John Wiley & Sons, 2012).

Jadidi, M. M.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15, 7099–7104 (2015).
[Crossref] [PubMed]

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref] [PubMed]

Jang, M. S.

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7, 12323 (2016).
[Crossref] [PubMed]

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures,” Nano Lett. 14, 3876–3880 (2014).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett. 13, 2541–2547 (2013).
[Crossref] [PubMed]

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Janssen, G.

Z. Fei, M. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. McLeod, M. Liu, K. Post, S. Zhu, G. Janssen, M. M. Fogler, and D. N. Basov, “Edge and surface plasmons in graphene nanoribbons,” Nano Lett. 15, 8271–8276 (2015).
[Crossref] [PubMed]

Jiang, T.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, L. Shi, and J. Zi, “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630 (2011).
[Crossref] [PubMed]

Jussila, H.

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear optics with 2D layered materials,” Adv. Mater. 30, 1705963 (2018).
[Crossref]

Keilmann, F.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Kim, L.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
[Crossref] [PubMed]

Kim, L. B.

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures,” Nano Lett. 14, 3876–3880 (2014).
[Crossref] [PubMed]

Kim, S.

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7, 12323 (2016).
[Crossref] [PubMed]

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures,” Nano Lett. 14, 3876–3880 (2014).
[Crossref] [PubMed]

Koppens, F.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. García de Abajo, R. Hillenbrand, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77 (2012).
[Crossref] [PubMed]

Koppens, F. H.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS nano 6, 431–440 (2011).
[Crossref] [PubMed]

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref] [PubMed]

Koppens, F. H. L.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Larsen, M. B.

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon–phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14, 2907–2913 (2014).
[Crossref] [PubMed]

Lau, C. N.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Li, B. H.

S. Xiao, X. Zhu, B. H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11, 117801 (2016).
[Crossref]

Li, P.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide,” ACS Photonics 1, 1151–1155 (2014).
[Crossref]

Li, X.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7, 394 (2013).
[Crossref]

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12, 3766–3771 (2012).
[Crossref] [PubMed]

Li, Y.

Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
[Crossref] [PubMed]

Li, Z.

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage,” Nanoscale 7, 19493–19500 (2015).
[Crossref] [PubMed]

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12, 3766–3771 (2012).
[Crossref] [PubMed]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630 (2011).
[Crossref] [PubMed]

Liao, B.

X. Guo, H. Hu, B. Liao, X. Zhu, X. Yang, and Q. Dai, “Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy,” Nanotechnology 29, 184004 (2018).
[Crossref] [PubMed]

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Lipsanen, H.

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear optics with 2D layered materials,” Adv. Mater. 30, 1705963 (2018).
[Crossref]

Liu, K.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Liu, M.

Z. Fei, M. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. McLeod, M. Liu, K. Post, S. Zhu, G. Janssen, M. M. Fogler, and D. N. Basov, “Edge and surface plasmons in graphene nanoribbons,” Nano Lett. 15, 8271–8276 (2015).
[Crossref] [PubMed]

Liu, P. Q.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide,” ACS Photonics 1, 1151–1155 (2014).
[Crossref]

Liu, R.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

Liu, X.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, L. Shi, and J. Zi, “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Y. Dai, A. Chen, Y. Xia, D. Han, X. Liu, L. Shi, and J. Zi, “Symmetry breaking induced excitations of dark plasmonic modes in multilayer graphene ribbons,” Opt. Express 24, 20021–20028 (2016).
[Crossref] [PubMed]

X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21, 28438–28443 (2013).
[Crossref]

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Physics: Condens. Matter 25, 215301 (2013).

Liu, Z.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref] [PubMed]

Liz-Marzán, L. M.

R. Yu, L. M. Liz-Marzán, and F. J. García de Abajo, “Universal analytical modeling of plasmonic nanoparticles,” TUTORIAL REVIEW 8, 175 (2018).

Lopez, J. J.

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures,” Nano Lett. 14, 3876–3880 (2014).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett. 13, 2541–2547 (2013).
[Crossref] [PubMed]

Low, T.

