Abstract

Figure-nine fiber lasers can realize all-polarization-maintaining, self-started, highly stable mode-locked laser sources, and are very attractive for applications such as optical frequency combs, metrology, etc. In this work, we investigated a dispersion-managed, polarization-maintaining, Er-doped, ultrashort-pulse figure-nine fiber laser both experimentally and numerically. Stable, self-started, passive mode-locking operation was achieved in a wide net cavity dispersion region, covering the soliton, stretched pulse, and dissipative soliton mode-locking regimes. A 132 fs ultrashort pulse with spectral width of 46 nm was obtained in the stretched pulse mode-locking regime. The initial mode-locking process and dynamics inside the cavity, in addition to the fundamental characteristics of the output pulses, were examined via numerical analysis. Owing to the asymmetric configuration, the propagation behaviors were different between the two counter-propagation directions. It was found that a large breathing had already started before the passive mode-locking point in stretched pulse mode-locking operation. Intense overshoots were also observed at the beginning of passive mode-locking. Numerical results were almost in agreement with the experimental ones.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber

N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh
Opt. Express 16(13) 9429-9435 (2008)

Dispersion-managed, high-power, Er-doped ultrashort-pulse fiber laser using carbon-nanotube polyimide film

N. Nishizawa, Y. Nozaki, E. Itoga, H. Kataura, and Y. Sakakibara
Opt. Express 19(22) 21874-21879 (2011)

A polarization maintaining, dispersion managed, femtosecond figure-eight fiber laser

