Abstract

Using a plasmonic graphene ring resonator of resonant frequency 10.38 THz coupled to a plasmonic graphene waveguide, we design a lab-on-a-chip optophoresis system that can function as an efficient plasmonic force switch. Finite difference time domain numerical simulations reveal that an appropriate choice of chemical potentials of the waveguide and ring resonator keeps the proposed structure in on-resonance condition, enabling the system to selectively trap a nanoparticle. Moreover, a change of 250 meV in the ring chemical potential (i.e., equivalent to 2.029 V change in the corresponding applied bias) switches the structure to a nearly perfect off-resonance condition, releasing the trapped particle. The equivalent plasmonic switch ON/OFF ratio at the waveguide output is −15.519 dB. The designed system has the capability of trapping, sorting, controlling, and separating PS nanoparticles of diameters ≥30 nm with a THz source intensity of 14.78 mW/µm2 and ≥22 nm with 29.33 mW/µm2.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Localized optical manipulation in optical ring resonators

Haotian Wang, Xiang Wu, and Deyuan Shen
Opt. Express 23(21) 27650-27660 (2015)

All-optical trapping, relocation, and manipulation of nanoparticles using SOI ring resonators

Mahdi Sahafi and Amir Habibzadeh-Sharif
J. Opt. Soc. Am. B 36(8) 2178-2183 (2019)

Single nanoparticle trapping based on on-chip nanoslotted nanobeam cavities

Daquan Yang, Fei Gao, Qi-Tao Cao, Chuan Wang, Yuefeng Ji, and Yun-Feng Xiao
Photon. Res. 6(2) 99-108 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  2. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [Crossref] [PubMed]
  3. S. M. Block, L. S. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
    [Crossref] [PubMed]
  4. J. Zhu, Ş. K. Ozdemir, and L. J. I. P. T. L. Yang, “Optical detection of single nanoparticles with a subwavelength fiber-taper,” IEEE Photonics Technol. Lett. 23(18), 1346–1348 (2011).
    [Crossref]
  5. X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
    [Crossref] [PubMed]
  6. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
    [Crossref] [PubMed]
  7. D. Erickson, X. Serey, Y.-F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
    [Crossref] [PubMed]
  8. K. Grujic, O. Hellesø, J. Hole, and J. Wilkinson, “Sorting of polystyrene microspheres using a Y-branched optical waveguide,” Opt. Express 13(1), 1–7 (2005).
    [Crossref] [PubMed]
  9. A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
    [Crossref] [PubMed]
  10. A. H. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
    [Crossref] [PubMed]
  11. H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
    [Crossref] [PubMed]
  12. C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. de Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3(1), 2290 (2013).
    [Crossref] [PubMed]
  13. C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. de Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett. 100(10), 101103 (2012).
    [Crossref]
  14. S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
    [Crossref] [PubMed]
  15. Y.-F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
    [Crossref] [PubMed]
  16. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel-a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
    [Crossref] [PubMed]
  17. S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
    [Crossref] [PubMed]
  18. A. H. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip 10(6), 769–774 (2010).
    [Crossref] [PubMed]
  19. H. Cai and A. W. Poon, “Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator,” Opt. Lett. 36(21), 4257–4259 (2011).
    [Crossref] [PubMed]
  20. M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Designing a plasmonic optophoresis system for trapping and simultaneous sorting/counting of micro-and nano-particles,” J. Lightwave Technol. 33(16), 3453–3460 (2015).
    [Crossref]
  21. A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
    [Crossref] [PubMed]
  22. Y. Li and Y. Hu, “Localized surface plasmon-enhanced propulsion of gold nanospheres,” Appl. Phys. Lett. 102(13), 133103 (2013).
    [Crossref]
  23. J. Wu and X. Gan, “Three dimensional nanoparticle trapping enhanced by surface plasmon resonance,” Opt. Express 18(26), 27619–27626 (2010).
    [Crossref] [PubMed]
  24. A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6(5), e16258 (2017).
    [Crossref] [PubMed]
  25. J. Wang and A. W. Poon, “Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices,” Lab Chip 14(8), 1426–1436 (2014).
    [Crossref] [PubMed]
  26. H. Wang, X. Wu, and D. Shen, “Localized optical manipulation in optical ring resonators,” Opt. Express 23(21), 27650–27660 (2015).
    [Crossref] [PubMed]
  27. W. Jiao, G. Wang, Z. Ying, Y. Zou, H. P. Ho, T. Sun, Y. Huang, and X. Zhang, “Switching of nanoparticles in large-scale hybrid electro-optofluidics integration,” Opt. Lett. 41(11), 2652–2655 (2016).
    [Crossref] [PubMed]
  28. M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Plasmonic Optophoresis for Manipulating, In Situ Position Monitoring, Sensing, and 3-D Trapping of Micro/Nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23(2), 185–192 (2017).
    [Crossref]
  29. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
    [Crossref]
  30. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
    [Crossref] [PubMed]
  31. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
    [Crossref] [PubMed]
  32. M. Ghorbanzadeh, S. Darbari, and M. K. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
    [Crossref]
  33. M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes,” Sci. Rep. 7(1), 14533 (2017).
    [Crossref] [PubMed]
  34. J.-D. Kim and Y. G. Lee, “Graphene-based plasmonic tweezers,” Carbon 103, 281–290 (2016).
    [Crossref]
  35. M. Samadi, S. Vasini, S. Darbari, A. A. Khorshad, S. N. S. Reihani, and M. K. Moravvej-Farshi, “Hexagonal arrays of gold triangles as plasmonic tweezers,” Opt. Express 27(10), 14754–14766 (2019).
    [Crossref] [PubMed]
  36. M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of sensing and trapping efficiency of double nanohole apertures via enhancing the wedge plasmon polariton modes with tapered cusps,” ACS Photonics 4(5), 1108–1113 (2017).
    [Crossref]
  37. M. Yuan, L. Cheng, P. Cao, X. Li, X. He, and X. J. P. Zhang, “Optical Manipulation of Dielectric Nanoparticles with Au Micro-racetrack Resonator by Constructive Interference of Surface Plasmon Waves,” Plasmonics 13(2), 427–435 (2018).
    [Crossref]
  38. H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
    [Crossref]
  39. H.-J. Li, L.-L. Wang, J.-Q. Liu, Z.-R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
    [Crossref]
  40. J. Wang, W. B. Lu, X. B. Li, Z. H. Ni, and T. Qiu, “Graphene plasmon guided along a nanoribbon coupled with a nanoring,” J. Phys. D Appl. Phys. 47(13), 135106 (2014).
    [Crossref]
  41. F. Bonaccorso, Z. Sun, T. Hasan, and A. J. N. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  42. S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
    [Crossref] [PubMed]
  43. A. Dalili, E. Samiei, and M. Hoorfar, “A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches,” Analyst (Lond.) 144(1), 87–113 (2019).
    [Crossref] [PubMed]
  44. J. Kim and J. H. Shin, “Stable, free-space optical trapping and manipulation of sub-micron particles in an integrated microfluidic chip,” Sci. Rep. 6(1), 33842 (2016).
    [Crossref] [PubMed]
  45. X. Gu, I.-T. Lin, and J.-M. Liu, “Extremely confined terahertz surface plasmon-polaritons in graphene-metal structures,” Appl. Phys. Lett. 103(7), 071103 (2013).
    [Crossref]
  46. M. Yarahmadi, M. K. Moravvej-Farshi, and L. Yousefi, “Subwavelength graphene-based plasmonic THz switches and logic gates,” IEEE Trans. THz Sci. and Technol. 5(5), 725–731 (2015).
    [Crossref]
  47. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
    [Crossref] [PubMed]
  48. G. W. Hanson, E. Forati, W. Linz, and A. B. Yakovlev, “Excitation of terahertz surface plasmons on graphene surfaces by an elementary dipole and quantum emitter: Strong electrodynamic effect of dielectric support,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235440 (2012).
    [Crossref]
  49. H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
    [Crossref]
  50. M. M. Mehrnegar, S. Darbari, H. Ramezani, and M. K. Moravvej-Farshi, “Designing Graphene-based Multi-Mode Acousto-Plasmonic Devices,” J. Lightwave Technol. 37(9), 2126–2132 (2019).
    [Crossref]
  51. S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, “Quantum finite-size effects in graphene plasmons,” ACS Nano 6(2), 1766–1775 (2012).
    [Crossref] [PubMed]
  52. J. Gosciniak and D. T. H. Tan, “Theoretical investigation of graphene-based photonic modulators,” Sci. Rep. 3, 1897 (2013).