X. Yang, Z. Sun, T. Low, H. Hu, X. Guo, F. J. García de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-based plasmon-enhanced infrared spectroscopy,” Adv. Mater. 30, 1704896 (2018).
[Crossref]

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon–plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15, 2582–2587 (2015).
[Crossref] [PubMed]

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
[Crossref] [PubMed]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7, 394 (2013).
[Crossref]

Lundeberg, M. B.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Luxmoore, I. J.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide,” ACS Photonics 1, 1151–1155 (2014).
[Crossref]

Ma, L.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref] [PubMed]

Manjavacas, A.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS nano 6, 431–440 (2011).
[Crossref] [PubMed]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630 (2011).
[Crossref] [PubMed]

Mauser, K. W.

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7, 12323 (2016).
[Crossref] [PubMed]

McLeod, A.

Z. Fei, M. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. McLeod, M. Liu, K. Post, S. Zhu, G. Janssen, M. M. Fogler, and D. N. Basov, “Edge and surface plasmons in graphene nanoribbons,” Nano Lett. 15, 8271–8276 (2015).
[Crossref] [PubMed]

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Meng, X.

Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
[Crossref] [PubMed]

Mobini, E.

Mortensen, N. A.

S. Xiao, X. Zhu, B. H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11, 117801 (2016).
[Crossref]

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon–phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14, 2907–2913 (2014).
[Crossref] [PubMed]

Murphy, T. E.

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref] [PubMed]

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15, 7099–7104 (2015).
[Crossref] [PubMed]

Myers-Ward, R. L.

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15, 7099–7104 (2015).
[Crossref] [PubMed]

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref] [PubMed]

Nash, G. R.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide,” ACS Photonics 1, 1151–1155 (2014).
[Crossref]

Nordlander, P.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref] [PubMed]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref] [PubMed]

Novoselov, K.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749 (2012).
[Crossref]

Nyakiti, L. O.

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref] [PubMed]

Ooi, K. J. A.

K. J. A. Ooi and D. T. Tan, “Nonlineargraphene plasmonics,” Proc.R.Soc.A 473, 20170433 (2017).

Osgood, R. M.

Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
[Crossref] [PubMed]

Osmond, J.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. García de Abajo, R. Hillenbrand, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77 (2012).
[Crossref] [PubMed]

Pedersen, T. G.

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon–phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14, 2907–2913 (2014).
[Crossref] [PubMed]

Pesquera, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. García de Abajo, R. Hillenbrand, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77 (2012).
[Crossref] [PubMed]

Polini, M.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749 (2012).
[Crossref]

Post, K.

Z. Fei, M. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. McLeod, M. Liu, K. Post, S. Zhu, G. Janssen, M. M. Fogler, and D. N. Basov, “Edge and surface plasmons in graphene nanoribbons,” Nano Lett. 15, 8271–8276 (2015).
[Crossref] [PubMed]

Principi, A.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Rahimzadegan, A.

Ramasubramaniam, A.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899 (2014).
[Crossref]

Rockstuhl, C.

Rodin, A.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Rodrigo, D.

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon–plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15, 2582–2587 (2015).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Sarma, S. D.

E. Hwang and S. D. Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75, 205418 (2007).
[Crossref]

Schlather, A.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref] [PubMed]

Schlather, A. E.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref] [PubMed]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630 (2011).
[Crossref] [PubMed]

Sherrott, M.

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures,” Nano Lett. 14, 3876–3880 (2014).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett. 13, 2541–2547 (2013).
[Crossref] [PubMed]

Sherrott, M. C.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
[Crossref] [PubMed]

Shi, L.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, L. Shi, and J. Zi, “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Y. Dai, A. Chen, Y. Xia, D. Han, X. Liu, L. Shi, and J. Zi, “Symmetry breaking induced excitations of dark plasmonic modes in multilayer graphene ribbons,” Opt. Express 24, 20021–20028 (2016).
[Crossref] [PubMed]

Shi, P.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

Shi, X.

X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21, 28438–28443 (2013).
[Crossref]

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Physics: Condens. Matter 25, 215301 (2013).

Sols, F.

B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8, 318 (2006).
[Crossref]

Spasenovic, M.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. García de Abajo, R. Hillenbrand, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77 (2012).
[Crossref] [PubMed]

Stauber, T.

B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8, 318 (2006).
[Crossref]

Sun, Y.

Sun, Z.

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear optics with 2D layered materials,” Adv. Mater. 30, 1705963 (2018).
[Crossref]

X. Yang, Z. Sun, T. Low, H. Hu, X. Guo, F. J. García de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-based plasmon-enhanced infrared spectroscopy,” Adv. Mater. 30, 1704896 (2018).
[Crossref]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611 (2010).
[Crossref]

Sushkov, A. B.