J. W. Nicholson and M. Andrejco
Opt. Express 14(18) 8160-8167 (2006)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultarfast Lasers, Technology and Applications (Marcel Dekker, 2003).
  2. N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express 16(13), 9429–9435 (2008).
    [Crossref] [PubMed]
  3. L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22(6), 6996–7006 (2014).
    [Crossref] [PubMed]
  4. N. Kuse, C.-C. Lee, J. Jiang, C. Mohr, T. R. Schibli, and M. E. Fermann, “Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator,” Opt. Express 23(19), 24342–24350 (2015).
    [Crossref] [PubMed]
  5. Y. Feng, X. Xu, X. Hu, Y. Liu, Y. Wang, W. Zhang, Z. Yang, L. Duan, W. Zhao, and Z. Cheng, “Environmental-adaptability analysis of an all polarization-maintaining fiber-based optical frequency comb,” Opt. Express 23(13), 17549–17559 (2015).
    [Crossref] [PubMed]
  6. J. Sotor, J. Bogusławski, T. Martynkien, P. Mergo, A. Krajewska, A. Przewłoka, W. StrupiŃski, and G. SoboŃ, “All-polarization-maintaining, stretched-pulse Tm-doped fiber laser, mode-locked by a graphene saturable absorber,” Opt. Lett. 42(8), 1592–1595 (2017).
    [Crossref] [PubMed]
  7. J. W. Nicholson and M. Andrejco, “A polarization maintaining, dispersion managed, femtosecond figure-eight fiber laser,” Opt. Express 14(18), 8160–8167 (2006).
    [Crossref] [PubMed]
  8. B. Xu, A. Martinez, S. Y. Set, C. S. Goh, and S. Yamashita, “Polarization maintaining, nanotube-based mode-locked lasing from figure of eight fiber laser,” IEEE Photonics Technol. Lett. 26(2), 180–182 (2014).
    [Crossref]
  9. J. Szczepanek, T. M. Kardaś, C. Radzewicz, and Y. Stepanenko, “Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers,” Opt. Lett. 42(3), 575–578 (2017).
    [Crossref] [PubMed]
  10. N. Kuse, J. Jiang, C.-C. Lee, T. R. Schibli, and M. E. Fermann, “All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror,” Opt. Express 24(3), 3095–3102 (2016).
    [Crossref] [PubMed]
  11. Y. Ozeki and T. Fukazu, “A wavelength-tunable, polarization-maintaining picosecond figure-nine fiber laser,” CLEO, 2016.
  12. T. Honda, S. Y. Set, and S. Yamashita, “Effects of non-reciprocal phase bias in Figure-8/9 fiber lasers,” CLEO2017.
  13. Y. Li, N. Kuse, A. Rolland, Y. Stepanenko, C. Radzewicz, and M. E. Fermann, “Low noise, self-referenced all polarization maintaining Ytterbium fiber laser frequency comb,” Opt. Express 25(15), 18017–18023 (2017).
    [Crossref] [PubMed]
  14. W. Hansel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 41(1), 123 (2017).
    [Crossref]
  15. Y. Ozeki, T. Asai, J. Shou, and H. Yoshimi, “Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser,” IEEE J. Select. Topics in Quantum Electron. 25, 7100211 (2019).
  16. D. Kim, D. Kwon, B. Lee, and J. Kim, “Polarization-maintaining nonlinear-amplifying-loop-mirror mode-locked fiber laser based on a 3 × 3 coupler,” Opt. Lett. 44(5), 1068–1071 (2019).
    [Crossref] [PubMed]
  17. L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36(9), 1578–1580 (2011).
    [Crossref] [PubMed]
  18. Z. Guo, Q. Hao, S. Yang, T. Liu, H. Hu, and H. Zeng, “Octave-spanning supercontinuum generation from an NALM mode-locked Yb-fiber laser system,” IEEE Photonics J. 9(1), 1600507 (2017).
    [Crossref]
  19. G. P. Agrawal, Nonlinear Fiber Optics, 5th edition (Academic, 2013).
  20. N. Nishizawa, L. Jin, H. Kataura, and Y. Sakakibara, “Dynamics of a dispersion-managed passively mode-locked Er-doped fiber laser using single wall carbon nanotubes,” Photonics 2(3), 808–824 (2015).
    [Crossref]
  21. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, “On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations,” Opt. Express 15(13), 8252–8262 (2007).
    [Crossref] [PubMed]
  22. F. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
    [Crossref]
  23. N. Nishizawa, Y. Nozaki, E. Itoga, H. Kataura, and Y. Sakakibara, “Dispersion-managed, high-power, Er-doped ultrashort-pulse fiber laser using carbon-nanotube polyimide film,” Opt. Express 19(22), 21874–21879 (2011).
    [Crossref] [PubMed]
  24. H. H. Liu and K. K. Chow, “Enhanced stability of dispersion-managed mode-locked fiber lasers with near-zero net cavity dispersion by high-contrast saturable absorbers,” Opt. Lett. 39(1), 150–153 (2014).
    [Crossref] [PubMed]
  25. J. Jeon, J. Lee, and J. H. Lee, “Numerical study on the minimum modulation depth of a saturable absorber for stable fiber laser mode-locking,” J. Opt. Soc. Am. B 32(1), 31 (2015).
    [Crossref]

2019 (2)

Y. Ozeki, T. Asai, J. Shou, and H. Yoshimi, “Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser,” IEEE J. Select. Topics in Quantum Electron. 25, 7100211 (2019).

D. Kim, D. Kwon, B. Lee, and J. Kim, “Polarization-maintaining nonlinear-amplifying-loop-mirror mode-locked fiber laser based on a 3 × 3 coupler,” Opt. Lett. 44(5), 1068–1071 (2019).
[Crossref] [PubMed]

2017 (5)

2016 (1)

2015 (4)

2014 (3)

2011 (2)

2008 (2)

2007 (1)

2006 (1)

Andrejco, M.

Asai, T.

Y. Ozeki, T. Asai, J. Shou, and H. Yoshimi, “Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser,” IEEE J. Select. Topics in Quantum Electron. 25, 7100211 (2019).

Boguslawski, J.

Cheng, Z.

Chong, A.

F. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

Chow, K. K.

Cleff, C.