2019 (3)

2018 (1)

M. Yuan, L. Cheng, P. Cao, X. Li, X. He, and X. J. P. Zhang, “Optical Manipulation of Dielectric Nanoparticles with Au Micro-racetrack Resonator by Constructive Interference of Surface Plasmon Waves,” Plasmonics 13(2), 427–435 (2018).
[Crossref]

2017 (5)

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of sensing and trapping efficiency of double nanohole apertures via enhancing the wedge plasmon polariton modes with tapered cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref] [PubMed]

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6(5), e16258 (2017).
[Crossref] [PubMed]

M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Plasmonic Optophoresis for Manipulating, In Situ Position Monitoring, Sensing, and 3-D Trapping of Micro/Nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23(2), 185–192 (2017).
[Crossref]

M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes,” Sci. Rep. 7(1), 14533 (2017).
[Crossref] [PubMed]

2016 (4)

J.-D. Kim and Y. G. Lee, “Graphene-based plasmonic tweezers,” Carbon 103, 281–290 (2016).
[Crossref]

W. Jiao, G. Wang, Z. Ying, Y. Zou, H. P. Ho, T. Sun, Y. Huang, and X. Zhang, “Switching of nanoparticles in large-scale hybrid electro-optofluidics integration,” Opt. Lett. 41(11), 2652–2655 (2016).
[Crossref] [PubMed]

M. Ghorbanzadeh, S. Darbari, and M. K. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
[Crossref]

J. Kim and J. H. Shin, “Stable, free-space optical trapping and manipulation of sub-micron particles in an integrated microfluidic chip,” Sci. Rep. 6(1), 33842 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (4)

J. Wang and A. W. Poon, “Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices,” Lab Chip 14(8), 1426–1436 (2014).
[Crossref] [PubMed]

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

J. Wang, W. B. Lu, X. B. Li, Z. H. Ni, and T. Qiu, “Graphene plasmon guided along a nanoribbon coupled with a nanoring,” J. Phys. D Appl. Phys. 47(13), 135106 (2014).
[Crossref]

H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

2013 (7)

H.-J. Li, L.-L. Wang, J.-Q. Liu, Z.-R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

X. Gu, I.-T. Lin, and J.-M. Liu, “Extremely confined terahertz surface plasmon-polaritons in graphene-metal structures,” Appl. Phys. Lett. 103(7), 071103 (2013).
[Crossref]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

J. Gosciniak and D. T. H. Tan, “Theoretical investigation of graphene-based photonic modulators,” Sci. Rep. 3, 1897 (2013).