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref] [PubMed]

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15, 7099–7104 (2015).
[Crossref] [PubMed]

Sweatlock, L. A.

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
[Crossref] [PubMed]

Tan, D. T.

K. J. A. Ooi and D. T. Tan, “Nonlineargraphene plasmonics,” Proc.R.Soc.A 473, 20170433 (2017).

Taniguchi, T.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Teng, J.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
[Crossref]

Thiemens, M.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Thongrattanasiri, S.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref] [PubMed]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. García de Abajo, R. Hillenbrand, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77 (2012).
[Crossref] [PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS nano 6, 431–440 (2011).
[Crossref] [PubMed]

Tolstova, Y.

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7, 12323 (2016).
[Crossref] [PubMed]

Valmorra, F.

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide,” ACS Photonics 1, 1151–1155 (2014).
[Crossref]

Vignale, G.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Wagner, M.

Z. Fei, M. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. McLeod, M. Liu, K. Post, S. Zhu, G. Janssen, M. M. Fogler, and D. N. Basov, “Edge and surface plasmons in graphene nanoribbons,” Nano Lett. 15, 8271–8276 (2015).
[Crossref] [PubMed]

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Wang, B.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
[Crossref]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630 (2011).
[Crossref] [PubMed]

Wang, H.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899 (2014).
[Crossref]

Wang, W.

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon–phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14, 2907–2913 (2014).
[Crossref] [PubMed]

Wang, Y.

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear optics with 2D layered materials,” Adv. Mater. 30, 1705963 (2018).
[Crossref]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref] [PubMed]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref] [PubMed]

Watanabe, K.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Woessner, A.

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Wu, J. S.

Z. Fei, M. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. McLeod, M. Liu, K. Post, S. Zhu, G. Janssen, M. M. Fogler, and D. N. Basov, “Edge and surface plasmons in graphene nanoribbons,” Nano Lett. 15, 8271–8276 (2015).
[Crossref] [PubMed]

Wu, S.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, L. Shi, and J. Zi, “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Wu, Y.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7, 394 (2013).
[Crossref]

Wunsch, B.

B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8, 318 (2006).
[Crossref]

Xia, F.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899 (2014).
[Crossref]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7, 394 (2013).
[Crossref]

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12, 3766–3771 (2012).
[Crossref] [PubMed]

Xia, Y.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, L. Shi, and J. Zi, “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Y. Dai, A. Chen, Y. Xia, D. Han, X. Liu, L. Shi, and J. Zi, “Symmetry breaking induced excitations of dark plasmonic modes in multilayer graphene ribbons,” Opt. Express 24, 20021–20028 (2016).
[Crossref] [PubMed]

Xiao, D.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899 (2014).
[Crossref]

Xiao, S.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

S. Xiao, X. Zhu, B. H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11, 117801 (2016).
[Crossref]

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon–phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14, 2907–2913 (2014).
[Crossref] [PubMed]

Xu, X.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

Yan, H.

Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
[Crossref] [PubMed]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7, 394 (2013).
[Crossref]

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12, 3766–3771 (2012).
[Crossref] [PubMed]

Yan, W.

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon–phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14, 2907–2913 (2014).
[Crossref] [PubMed]

Yang, X.

X. Guo, H. Hu, B. Liao, X. Zhu, X. Yang, and Q. Dai, “Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy,” Nanotechnology 29, 184004 (2018).
[Crossref] [PubMed]

X. Yang, Z. Sun, T. Low, H. Hu, X. Guo, F. J. García de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-based plasmon-enhanced infrared spectroscopy,” Adv. Mater. 30, 1704896 (2018).
[Crossref]

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage,” Nanoscale 7, 19493–19500 (2015).
[Crossref] [PubMed]

Ye, X.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

Yi, Y.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

Yi, Z.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

Yu, R.

R. Yu, L. M. Liz-Marzán, and F. J. García de Abajo, “Universal analytical modeling of plasmonic nanoparticles,” TUTORIAL REVIEW 8, 175 (2018).

Yu, Z.

Yuan, X.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
[Crossref]

Zeng, Y.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630 (2011).
[Crossref] [PubMed]

Zhai, F.

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage,” Nanoscale 7, 19493–19500 (2015).
[Crossref] [PubMed]

Zhan, T.

