Abstract

We experimentally study the generation of photon pairs via spontaneous four-wave mixing with two distinct laser pulses. We find that the dual-pump technique enables new capabilities: 1) a new characterization methodology to measure noise contributions, source brightness and photon-collection efficiencies directly from raw photon-count measurements; 2) an enhanced ability to generate heralded single photons in a pure quantum state; and 3) the ability to derive upper and lower bounds on heralded-photon quantum state purity from measurements of photon-number statistics even in the presence of noise. Such features are highly valuable in photon-pair sources for quantum applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing

Bin Fang, Offir Cohen, Jamy B. Moreno, and Virginia O. Lorenz
Opt. Express 21(3) 2707-2717 (2013)

Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion

Fumihiro Kaneda, Karina Garay-Palmett, Alfred B. U’Ren, and Paul G. Kwiat
Opt. Express 24(10) 10733-10747 (2016)

On-chip low loss heralded source of pure single photons

Justin B. Spring, Patrick S. Salter, Benjamin J. Metcalf, Peter C. Humphreys, Merritt Moore, Nicholas Thomas-Peter, Marco Barbieri, Xian-Min Jin, Nathan K. Langford, W. Steven Kolthammer, Martin J. Booth, and Ian A. Walmsley
Opt. Express 21(11) 13522-13532 (2013)