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. de Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3(1), 2290 (2013).
[Crossref] [PubMed]

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref] [PubMed]

Y. Li and Y. Hu, “Localized surface plasmon-enhanced propulsion of gold nanospheres,” Appl. Phys. Lett. 102(13), 133103 (2013).
[Crossref]

2012 (6)

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref] [PubMed]

C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. de Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett. 100(10), 101103 (2012).
[Crossref]

Y.-F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
[Crossref] [PubMed]

S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, “Quantum finite-size effects in graphene plasmons,” ACS Nano 6(2), 1766–1775 (2012).
[Crossref] [PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

G. W. Hanson, E. Forati, W. Linz, and A. B. Yakovlev, “Excitation of terahertz surface plasmons on graphene surfaces by an elementary dipole and quantum emitter: Strong electrodynamic effect of dielectric support,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235440 (2012).
[Crossref]

2011 (4)

D. Erickson, X. Serey, Y.-F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

J. Zhu, Ş. K. Ozdemir, and L. J. I. P. T. L. Yang, “Optical detection of single nanoparticles with a subwavelength fiber-taper,” IEEE Photonics Technol. Lett. 23(18), 1346–1348 (2011).
[Crossref]

H. Cai and A. W. Poon, “Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator,” Opt. Lett. 36(21), 4257–4259 (2011).
[Crossref] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

2010 (5)

J. Wu and X. Gan, “Three dimensional nanoparticle trapping enhanced by surface plasmon resonance,” Opt. Express 18(26), 27619–27626 (2010).
[Crossref] [PubMed]

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

A. H. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip 10(6), 769–774 (2010).
[Crossref] [PubMed]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. J. N. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

2009 (3)

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

A. H. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[Crossref] [PubMed]

S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel-a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
[Crossref] [PubMed]

2008 (2)

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

2005 (1)

2003 (1)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

1990 (1)

S. M. Block, L. S. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

1986 (1)

Arnold, S.

Ashkin, A.

Avouris, P.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Bao, Q.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Bjorkholm, J. E.

Block, S. M.

S. M. Block, L. S. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

Bogdanov, A. A.

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6(5), e16258 (2017).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. J. N. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Cai, H.

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref] [PubMed]

H. Cai and A. W. Poon, “Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator,” Opt. Lett. 36(21), 4257–4259 (2011).
[Crossref] [PubMed]

Canaguier-Durand, A.

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref] [PubMed]

Cao, P.

M. Yuan, L. Cheng, P. Cao, X. Li, X. He, and X. J. P. Zhang, “Optical Manipulation of Dielectric Nanoparticles with Au Micro-racetrack Resonator by Constructive Interference of Surface Plasmon Waves,” Plasmonics 13(2), 427–435 (2018).
[Crossref]

Chen, P.

Y.-F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
[Crossref] [PubMed]

Chen, Y.-F.

Y.-F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
[Crossref] [PubMed]

D. Erickson, X. Serey, Y.-F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

Cheng, L.

M. Yuan, L. Cheng, P. Cao, X. Li, X. He, and X. J. P. Zhang, “Optical Manipulation of Dielectric Nanoparticles with Au Micro-racetrack Resonator by Constructive Interference of Surface Plasmon Waves,” Plasmonics 13(2), 427–435 (2018).
[Crossref]

Christensen, J.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Chu, S.

Cluzel, B.

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. de Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3(1), 2290 (2013).
[Crossref] [PubMed]

C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. de Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett. 100(10), 101103 (2012).
[Crossref]

Crommie, M.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Crozier, K.

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

Cuche, A.

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref] [PubMed]

Dalili, A.

A. Dalili, E. Samiei, and M. Hoorfar, “A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches,” Analyst (Lond.) 144(1), 87–113 (2019).
[Crossref] [PubMed]

Darbari, S.

M. M. Mehrnegar, S. Darbari, H. Ramezani, and M. K. Moravvej-Farshi, “Designing Graphene-based Multi-Mode Acousto-Plasmonic Devices,” J. Lightwave Technol. 37(9), 2126–2132 (2019).
[Crossref]

M. Samadi, S. Vasini, S. Darbari, A. A. Khorshad, S. N. S. Reihani, and M. K. Moravvej-Farshi, “Hexagonal arrays of gold triangles as plasmonic tweezers,” Opt. Express 27(10), 14754–14766 (2019).
[Crossref] [PubMed]

M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes,” Sci. Rep. 7(1), 14533 (2017).
[Crossref] [PubMed]

M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Plasmonic Optophoresis for Manipulating, In Situ Position Monitoring, Sensing, and 3-D Trapping of Micro/Nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23(2), 185–192 (2017).
[Crossref]

M. Ghorbanzadeh, S. Darbari, and M. K. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
[Crossref]

M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Designing a plasmonic optophoresis system for trapping and simultaneous sorting/counting of micro-and nano-particles,” J. Lightwave Technol. 33(16), 3453–3460 (2015).
[Crossref]

de Abajo, F. J.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

de Fornel, F.

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. de Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3(1), 2290 (2013).
[Crossref] [PubMed]

C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. de Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett. 100(10), 101103 (2012).
[Crossref]

Dellinger, J.