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Physics: Condens. Matter 25, 215301 (2013).

Zhang, L.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Zhang, X.

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
[Crossref]

Zhang, Y.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, L. Shi, and J. Zi, “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Zhao, Z.

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

Zhou, Z.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

Zhu, S.

Z. Fei, M. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. McLeod, M. Liu, K. Post, S. Zhu, G. Janssen, M. M. Fogler, and D. N. Basov, “Edge and surface plasmons in graphene nanoribbons,” Nano Lett. 15, 8271–8276 (2015).
[Crossref] [PubMed]

Zhu, W.

Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
[Crossref] [PubMed]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7, 394 (2013).
[Crossref]

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12, 3766–3771 (2012).
[Crossref] [PubMed]

Zhu, X.

X. Guo, H. Hu, B. Liao, X. Zhu, X. Yang, and Q. Dai, “Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy,” Nanotechnology 29, 184004 (2018).
[Crossref] [PubMed]

S. Xiao, X. Zhu, B. H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11, 117801 (2016).
[Crossref]

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon–phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14, 2907–2913 (2014).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref] [PubMed]

Zi, J.

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, L. Shi, and J. Zi, “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Y. Dai, A. Chen, Y. Xia, D. Han, X. Liu, L. Shi, and J. Zi, “Symmetry breaking induced excitations of dark plasmonic modes in multilayer graphene ribbons,” Opt. Express 24, 20021–20028 (2016).
[Crossref] [PubMed]

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon–phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14, 2907–2913 (2014).
[Crossref] [PubMed]

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Physics: Condens. Matter 25, 215301 (2013).

X. Shi, D. Han, Y. Dai, Z. Yu, Y. Sun, H. Chen, X. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21, 28438–28443 (2013).
[Crossref]

Zurutuza, A.

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. García de Abajo, R. Hillenbrand, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77 (2012).
[Crossref] [PubMed]

ACS Nano (2)

T. Low and P. Avouris, “Graphene plasmonics for terahertz to mid-infrared applications,” ACS Nano 8, 1086–1101 (2014).
[Crossref] [PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS nano 6, 431–440 (2011).
[Crossref] [PubMed]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref] [PubMed]

ACS Photonics (3)

I. J. Luxmoore, C. H. Gan, P. Q. Liu, F. Valmorra, P. Li, J. Faist, and G. R. Nash, “Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide,” ACS Photonics 1, 1151–1155 (2014).
[Crossref]

F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1, 135–152 (2014).
[Crossref]

S. de Vega and F. J. García de Abajo, “Plasmon Generation through Electron Tunneling in Graphene,” ACS Photonics 4, 2367 (2017).
[Crossref]

Adv. Mater. (2)

X. Yang, Z. Sun, T. Low, H. Hu, X. Guo, F. J. García de Abajo, P. Avouris, and Q. Dai, “Nanomaterial-based plasmon-enhanced infrared spectroscopy,” Adv. Mater. 30, 1704896 (2018).
[Crossref]

A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, and Z. Sun, “Nonlinear optics with 2D layered materials,” Adv. Mater. 30, 1705963 (2018).
[Crossref]

Adv. Opt. Mater. (1)

Y. Dai, Y. Xia, T. Jiang, A. Chen, Y. Zhang, Y. Bai, G. Du, F. Guan, S. Wu, X. Liu, L. Shi, and J. Zi, “Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations,” Adv. Opt. Mater. 6, 1701081 (2018).
[Crossref]

Appl. Phys. Lett. (1)

B. Wang, X. Zhang, X. Yuan, and J. Teng, “Optical coupling of surface plasmons between graphene sheets,” Appl. Phys. Lett. 100, 131111 (2012).
[Crossref]

Front. Phys. (1)

S. Xiao, X. Zhu, B. H. Li, and N. A. Mortensen, “Graphene-plasmon polaritons: From fundamental properties to potential applications,” Front. Phys. 11, 117801 (2016).
[Crossref]

J. Physics: Condens. Matter (1)

T. Zhan, X. Shi, Y. Dai, X. Liu, and J. Zi, “Transfer matrix method for optics in graphene layers,” J. Physics: Condens. Matter 25, 215301 (2013).