W. Hansel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 41(1), 123 (2017).
[Crossref]

Coddington, I.

Diddams, S. A.

Dobner, S.

W. Hansel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 41(1), 123 (2017).
[Crossref]

Doubek, R.

W. Hansel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 41(1), 123 (2017).
[Crossref]

Duan, L.

Feng, Y.

Fermann, M. E.

Fischer, M.

W. Hansel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 41(1), 123 (2017).
[Crossref]

Fukazu, T.

Y. Ozeki and T. Fukazu, “A wavelength-tunable, polarization-maintaining picosecond figure-nine fiber laser,” CLEO, 2016.

Giunta, M.

W. Hansel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 41(1), 123 (2017).
[Crossref]

Goh, C. S.

B. Xu, A. Martinez, S. Y. Set, C. S. Goh, and S. Yamashita, “Polarization maintaining, nanotube-based mode-locked lasing from figure of eight fiber laser,” IEEE Photonics Technol. Lett. 26(2), 180–182 (2014).
[Crossref]

Guo, Z.

Z. Guo, Q. Hao, S. Yang, T. Liu, H. Hu, and H. Zeng, “Octave-spanning supercontinuum generation from an NALM mode-locked Yb-fiber laser system,” IEEE Photonics J. 9(1), 1600507 (2017).
[Crossref]

Hansel, W.

W. Hansel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 41(1), 123 (2017).
[Crossref]

Hao, Q.

Z. Guo, Q. Hao, S. Yang, T. Liu, H. Hu, and H. Zeng, “Octave-spanning supercontinuum generation from an NALM mode-locked Yb-fiber laser system,” IEEE Photonics J. 9(1), 1600507 (2017).
[Crossref]

Hati, A.

Holzwarth, R.

W. Hansel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 41(1), 123 (2017).
[Crossref]

Honda, T.

T. Honda, S. Y. Set, and S. Yamashita, “Effects of non-reciprocal phase bias in Figure-8/9 fiber lasers,” CLEO2017.

Hoogland, H.

W. Hansel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 41(1), 123 (2017).
[Crossref]

Hu, H.

Z. Guo, Q. Hao, S. Yang, T. Liu, H. Hu, and H. Zeng, “Octave-spanning supercontinuum generation from an NALM mode-locked Yb-fiber laser system,” IEEE Photonics J. 9(1), 1600507 (2017).
[Crossref]

Hu, X.

Itoga, E.

Itoh, K.

Iwakuni, K.

Jeon, J.

Jiang, J.

Jin, L.

N. Nishizawa, L. Jin, H. Kataura, and Y. Sakakibara, “Dynamics of a dispersion-managed passively mode-locked Er-doped fiber laser using single wall carbon nanotubes,” Photonics 2(3), 808–824 (2015).
[Crossref]

Johnson, T. A.

Kardas, T. M.

Kataura, H.

Kim, D.

Kim, J.

Kobayashi, Y.

Krajewska, A.

Kuse, N.

Kwon, D.

Lee, B.

Lee, C.-C.

Lee, J.

Lee, J. H.

Li, Y.

Limpert, J.

Liu, H. H.

Liu, T.

Z. Guo, Q. Hao, S. Yang, T. Liu, H. Hu, and H. Zeng, “Octave-spanning supercontinuum generation from an NALM mode-locked Yb-fiber laser system,” IEEE Photonics J. 9(1), 1600507 (2017).
[Crossref]

Liu, Y.

Martinez, A.

B. Xu, A. Martinez, S. Y. Set, C. S. Goh, and S. Yamashita, “Polarization maintaining, nanotube-based mode-locked lasing from figure of eight fiber laser,” IEEE Photonics Technol. Lett. 26(2), 180–182 (2014).
[Crossref]

Martynkien, T.

Mayer, P.

W. Hansel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 41(1), 123 (2017).
[Crossref]

Mergo, P.

Mohr, C.

Newbury, N. R.