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. de Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3(1), 2290 (2013).
[Crossref] [PubMed]

C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. de Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett. 100(10), 101103 (2012).
[Crossref]

Devaux, E.

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref] [PubMed]

Dholakia, K.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

Ding, Y.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref] [PubMed]

Dong, J.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref] [PubMed]

Dziedzic, J. M.

Ebbesen, T. W.

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref] [PubMed]

Erickson, D.

Y.-F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
[Crossref] [PubMed]

D. Erickson, X. Serey, Y.-F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

A. H. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip 10(6), 769–774 (2010).
[Crossref] [PubMed]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

A. H. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[Crossref] [PubMed]

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Ferrari, A. J. N.

F. Bonaccorso, Z. Sun, T. Hasan, and A. J. N. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Forati, E.

G. W. Hanson, E. Forati, W. Linz, and A. B. Yakovlev, “Excitation of terahertz surface plasmons on graphene surfaces by an elementary dipole and quantum emitter: Strong electrodynamic effect of dielectric support,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235440 (2012).
[Crossref]

Frandsen, L. H.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref] [PubMed]

Freitag, M.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Gan, X.

García de Abajo, F. J.

S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, “Quantum finite-size effects in graphene plasmons,” ACS Nano 6(2), 1766–1775 (2012).
[Crossref] [PubMed]

Genet, C.

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref] [PubMed]

Ghorbanzadeh, M.

M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Plasmonic Optophoresis for Manipulating, In Situ Position Monitoring, Sensing, and 3-D Trapping of Micro/Nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23(2), 185–192 (2017).
[Crossref]

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of sensing and trapping efficiency of double nanohole apertures via enhancing the wedge plasmon polariton modes with tapered cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

M. Ghorbanzadeh, S. Darbari, and M. K. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
[Crossref]

M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Designing a plasmonic optophoresis system for trapping and simultaneous sorting/counting of micro-and nano-particles,” J. Lightwave Technol. 33(16), 3453–3460 (2015).
[Crossref]

Ginzburg, P.

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6(5), e16258 (2017).
[Crossref] [PubMed]

Girit, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Goldstein, L. S.

S. M. Block, L. S. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

Gong, Q.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Gordon, R.

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of sensing and trapping efficiency of double nanohole apertures via enhancing the wedge plasmon polariton modes with tapered cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

Gosciniak, J.

J. Gosciniak and D. T. H. Tan, “Theoretical investigation of graphene-based photonic modulators,” Sci. Rep. 3, 1897 (2013).

Grujic, K.

Gu, X.

X. Gu, I.-T. Lin, and J.-M. Liu, “Extremely confined terahertz surface plasmon-polaritons in graphene-metal structures,” Appl. Phys. Lett. 103(7), 071103 (2013).
[Crossref]

Guinea, F.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Hadji, E.

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. de Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3(1), 2290 (2013).
[Crossref] [PubMed]

C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. de Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett. 100(10), 101103 (2012).
[Crossref]

Hanson, G. W.

G. W. Hanson, E. Forati, W. Linz, and A. B. Yakovlev, “Excitation of terahertz surface plasmons on graphene surfaces by an elementary dipole and quantum emitter: Strong electrodynamic effect of dielectric support,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235440 (2012).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. J. N. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

He, X.

M. Yuan, L. Cheng, P. Cao, X. Li, X. He, and X. J. P. Zhang, “Optical Manipulation of Dielectric Nanoparticles with Au Micro-racetrack Resonator by Constructive Interference of Surface Plasmon Waves,” Plasmonics 13(2), 427–435 (2018).
[Crossref]

Heinz, T. F.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Hellesø, O.

Ho, H. P.

Hole, J.

Holler, S.

Honegger, T.

C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. de Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett. 100(10), 101103 (2012).
[Crossref]

Hoorfar, M.

A. Dalili, E. Samiei, and M. Hoorfar, “A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches,” Analyst (Lond.) 144(1), 87–113 (2019).
[Crossref] [PubMed]

Hu, Y.

Y. Li and Y. Hu, “Localized surface plasmon-enhanced propulsion of gold nanospheres,” Appl. Phys. Lett. 102(13), 133103 (2013).
[Crossref]

Huang, Y.

Huang, Z.-R.

H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

H.-J. Li, L.-L. Wang, J.-Q. Liu, Z.-R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

Hutchison, J. A.

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref] [PubMed]

Ivinskaya, A.

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6(5), e16258 (2017).
[Crossref] [PubMed]

Jiang, X. F.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Jiao, W.

Jones, S.

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of sensing and trapping efficiency of double nanohole apertures via enhancing the wedge plasmon polariton modes with tapered cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

Keng, D.

Khorshad, A. A.

Kim, J.

J. Kim and J. H. Shin, “Stable, free-space optical trapping and manipulation of sub-micron particles in an integrated microfluidic chip,” Sci. Rep. 6(1), 33842 (2016).
[Crossref] [PubMed]

Kim, J.-D.

J.-D. Kim and Y. G. Lee, “Graphene-based plasmonic tweezers,” Carbon 103, 281–290 (2016).
[Crossref]

Klug, M.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Koppens, F. H.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Lalouat, L.

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. de Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3(1), 2290 (2013).
[Crossref] [PubMed]

Lee, Y. G.

J.-D. Kim and Y. G. Lee, “Graphene-based plasmonic tweezers,” Carbon 103, 281–290 (2016).
[Crossref]

Lerdsuchatawanich, T.