Nano Lett. (11)

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12, 3766–3771 (2012).
[Crossref] [PubMed]

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, S. Kim, J. J. Lopez, L. B. Kim, M. Choi, and H. Atwater, “Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures,” Nano Lett. 14, 3876–3880 (2014).
[Crossref] [PubMed]

X. Zhu, W. Wang, W. Yan, M. B. Larsen, P. Bøggild, T. G. Pedersen, S. Xiao, J. Zi, and N. A. Mortensen, “Plasmon–phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography,” Nano Lett. 14, 2907–2913 (2014).
[Crossref] [PubMed]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref] [PubMed]

Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
[Crossref] [PubMed]

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref] [PubMed]

M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Murphy, “Tunable terahertz hybrid metal–graphene plasmons,” Nano Lett. 15, 7099–7104 (2015).
[Crossref] [PubMed]

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon–plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15, 2582–2587 (2015).
[Crossref] [PubMed]

Z. Fei, M. Goldflam, J. S. Wu, S. Dai, M. Wagner, A. McLeod, M. Liu, K. Post, S. Zhu, G. Janssen, M. M. Fogler, and D. N. Basov, “Edge and surface plasmons in graphene nanoribbons,” Nano Lett. 15, 8271–8276 (2015).
[Crossref] [PubMed]

V. W. Brar, M. S. Jang, M. Sherrott, J. J. Lopez, and H. A. Atwater, “Highly confined tunable mid-infrared plasmonics in graphene nanoresonators,” Nano Lett. 13, 2541–2547 (2013).
[Crossref] [PubMed]

Nanomaterials (1)

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic absorption enhancement in elliptical graphene arrays,” Nanomaterials 8, 175 (2018).
[Crossref]

Nanoscale (1)

H. Hu, F. Zhai, D. Hu, Z. Li, B. Bai, X. Yang, and Q. Dai, “Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage,” Nanoscale 7, 19493–19500 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

X. Guo, H. Hu, B. Liao, X. Zhu, X. Yang, and Q. Dai, “Perfect-absorption graphene metamaterials for surface-enhanced molecular fingerprint spectroscopy,” Nanotechnology 29, 184004 (2018).
[Crossref] [PubMed]

Nat. Commun. (3)

H. Hu, X. Yang, F. Zhai, D. Hu, R. Liu, K. Liu, Z. Sun, and Q. Dai, “Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons,” Nat. Commun. 7, 12334 (2016).
[Crossref] [PubMed]

V. W. Brar, M. C. Sherrott, M. S. Jang, S. Kim, L. Kim, M. Choi, L. A. Sweatlock, and H. A. Atwater, “Electronic modulation of infrared radiation in graphene plasmonic resonators,” Nat. Commun. 6, 7032 (2015).
[Crossref] [PubMed]

S. Kim, M. S. Jang, V. W. Brar, Y. Tolstova, K. W. Mauser, and H. A. Atwater, “Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays,” Nat. Commun. 7, 12323 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

A. Woessner, M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Highly confined low-loss plasmons in graphene–boron nitride heterostructures,” Nat. Mater. 14, 421 (2015).
[Crossref]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630 (2011).
[Crossref] [PubMed]

Nat. Photonics (4)

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749 (2012).
[Crossref]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899 (2014).
[Crossref]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7, 394 (2013).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611 (2010).
[Crossref]

Nature (2)

Z. Fei, A. Rodin, G. Andreev, W. Bao, A. McLeod, M. Wagner, L. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82 (2012).
[Crossref] [PubMed]

J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. García de Abajo, R. Hillenbrand, and F. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77 (2012).
[Crossref] [PubMed]

New J. Phys. (1)

B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8, 318 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

E. Hwang and S. D. Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75, 205418 (2007).
[Crossref]

Proc.R.Soc.A (1)

K. J. A. Ooi and D. T. Tan, “Nonlineargraphene plasmonics,” Proc.R.Soc.A 473, 20170433 (2017).

Science (1)

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

TUTORIAL REVIEW (1)

R. Yu, L. M. Liz-Marzán, and F. J. García de Abajo, “Universal analytical modeling of plasmonic nanoparticles,” TUTORIAL REVIEW 8, 175 (2018).

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).