Nicholson, J. W.

Nishizawa, N.

Nozaki, Y.

Nugent-Glandorf, L.

Ortaç, B.

Ozeki, Y.

Y. Ozeki, T. Asai, J. Shou, and H. Yoshimi, “Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser,” IEEE J. Select. Topics in Quantum Electron. 25, 7100211 (2019).

Y. Ozeki and T. Fukazu, “A wavelength-tunable, polarization-maintaining picosecond figure-nine fiber laser,” CLEO, 2016.

Przewloka, A.

Radzewicz, C.

Renninger, W. H.

F. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

Rieker, G. B.

Rolland, A.

Sakakibara, Y.

Schibli, T. R.

Schmid, S.

W. Hansel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 41(1), 123 (2017).
[Crossref]

Schreiber, T.

Seno, Y.

Set, S. Y.

B. Xu, A. Martinez, S. Y. Set, C. S. Goh, and S. Yamashita, “Polarization maintaining, nanotube-based mode-locked lasing from figure of eight fiber laser,” IEEE Photonics Technol. Lett. 26(2), 180–182 (2014).
[Crossref]

T. Honda, S. Y. Set, and S. Yamashita, “Effects of non-reciprocal phase bias in Figure-8/9 fiber lasers,” CLEO2017.

Shou, J.

Y. Ozeki, T. Asai, J. Shou, and H. Yoshimi, “Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser,” IEEE J. Select. Topics in Quantum Electron. 25, 7100211 (2019).

Sinclair, L. C.

SoboN, G.

Sotor, J.

Steinmetz, T.

W. Hansel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 41(1), 123 (2017).
[Crossref]

Stepanenko, Y.

StrupiNski, W.

Sumimura, K.

Swann, W. C.

Szczepanek, J.

Tünnermann, A.

Wang, Y.

Wise, F.

F. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

Xu, B.

B. Xu, A. Martinez, S. Y. Set, C. S. Goh, and S. Yamashita, “Polarization maintaining, nanotube-based mode-locked lasing from figure of eight fiber laser,” IEEE Photonics Technol. Lett. 26(2), 180–182 (2014).
[Crossref]

Xu, X.

Yamashita, S.

B. Xu, A. Martinez, S. Y. Set, C. S. Goh, and S. Yamashita, “Polarization maintaining, nanotube-based mode-locked lasing from figure of eight fiber laser,” IEEE Photonics Technol. Lett. 26(2), 180–182 (2014).
[Crossref]

T. Honda, S. Y. Set, and S. Yamashita, “Effects of non-reciprocal phase bias in Figure-8/9 fiber lasers,” CLEO2017.

Yang, S.

Z. Guo, Q. Hao, S. Yang, T. Liu, H. Hu, and H. Zeng, “Octave-spanning supercontinuum generation from an NALM mode-locked Yb-fiber laser system,” IEEE Photonics J. 9(1), 1600507 (2017).
[Crossref]

Yang, Z.

Yoshimi, H.

Y. Ozeki, T. Asai, J. Shou, and H. Yoshimi, “Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser,” IEEE J. Select. Topics in Quantum Electron. 25, 7100211 (2019).

Zeng, H.

Z. Guo, Q. Hao, S. Yang, T. Liu, H. Hu, and H. Zeng, “Octave-spanning supercontinuum generation from an NALM mode-locked Yb-fiber laser system,” IEEE Photonics J. 9(1), 1600507 (2017).
[Crossref]

Zhang, W.

Zhao, W.

Appl. Phys. B (1)

W. Hansel, H. Hoogland, M. Giunta, S. Schmid, T. Steinmetz, R. Doubek, P. Mayer, S. Dobner, C. Cleff, M. Fischer, and R. Holzwarth, “All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation,” Appl. Phys. B 41(1), 123 (2017).
[Crossref]

IEEE J. Select. Topics in Quantum Electron. (1)

Y. Ozeki, T. Asai, J. Shou, and H. Yoshimi, “Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser,” IEEE J. Select. Topics in Quantum Electron. 25, 7100211 (2019).