A. H. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[Crossref] [PubMed]

Li, B. B.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Li, H.-J.

H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

H.-J. Li, L.-L. Wang, J.-Q. Liu, Z.-R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

Li, X.

M. Yuan, L. Cheng, P. Cao, X. Li, X. He, and X. J. P. Zhang, “Optical Manipulation of Dielectric Nanoparticles with Au Micro-racetrack Resonator by Constructive Interference of Surface Plasmon Waves,” Plasmonics 13(2), 427–435 (2018).
[Crossref]

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Li, X. B.

J. Wang, W. B. Lu, X. B. Li, Z. H. Ni, and T. Qiu, “Graphene plasmon guided along a nanoribbon coupled with a nanoring,” J. Phys. D Appl. Phys. 47(13), 135106 (2014).
[Crossref]

Li, Y.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Y. Li and Y. Hu, “Localized surface plasmon-enhanced propulsion of gold nanospheres,” Appl. Phys. Lett. 102(13), 133103 (2013).
[Crossref]

Lim, C. H. Y. X.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Lin, I.-T.

X. Gu, I.-T. Lin, and J.-M. Liu, “Extremely confined terahertz surface plasmon-polaritons in graphene-metal structures,” Appl. Phys. Lett. 103(7), 071103 (2013).
[Crossref]

Lin, S.

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

Linz, W.

G. W. Hanson, E. Forati, W. Linz, and A. B. Yakovlev, “Excitation of terahertz surface plasmons on graphene surfaces by an elementary dipole and quantum emitter: Strong electrodynamic effect of dielectric support,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235440 (2012).
[Crossref]

Lipson, M.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Liu, J.-M.

X. Gu, I.-T. Lin, and J.-M. Liu, “Extremely confined terahertz surface plasmon-polaritons in graphene-metal structures,” Appl. Phys. Lett. 103(7), 071103 (2013).
[Crossref]

Liu, J.-Q.

H.-J. Li, L.-L. Wang, J.-Q. Liu, Z.-R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

Loh, K. P.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Low, T.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Lu, W. B.

J. Wang, W. B. Lu, X. B. Li, Z. H. Ni, and T. Qiu, “Graphene plasmon guided along a nanoribbon coupled with a nanoring,” J. Phys. D Appl. Phys. 47(13), 135106 (2014).
[Crossref]

Lui, C. H.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

Mak, K. F.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Mandal, S.

D. Erickson, X. Serey, Y.-F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

Manjavacas, A.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, “Quantum finite-size effects in graphene plasmons,” ACS Nano 6(2), 1766–1775 (2012).
[Crossref] [PubMed]

Mehrnegar, M. M.

Misewich, J. A.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Moore, S. D.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Moravvej-Farshi, M. K.

M. Samadi, S. Vasini, S. Darbari, A. A. Khorshad, S. N. S. Reihani, and M. K. Moravvej-Farshi, “Hexagonal arrays of gold triangles as plasmonic tweezers,” Opt. Express 27(10), 14754–14766 (2019).
[Crossref] [PubMed]

M. M. Mehrnegar, S. Darbari, H. Ramezani, and M. K. Moravvej-Farshi, “Designing Graphene-based Multi-Mode Acousto-Plasmonic Devices,” J. Lightwave Technol. 37(9), 2126–2132 (2019).
[Crossref]

M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes,” Sci. Rep. 7(1), 14533 (2017).
[Crossref] [PubMed]

M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Plasmonic Optophoresis for Manipulating, In Situ Position Monitoring, Sensing, and 3-D Trapping of Micro/Nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23(2), 185–192 (2017).
[Crossref]

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of sensing and trapping efficiency of double nanohole apertures via enhancing the wedge plasmon polariton modes with tapered cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

M. Ghorbanzadeh, S. Darbari, and M. K. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
[Crossref]

M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Designing a plasmonic optophoresis system for trapping and simultaneous sorting/counting of micro-and nano-particles,” J. Lightwave Technol. 33(16), 3453–3460 (2015).
[Crossref]

M. Yarahmadi, M. K. Moravvej-Farshi, and L. Yousefi, “Subwavelength graphene-based plasmonic THz switches and logic gates,” IEEE Trans. THz Sci. and Technol. 5(5), 725–731 (2015).
[Crossref]

Mortensen, N. A.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref] [PubMed]

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Ni, Z. H.

J. Wang, W. B. Lu, X. B. Li, Z. H. Ni, and T. Qiu, “Graphene plasmon guided along a nanoribbon coupled with a nanoring,” J. Phys. D Appl. Phys. 47(13), 135106 (2014).
[Crossref]

Ozdemir, S. K.

J. Zhu, Ş. K. Ozdemir, and L. J. I. P. T. L. Yang, “Optical detection of single nanoparticles with a subwavelength fiber-taper,” IEEE Photonics Technol. Lett. 23(18), 1346–1348 (2011).
[Crossref]

Petrov, M. I.

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6(5), e16258 (2017).
[Crossref] [PubMed]

Peyrade, D.

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. de Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3(1), 2290 (2013).
[Crossref] [PubMed]

C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. de Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett. 100(10), 101103 (2012).
[Crossref]

Picard, E.

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. de Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3(1), 2290 (2013).
[Crossref] [PubMed]

C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. de Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett. 100(10), 101103 (2012).
[Crossref]

Poon, A. W.