References

  • View by:
  • |
  • |
  • |

  1. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref] [PubMed]
  2. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
    [Crossref] [PubMed]
  3. N. Gisin and R. Thew, “Quantum communication,” Nat. Photon. 1, 165–171 (2007).
    [Crossref]
  4. J.-L. Smirr, S. Guilbaud, J. Ghalbouni, R. Frey, E. Diamanti, R. Alléaume, and I. Zaquine, “Simple performance evaluation of pulsed spontaneous parametric down-conversion sources for quantum communications,” Opt. Express 19, 616–627 (2011).
    [Crossref] [PubMed]
  5. O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
    [Crossref]
  6. Q. Zhou, W. Zhang, J. Cheng, Y. Huang, and J. Peng, “Polarization-entangled bell states generation based on birefringence in high nonlinear microstructure fiber at 1.5 μ m,” Opt. Lett. 34, 2706–2708 (2009).
    [Crossref] [PubMed]
  7. A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
    [Crossref] [PubMed]
  8. S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16, 9966–9977 (2008).
    [Crossref] [PubMed]
  9. K. Park, D. Lee, Y. S. Ihn, Y.-H. Kim, and H. Shin, “Observation of photon-pair generation in the normal group-velocity-dispersion regime with slight detuning from the pump wavelength,” New J. Phys. 20, 103004 (2018).
    [Crossref]
  10. E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
    [Crossref]
  11. J. Fan and A. Migdall, “Generation of cross-polarized photon pairs in a microstructure fiber with frequency-conjugate laser pump pulses,” Opt. Express 13, 5777–5782 (2005).
    [Crossref] [PubMed]
  12. M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommunication-band source of degenerate entangled photons,” Opt. Lett. 35, 802–804 (2010).
    [Crossref] [PubMed]
  13. J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104 (2013).
    [Crossref]
  14. J. He, A. S. Clark, M. J. Collins, J. Li, T. F. Krauss, B. J. Eggleton, and C. Xiong, “Degenerate photon-pair generation in an ultracompact silicon photonic crystal waveguide,” Opt. Lett. 39, 3575–3578 (2014).
    [Crossref] [PubMed]
  15. M. D. Anderson, S. Tarrago Velez, K. Seibold, H. Flayac, V. Savona, N. Sangouard, and C. Galland, “Two-color pump-probe measurement of photonic quantum correlations mediated by a single phonon,” Phys. Rev. Lett. 120, 233601 (2018).
    [Crossref] [PubMed]
  16. K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870–14886 (2007).
    [Crossref] [PubMed]
  17. J. Monroy-Ruz, K. Garay-Palmett, and A. B. U’Ren, “Counter-propagating spontaneous four wave mixing: photon-pair factorability and ultra-narrowband single photons,” New J. Phys. 18, 103026 (2016).
    [Crossref]
  18. B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, “State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing,” Opt. Express 21, 2707–2717 (2013).
    [Crossref] [PubMed]
  19. B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express 17, 23589–23602 (2009).
    [Crossref]
  20. C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A 83, 031806 (2011).
    [Crossref]
  21. B. Fang, O. Cohen, and V. O. Lorenz, “Polarization-entangled photon-pair generation in commercial-grade polarization-maintaining fiber,” J. Opt. Soc. Am. B 31, 277–281 (2014).
    [Crossref]
  22. E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95, 061803 (2017).
    [Crossref]
  23. L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115, 193601 (2015).
    [Crossref] [PubMed]
  24. V. Ansari, J. M. Donohue, B. Brecht, and C. Silberhorn, “Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings,” Optica 5, 534–550 (2018).
    [Crossref]
  25. H.-H. Lu, J. M. Lukens, N. A. Peters, B. P. Williams, A. M. Weiner, and P. Lougovski, “Quantum interference and correlation control of frequency-bin qubits,” Optica 5, 1455–1460 (2018).
    [Crossref]
  26. A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
    [Crossref]
  27. F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
    [Crossref]
  28. M. Liscidini and J. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111, 193602 (2013).
    [Crossref] [PubMed]
  29. B. Fang, O. Cohen, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Fast and highly resolved capture of the joint spectral density of photon pairs,” Optica 1, 281–284 (2014).
    [Crossref]
  30. B. Fang, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Multidimensional characterization of an entangled photon-pair source via stimulated emission tomography,” Opt. Express 24, 10013–10019 (2016).
    [Crossref] [PubMed]
  31. N. Quesada and A. M. Brańczyk, “Gaussian functions are optimal for waveguided nonlinear-quantum-optical processes,” Phys. Rev. A 98, 043813 (2018).
    [Crossref]
  32. W. Mauerer, M. Avenhaus, W. Helwig, and C. Silberhorn, “How colors influence numbers: Photon statistics of parametric down-conversion,” Phys. Rev. A 80, 053815 (2009).
    [Crossref]
  33. J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” Opt. Express 21, 13522 (2013).
    [Crossref] [PubMed]
  34. K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
    [Crossref]
  35. D. Cruz-Delgado, R. Ramirez-Alarcon, E. Ortiz-Ricardo, J. Monroy-Ruz, F. Dominguez-Serna, H. Cruz-Ramirez, K. Garay-Palmett, and A. B. U’Ren, “Fiber-based photon-pair source capable of hybrid entanglement in frequency and transverse mode, controllably scalable to higher dimensions,” Sci. Reports 6, 27377 (2016).
    [Crossref]
  36. J. B. Christensen, C. J. McKinstrie, and K. Rottwitt, “Temporally uncorrelated photon-pair generation by dual-pump four-wave mixing,” Phys. Rev. A 94, 013819 (2016).
    [Crossref]
  37. X. M. Yang, X. Q. Yang, and K. L. Teo, “A matrix trace inequality,” J. Math. Analysis Appl. 263, 327–331 (2001).
    [Crossref]

2018 (5)

K. Park, D. Lee, Y. S. Ihn, Y.-H. Kim, and H. Shin, “Observation of photon-pair generation in the normal group-velocity-dispersion regime with slight detuning from the pump wavelength,” New J. Phys. 20, 103004 (2018).
[Crossref]

M. D. Anderson, S. Tarrago Velez, K. Seibold, H. Flayac, V. Savona, N. Sangouard, and C. Galland, “Two-color pump-probe measurement of photonic quantum correlations mediated by a single phonon,” Phys. Rev. Lett. 120, 233601 (2018).
[Crossref] [PubMed]

N. Quesada and A. M. Brańczyk, “Gaussian functions are optimal for waveguided nonlinear-quantum-optical processes,” Phys. Rev. A 98, 043813 (2018).
[Crossref]

V. Ansari, J. M. Donohue, B. Brecht, and C. Silberhorn, “Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings,” Optica 5, 534–550 (2018).
[Crossref]