IEEE Photonics J. (1)

Z. Guo, Q. Hao, S. Yang, T. Liu, H. Hu, and H. Zeng, “Octave-spanning supercontinuum generation from an NALM mode-locked Yb-fiber laser system,” IEEE Photonics J. 9(1), 1600507 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. Xu, A. Martinez, S. Y. Set, C. S. Goh, and S. Yamashita, “Polarization maintaining, nanotube-based mode-locked lasing from figure of eight fiber laser,” IEEE Photonics Technol. Lett. 26(2), 180–182 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

F. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

Opt. Express (9)

N. Nishizawa, Y. Nozaki, E. Itoga, H. Kataura, and Y. Sakakibara, “Dispersion-managed, high-power, Er-doped ultrashort-pulse fiber laser using carbon-nanotube polyimide film,” Opt. Express 19(22), 21874–21879 (2011).
[Crossref] [PubMed]

Y. Li, N. Kuse, A. Rolland, Y. Stepanenko, C. Radzewicz, and M. E. Fermann, “Low noise, self-referenced all polarization maintaining Ytterbium fiber laser frequency comb,” Opt. Express 25(15), 18017–18023 (2017).
[Crossref] [PubMed]

T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, “On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations,” Opt. Express 15(13), 8252–8262 (2007).
[Crossref] [PubMed]

J. W. Nicholson and M. Andrejco, “A polarization maintaining, dispersion managed, femtosecond figure-eight fiber laser,” Opt. Express 14(18), 8160–8167 (2006).
[Crossref] [PubMed]

N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express 16(13), 9429–9435 (2008).
[Crossref] [PubMed]

L. C. Sinclair, I. Coddington, W. C. Swann, G. B. Rieker, A. Hati, K. Iwakuni, and N. R. Newbury, “Operation of an optically coherent frequency comb outside the metrology lab,” Opt. Express 22(6), 6996–7006 (2014).
[Crossref] [PubMed]

N. Kuse, C.-C. Lee, J. Jiang, C. Mohr, T. R. Schibli, and M. E. Fermann, “Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator,” Opt. Express 23(19), 24342–24350 (2015).
[Crossref] [PubMed]

Y. Feng, X. Xu, X. Hu, Y. Liu, Y. Wang, W. Zhang, Z. Yang, L. Duan, W. Zhao, and Z. Cheng, “Environmental-adaptability analysis of an all polarization-maintaining fiber-based optical frequency comb,” Opt. Express 23(13), 17549–17559 (2015).
[Crossref] [PubMed]

N. Kuse, J. Jiang, C.-C. Lee, T. R. Schibli, and M. E. Fermann, “All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror,” Opt. Express 24(3), 3095–3102 (2016).
[Crossref] [PubMed]

Opt. Lett. (5)

Photonics (1)

N. Nishizawa, L. Jin, H. Kataura, and Y. Sakakibara, “Dynamics of a dispersion-managed passively mode-locked Er-doped fiber laser using single wall carbon nanotubes,” Photonics 2(3), 808–824 (2015).
[Crossref]

Other (4)

M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultarfast Lasers, Technology and Applications (Marcel Dekker, 2003).