J. Wang and A. W. Poon, “Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices,” Lab Chip 14(8), 1426–1436 (2014).
[Crossref] [PubMed]

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref] [PubMed]

H. Cai and A. W. Poon, “Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator,” Opt. Lett. 36(21), 4257–4259 (2011).
[Crossref] [PubMed]

Qiu, T.

J. Wang, W. B. Lu, X. B. Li, Z. H. Ni, and T. Qiu, “Graphene plasmon guided along a nanoribbon coupled with a nanoring,” J. Phys. D Appl. Phys. 47(13), 135106 (2014).
[Crossref]

Ramezani, H.

Reihani, S. N. S.

Renaut, C.

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. de Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3(1), 2290 (2013).
[Crossref] [PubMed]

C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. de Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett. 100(10), 101103 (2012).
[Crossref]

Samadi, M.

M. Samadi, S. Vasini, S. Darbari, A. A. Khorshad, S. N. S. Reihani, and M. K. Moravvej-Farshi, “Hexagonal arrays of gold triangles as plasmonic tweezers,” Opt. Express 27(10), 14754–14766 (2019).
[Crossref] [PubMed]

M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes,” Sci. Rep. 7(1), 14533 (2017).
[Crossref] [PubMed]

Samiei, E.

A. Dalili, E. Samiei, and M. Hoorfar, “A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches,” Analyst (Lond.) 144(1), 87–113 (2019).
[Crossref] [PubMed]

Sarkar, R.

Y.-F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
[Crossref] [PubMed]

Schmidt, B. S.

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

Schnapp, B. J.

S. M. Block, L. S. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

Schonbrun, E.

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

Serey, X.

Y.-F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
[Crossref] [PubMed]

D. Erickson, X. Serey, Y.-F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

Sfeir, M. Y.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Shalin, A. S.

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6(5), e16258 (2017).
[Crossref] [PubMed]

Shen, D.

Shen, Y. R.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Shin, J. H.

J. Kim and J. H. Shin, “Stable, free-space optical trapping and manipulation of sub-micron particles in an integrated microfluidic chip,” Sci. Rep. 6(1), 33842 (2016).
[Crossref] [PubMed]

Shishkin, I.

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6(5), e16258 (2017).
[Crossref] [PubMed]

Shopova, S. I.

Spalding, G. C.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

Sun, B.

H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

H.-J. Li, L.-L. Wang, J.-Q. Liu, Z.-R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

Sun, T.

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. J. N. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Tan, D. T. H.

J. Gosciniak and D. T. H. Tan, “Theoretical investigation of graphene-based photonic modulators,” Sci. Rep. 3, 1897 (2013).

Tang, D. Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Thongrattanasiri, S.

S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, “Quantum finite-size effects in graphene plasmons,” ACS Nano 6(2), 1766–1775 (2012).
[Crossref] [PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

Tian, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Tong, L.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Vasini, S.

Vollmer, F.

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wang, F.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Wang, G.

Wang, H.

Wang, J.

J. Wang and A. W. Poon, “Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices,” Lab Chip 14(8), 1426–1436 (2014).
[Crossref] [PubMed]

J. Wang, W. B. Lu, X. B. Li, Z. H. Ni, and T. Qiu, “Graphene plasmon guided along a nanoribbon coupled with a nanoring,” J. Phys. D Appl. Phys. 47(13), 135106 (2014).
[Crossref]

Wang, L.-L.

H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

H.-J. Li, L.-L. Wang, J.-Q. Liu, Z.-R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

Wang, P.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Wang, Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wen, S.-C.

H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

Wilkinson, J.

Wu, J.

Wu, X.

Wu, Y.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Xia, F.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Xiao, S.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref] [PubMed]

Xiao, Y. F.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Yakovlev, A. B.

G. W. Hanson, E. Forati, W. Linz, and A. B. Yakovlev, “Excitation of terahertz surface plasmons on graphene surfaces by an elementary dipole and quantum emitter: Strong electrodynamic effect of dielectric support,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235440 (2012).
[Crossref]

Yan, H.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Yan, S.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref] [PubMed]

Yang, A. H.

A. H. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip 10(6), 769–774 (2010).
[Crossref] [PubMed]

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

A. H. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[Crossref] [PubMed]

Yang, L. J. I. P. T. L.

J. Zhu, Ş. K. Ozdemir, and L. J. I. P. T. L. Yang, “Optical detection of single nanoparticles with a subwavelength fiber-taper,” IEEE Photonics Technol. Lett. 23(18), 1346–1348 (2011).
[Crossref]

Yarahmadi, M.

M. Yarahmadi, M. K. Moravvej-Farshi, and L. Yousefi, “Subwavelength graphene-based plasmonic THz switches and logic gates,” IEEE Trans. THz Sci. and Technol. 5(5), 725–731 (2015).
[Crossref]

Ying, Z.

Yousefi, L.

M. Yarahmadi, M. K. Moravvej-Farshi, and L. Yousefi, “Subwavelength graphene-based plasmonic THz switches and logic gates,” IEEE Trans. THz Sci. and Technol. 5(5), 725–731 (2015).
[Crossref]

Yu, X. C.

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Yuan, M.

M. Yuan, L. Cheng, P. Cao, X. Li, X. He, and X. J. P. Zhang, “Optical Manipulation of Dielectric Nanoparticles with Au Micro-racetrack Resonator by Constructive Interference of Surface Plasmon Waves,” Plasmonics 13(2), 427–435 (2018).
[Crossref]

Zettl, A.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Zhai, X.