J. D. Jackson, Classical electrodynamics (John Wiley & Sons, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The schematic diagram of a single graphene ellipsoid on an isotropic substrate with dielectric constant εs. Center coordinates of the ellipsoid and its image are (0,0,c) and (0,0,−c) respectively.
Fig. 2
Fig. 2 (a) The schematic diagram and the SEM image of periodic graphene ellipse arrays on BaF2. The length of semi-major axis is a, that of semi-minor axis is b, and half the length of third axis of the effective ellipsoid is c. Scale bar of the SEM image: 140 nm. (b) Experimental (upper panels) and theoretical (lower panels) extinction spectra at normal incidence with the polarization along minor axis (b) and major axis (c), respectively. From yellow line to purple line, the sizes of ellipse are: a = 77.5 nm, b = 30 nm(orange); a = 72.5 nm, b = 25 nm(green); a = 67.5 nm, b = 20 nm(blue); a = 62.5 nm, b = 15 nm(purple), respectively. In lower panel of (b) from yellow line to purple line, the extra terms Δc are: −0.07 nm, 0 nm, 0 nm, 0 nm, respectively. In lower panel of (c) from yellow to purple line, the extra terms Δc are: 0.05 nm, 0.05 nm, 0.07 nm, 0.08 nm, respectively.
Fig. 3
Fig. 3 Polarization-dependent extinction spectra of three different ellipticity structures. The upper panel are extinction spectra of normal incident light with polarizations varied from 0 to 90 degree. The lower panel shows extinction intensities for all polarization direction of the two resonant plasmonic modes. (a) round graphene disk with 45 nm radius. (b) Ellipse with a = 70 nm, b = 38 nm; (c) Ellipse with a = 70 nm, b = 32 nm.
Fig. 4
Fig. 4 (a) Redshift of the extinction spectra with illumination time. The green line shows the pristine spectrum without UV light illumination. (b) Black star line shows the variation of Fermi level with illumination time. The red dot line and the light blue dot line represent the peak shift of high-frequency and low-frequency mode, respectively.
Fig. 5
Fig. 5 Spectra measured on Si3N4/Si substrate and comparing the theoretical spectral with and without plsmon-phonon coupling. Upper panels: Red and blue lines are experimental extinction spectra with polarization direction of the incident light along minor and major axis respectively at normal incidence. Lower panels: Theoretical comparison of the extinction spectra with and without plsmon-phonon coupling.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E ind x ( x , y , z ) = E loc x α 1 V ( L ˜ 1 + x L ˜ 1 ξ ξ x )
E ind y ( x , y , z ) = E loc y α 2 V ( L ˜ 2 + y L ˜ 2 ξ ξ y )
L ˜ 1 = a b c 2 ξ d q ( a 2 + q ) ( a 2 + q ) ( b 2 + q ) ( c 2 + q )
L ˜ 2 = a b c 2 ξ d q ( b 2 + q ) ( a 2 + q ) ( b 2 + q ) ( c 2 + q )
E loc i = E inc i + E img i
E img i = E loc i α i V ε 0 ε s ε 0 + ε s A i ( 0 , 0 , 2 c )
E loc i = E inc i 1 + α i V ε 0 ε s ε 0 + ε s A i ( 0 , 0 , 2 c )
p i = ε 0 α i E loc i ε 0 α ˜ i E inc i
α ˜ i = α i 1 + α i V ε 0 ε s ε 0 + ε s A i ( 0 , 0 , 2 c )
E loc i = E inc i + E img i + E sur i
E sur i = E loc i α i V j 0 A i ( x j , y j , 0 )
E img i = E loc i α i V ε 0 ε s ε 0 + ε s A i ( x j , y j , 2 c )
α ˜ i = α i 1 + α i V β i = V ε g ε 0 ε 0 + ( L i + β i ) ( ε g ε 0 )
L 1 = a b c 2 0 d q ( a 2 + q ) ( a 2 + q ) ( b 2 + q ) ( c 2 + q )
L 2 = a b c 2 0 d q ( b 2 + q ) ( a 2 + q ) ( b 2 + q ) ( c 2 + q )
β 1 = j 0 A 1 ( x j , y j , 0 ) + ε 0 ε s ε 0 + ε s j A 1 ( x j , y j , 2 c )
β 2 = j 0 A 2 ( x j , y j , 0 ) + ε 0 ε s ε 0 + ε s j A 2 ( x j , y j , 2 c )
ε BaF 2 = 2.15 + 0.2 λ 2 λ 2 29.87 2 + 4.52 λ 2 λ 2 53.82 2
ε SiN ( k ) = ε SiN _ 0 + Λ × k 0 2 k 0 2 k 2 i × Γ × k

Metrics