Y. Ozeki and T. Fukazu, “A wavelength-tunable, polarization-maintaining picosecond figure-nine fiber laser,” CLEO, 2016.

T. Honda, S. Y. Set, and S. Yamashita, “Effects of non-reciprocal phase bias in Figure-8/9 fiber lasers,” CLEO2017.

G. P. Agrawal, Nonlinear Fiber Optics, 5th edition (Academic, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1 Configuration of all-PM type Er-doped figure-nine fiber laser. ISO, isolator; PBS, polarization beam splitter; FR, Faraday rotator; WDM, wavelength division multiplexer; NDF, normal dispersion fiber; EDF, Er-doped fiber.
Fig. 2
Fig. 2 Optical spectra of output pulses, (a) output port, (b) reflect port.
Fig. 3
Fig. 3 (a) Autocorrelation trace and (b) observed pulse train at output port.
Fig. 4
Fig. 4 (a) RF spectrum at fundamental frequency and (b) RF spectrum in wide frequency range.
Fig. 5
Fig. 5 Characteristics of output pulses as a function of net cavity dispersion.
Fig. 6
Fig. 6 (a) Optical spectrum and (b) autocorrelation race when D = + 0.0036 ps2.
Fig. 7
Fig. 7 Variation of pulse width and peak power of output pulse at reflection port for the initial passive mode-locking process when NDF = 0 m and D = −0.032 ps2 (soliton mode-locking regime).
Fig. 8
Fig. 8 Characteristics of output pulses when NDF = 0 m and D = −0.032 ps2: (a) optical spectra, and (b) temporal shape and instantaneous wavelength. The heights of the spectral shapes were normalized.
Fig. 9
Fig. 9 Dynamics of pulse propagation inside the fiber laser cavity for cw direction when NDF = 0 m and D = −0.035 ps2. The upper figure represents the second-order dispersion at each section: (a) cw and (b) ccw directions.
Fig. 10
Fig. 10 Variation of pulse width and peak power of propagating pulse inside the cavity for the initial process of passive mode-locking when D = −0.035 ps2 (cw direction).
Fig. 11
Fig. 11 Variation of pulse width and peak power of output pulse at reflection port for the initial passive mode-locking process when NDF = 45 cm and D = + 0.003 ps2 (stretched pulse mode-locking regime).
Fig. 12
Fig. 12 Characteristics of output pulses when NDF = 45 cm and D = + 0.003 ps2, (a) optical spectra, and (b) temporal shape and instantaneous wavelength. The heights of the spectral shapes were normalized.
Fig. 13
Fig. 13 Dynamics of pulse propagation inside the cavity when D = + 0.003 ps2: (a) cw and (b) ccw directions. The upper figure represents the second-order dispersion at each section: (a) cw and (b) ccw directions.
Fig. 14
Fig. 14 Variation of pulse width and peak power of propagating pulse inside the cavity for the initial process of passive mode-locking when D = + 0.003 ps2: (a) cw and (b) ccw directions.
Fig. 15
Fig. 15 Variation of pulse width and peak power of propagating pulse inside the cavity for the initial process of passive mode-locking when D = + 0.003 ps2 (ccw direction).
Fig. 16
Fig. 16 Enlarged variation of pulse width and second order dispersion inside the cavity for the breathing peak point in Fig. 14: (a) cw and (b) ccw directions. (D = + 0.003 ps2)
Fig. 17
Fig. 17 Variation of pulse width and peak power of output pulse at reflection port for the initial passive mode-locking process when NDF = 60 cm and D = + 0.04 ps2 (dissipative soliton mode-locking regime).
Fig. 18
Fig. 18 Characteristics of output pulses when NDF = 45 cm and D = + 0.04 ps2: (a) optical spectra, and (b) temporal shape and instantaneous wavelength. The heights of the spectral shapes were normalized.
Fig. 19
Fig. 19 Dynamics of pulse propagation inside the fiber laser cavity for cw direction when NDF = 60 m and D = + 0.04 ps2. The upper figure represents the second-order dispersion at each section.
Fig. 20
Fig. 20 Variation of pulse width and peak power of propagating pulse inside the cavity for the initial process of passive mode-locking when D = + 0.04 ps2 (cw direction).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A z + i 2 β 2 2 A T 2 1 6 β 3 3 A T 3 + ( αg( A ) ) 2 A=iγ[ | A | 2 A+ i ω 0 T ( | A | 2 A ) T R A | A | 2 T ],
g= g 0 1+E/ E sat ,