H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

H.-J. Li, L.-L. Wang, J.-Q. Liu, Z.-R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

Zhang, H.

H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Zhang, X.

Zhang, X. J. P.

M. Yuan, L. Cheng, P. Cao, X. Li, X. He, and X. J. P. Zhang, “Optical Manipulation of Dielectric Nanoparticles with Au Micro-racetrack Resonator by Constructive Interference of Surface Plasmon Waves,” Plasmonics 13(2), 427–435 (2018).
[Crossref]

Zhang, Y.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, Ş. K. Ozdemir, and L. J. I. P. T. L. Yang, “Optical detection of single nanoparticles with a subwavelength fiber-taper,” IEEE Photonics Technol. Lett. 23(18), 1346–1348 (2011).
[Crossref]

Zhu, W.

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

Zhu, X.

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref] [PubMed]

Zou, Y.

Zurawsky, W.

ACS Nano (2)

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6(1), 431–440 (2012).
[Crossref] [PubMed]

S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, “Quantum finite-size effects in graphene plasmons,” ACS Nano 6(2), 1766–1775 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of sensing and trapping efficiency of double nanohole apertures via enhancing the wedge plasmon polariton modes with tapered cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

Adv. Mater. (1)

X. C. Yu, B. B. Li, P. Wang, L. Tong, X. F. Jiang, Y. Li, Q. Gong, and Y. F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26(44), 7462–7467 (2014).
[Crossref] [PubMed]

Analyst (Lond.) (1)

A. Dalili, E. Samiei, and M. Hoorfar, “A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches,” Analyst (Lond.) 144(1), 87–113 (2019).
[Crossref] [PubMed]

Appl. Phys. Express (1)

H.-J. Li, L.-L. Wang, H. Zhang, Z.-R. Huang, B. Sun, X. Zhai, and S.-C. Wen, “Graphene-based mid-infrared, tunable, electrically controlled plasmonic filter,” Appl. Phys. Express 7(2), 024301 (2014).
[Crossref]

Appl. Phys. Lett. (5)

H.-J. Li, L.-L. Wang, J.-Q. Liu, Z.-R. Huang, B. Sun, and X. Zhai, “Investigation of the graphene based planar plasmonic filters,” Appl. Phys. Lett. 103(21), 211104 (2013).
[Crossref]

X. Gu, I.-T. Lin, and J.-M. Liu, “Extremely confined terahertz surface plasmon-polaritons in graphene-metal structures,” Appl. Phys. Lett. 103(7), 071103 (2013).
[Crossref]

C. Renaut, J. Dellinger, B. Cluzel, T. Honegger, D. Peyrade, E. Picard, F. de Fornel, and E. Hadji, “Assembly of microparticles by optical trapping with a photonic crystal nanocavity,” Appl. Phys. Lett. 100(10), 101103 (2012).
[Crossref]

Y. Li and Y. Hu, “Localized surface plasmon-enhanced propulsion of gold nanospheres,” Appl. Phys. Lett. 102(13), 133103 (2013).
[Crossref]

M. Ghorbanzadeh, S. Darbari, and M. K. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
[Crossref]

Carbon (1)

J.-D. Kim and Y. G. Lee, “Graphene-based plasmonic tweezers,” Carbon 103, 281–290 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Plasmonic Optophoresis for Manipulating, In Situ Position Monitoring, Sensing, and 3-D Trapping of Micro/Nanoparticles,” IEEE J. Sel. Top. Quantum Electron. 23(2), 185–192 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Zhu, Ş. K. Ozdemir, and L. J. I. P. T. L. Yang, “Optical detection of single nanoparticles with a subwavelength fiber-taper,” IEEE Photonics Technol. Lett. 23(18), 1346–1348 (2011).
[Crossref]

IEEE Trans. THz Sci. and Technol. (1)

M. Yarahmadi, M. K. Moravvej-Farshi, and L. Yousefi, “Subwavelength graphene-based plasmonic THz switches and logic gates,” IEEE Trans. THz Sci. and Technol. 5(5), 725–731 (2015).
[Crossref]

J. Lightwave Technol. (2)

J. Phys. D Appl. Phys. (1)

J. Wang, W. B. Lu, X. B. Li, Z. H. Ni, and T. Qiu, “Graphene plasmon guided along a nanoribbon coupled with a nanoring,” J. Phys. D Appl. Phys. 47(13), 135106 (2014).
[Crossref]

Lab Chip (4)

A. H. Yang and D. Erickson, “Optofluidic ring resonator switch for optical particle transport,” Lab Chip 10(6), 769–774 (2010).
[Crossref] [PubMed]

J. Wang and A. W. Poon, “Unfolding a design rule for microparticle buffering and dropping in microring-resonator-based add-drop devices,” Lab Chip 14(8), 1426–1436 (2014).
[Crossref] [PubMed]

D. Erickson, X. Serey, Y.-F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip 11(6), 995–1009 (2011).
[Crossref] [PubMed]

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12(19), 3803–3809 (2012).
[Crossref] [PubMed]

Light Sci. Appl. (1)

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6(5), e16258 (2017).
[Crossref] [PubMed]

Nano Lett. (5)

S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett. 10(7), 2408–2411 (2010).
[Crossref] [PubMed]

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref] [PubMed]

A. H. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[Crossref] [PubMed]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[Crossref] [PubMed]

Y.-F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Yan, X. Zhu, L. H. Frandsen, S. Xiao, N. A. Mortensen, J. Dong, and Y. Ding, “Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,” Nat. Commun. 8(1), 14411 (2017).
[Crossref] [PubMed]

Nat. Photonics (3)

H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7(5), 394–399 (2013).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. J. N. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Nature (3)

A. H. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature 457(7225), 71–75 (2009).
[Crossref] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003).
[Crossref] [PubMed]

S. M. Block, L. S. Goldstein, and B. J. Schnapp, “Bead movement by single kinesin molecules studied with optical tweezers,” Nature 348(6299), 348–352 (1990).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

G. W. Hanson, E. Forati, W. Linz, and A. B. Yakovlev, “Excitation of terahertz surface plasmons on graphene surfaces by an elementary dipole and quantum emitter: Strong electrodynamic effect of dielectric support,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235440 (2012).
[Crossref]

Phys. Rev. Lett. (1)

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Plasmonics (1)

M. Yuan, L. Cheng, P. Cao, X. Li, X. He, and X. J. P. Zhang, “Optical Manipulation of Dielectric Nanoparticles with Au Micro-racetrack Resonator by Constructive Interference of Surface Plasmon Waves,” Plasmonics 13(2), 427–435 (2018).
[Crossref]

Sci. Rep. (4)

J. Kim and J. H. Shin, “Stable, free-space optical trapping and manipulation of sub-micron particles in an integrated microfluidic chip,” Sci. Rep. 6(1), 33842 (2016).
[Crossref] [PubMed]

J. Gosciniak and D. T. H. Tan, “Theoretical investigation of graphene-based photonic modulators,” Sci. Rep. 3, 1897 (2013).

M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes,” Sci. Rep. 7(1), 14533 (2017).
[Crossref] [PubMed]

C. Renaut, B. Cluzel, J. Dellinger, L. Lalouat, E. Picard, D. Peyrade, E. Hadji, and F. de Fornel, “On chip shapeable optical tweezers,” Sci. Rep. 3(1), 2290 (2013).
[Crossref] [PubMed]

Science (2)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320(5873), 206–209 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 A three dimensional schematic of the proposed lab-on-a-chip optophoresis.
Fig. 2
Fig. 2 (a). Real and (b). Imaginary parts of the effective refractive index (neff) versus frequency for various graphene chemical potentials.
Fig. 3
Fig. 3 Transmission profile versus (a) μCW and μCR at an input signal frequency of f = 10.38 THz, (b) μCR and f for μCW = 0.6 eV, and (c) μCW and f for μCR = 0.6 eV
Fig. 4
Fig. 4 Normalized power distribution across the designed structure surface at f = 10.38 THz for (a) μCR = μCW = 0.6 eV (resonance) and (b) μCR = 0.3 eV and μCW = 0.6 eV (off-resonance).
Fig. 5
Fig. 5 Transmission spectra for μCR = μCW = 0.6 eV and g = 10, 20, 30, 40 nm.
Fig. 6
Fig. 6 The dots, dashes, and dots-dashes (left axis) represent Fx, Fy, Fz exerted on a PS of particle of diameter D = 30 nm, whose centered moves along y-direction at x = −150 nm and z = 20 nm; and the solid curve (right axis) denotes Uy(y) in terms of kBT; for μCW = μCR = 0.6 eV. f = 10.38 THz, and I1 = 14.78 mW/μm2.
Fig. 7
Fig. 7 The solid curve (left axis) represents Fy(y) and the dashes (right axis) denotes the corresponding Uy(y) in terms of kBT, when the center of a PS particle of diameter D = 30 nm is positioned at x = 0 and z = 20 nm, for g = (a) 10 nm, (b) 20 nm, and (c) 30 nm. μCW = μCR = 0.6 eV. f = 10.38 THz, and I1 = 14.78 mW/μm2.
Fig. 8
Fig. 8 Uy(y) experienced by a 30-nm diameter PS nanoparticle positioned at the coordinates (x = 0, z = 5 nm) when f = 10.38 THz, and I1 = 14.78 mW/μm2, μCW = 0.6 eV, and for off-resonance μCR = 0.3, 0.35, 0.4, 0.45, and 0.5 eV.
Fig. 9
Fig. 9 Profiles of Uy(y) for PS nanoparticles of diameters D = 18 nm (thick solid curve), 22 nm (thick dashes), 26 nm (thick dashes-dots), and 30 nm (thick dots), for I1 = 14.78 mW/µm2. The thin solid line and dashes represent the similar profiles for D = 18 and 22 nm, for I2 = 29.22 mW/µm2.
Fig. 10
Fig. 10 Profiles of Uy(y) for nanoparticles of the same diameters D = 18 nm but different refractive indices n = 1.45 (thick solid curve), 1.55 nm (thick dashes), 2 (thick dashes-dots), and 2.5 (thick dots), for I1 = 14.78mW/µm2. The thin solid line represents a similar profile for n = 1.45, for I2 = 29.22 mW/µm2.

Tables (1)

Tables Icon

Table 1 Geometrical Dimensions.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F= 1 2 Re Ω T ( r,t ).ndS
T ( r,t )=εE( r ) E * ( r )+μH( r ) H * ( r ) 1 2 ( ε | E( r ) | 2 +μ | H( r ) | 2 )
U y ( y )= y F y ( y ) d y .
σ g ( ω, μ c ,T,τ )= i e 2 μ c π 2 ( ω+i2π τ 1 ) ,
n= ε 0 ε d e t d ( V+ V 0 ),
μ C = v f πn .