H.-H. Lu, J. M. Lukens, N. A. Peters, B. P. Williams, A. M. Weiner, and P. Lougovski, “Quantum interference and correlation control of frequency-bin qubits,” Optica 5, 1455–1460 (2018).
[Crossref]

2017 (2)

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95, 061803 (2017).
[Crossref]

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
[Crossref]

2016 (5)

K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
[Crossref]

D. Cruz-Delgado, R. Ramirez-Alarcon, E. Ortiz-Ricardo, J. Monroy-Ruz, F. Dominguez-Serna, H. Cruz-Ramirez, K. Garay-Palmett, and A. B. U’Ren, “Fiber-based photon-pair source capable of hybrid entanglement in frequency and transverse mode, controllably scalable to higher dimensions,” Sci. Reports 6, 27377 (2016).
[Crossref]

J. B. Christensen, C. J. McKinstrie, and K. Rottwitt, “Temporally uncorrelated photon-pair generation by dual-pump four-wave mixing,” Phys. Rev. A 94, 013819 (2016).
[Crossref]

J. Monroy-Ruz, K. Garay-Palmett, and A. B. U’Ren, “Counter-propagating spontaneous four wave mixing: photon-pair factorability and ultra-narrowband single photons,” New J. Phys. 18, 103026 (2016).
[Crossref]

B. Fang, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Multidimensional characterization of an entangled photon-pair source via stimulated emission tomography,” Opt. Express 24, 10013–10019 (2016).
[Crossref] [PubMed]

2015 (1)

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115, 193601 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (5)

2011 (4)

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A 83, 031806 (2011).
[Crossref]

A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
[Crossref]

J.-L. Smirr, S. Guilbaud, J. Ghalbouni, R. Frey, E. Diamanti, R. Alléaume, and I. Zaquine, “Simple performance evaluation of pulsed spontaneous parametric down-conversion sources for quantum communications,” Opt. Express 19, 616–627 (2011).
[Crossref] [PubMed]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (3)

2008 (1)

2007 (2)

2006 (2)

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
[Crossref] [PubMed]

2005 (1)

2001 (2)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

X. M. Yang, X. Q. Yang, and K. L. Teo, “A matrix trace inequality,” J. Math. Analysis Appl. 263, 327–331 (2001).
[Crossref]

Alibart, O.

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[Crossref]

Alléaume, R.

Altepeter, J. B.

Anderson, M. D.

M. D. Anderson, S. Tarrago Velez, K. Seibold, H. Flayac, V. Savona, N. Sangouard, and C. Galland, “Two-color pump-probe measurement of photonic quantum correlations mediated by a single phonon,” Phys. Rev. Lett. 120, 233601 (2018).
[Crossref] [PubMed]

Ansari, V.

Avenhaus, M.

W. Mauerer, M. Avenhaus, W. Helwig, and C. Silberhorn, “How colors influence numbers: Photon statistics of parametric down-conversion,” Phys. Rev. A 80, 053815 (2009).
[Crossref]

Baek, B.

Barbieri, M.

Bartley, T. J.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95, 061803 (2017).
[Crossref]

Bonneau, D.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Booth, M. J.

Branczyk, A. M.

N. Quesada and A. M. Brańczyk, “Gaussian functions are optimal for waveguided nonlinear-quantum-optical processes,” Phys. Rev. A 98, 043813 (2018).
[Crossref]

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
[Crossref]

A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
[Crossref]

Brecht, B.

Cheng, J.

Christ, A.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

Christensen, J. B.

J. B. Christensen, C. J. McKinstrie, and K. Rottwitt, “Temporally uncorrelated photon-pair generation by dual-pump four-wave mixing,” Phys. Rev. A 94, 013819 (2016).
[Crossref]

Clark, A. S.

Cohen, O.

Collins, M. J.

Cruz-Delgado, D.

K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
[Crossref]

D. Cruz-Delgado, R. Ramirez-Alarcon, E. Ortiz-Ricardo, J. Monroy-Ruz, F. Dominguez-Serna, H. Cruz-Ramirez, K. Garay-Palmett, and A. B. U’Ren, “Fiber-based photon-pair source capable of hybrid entanglement in frequency and transverse mode, controllably scalable to higher dimensions,” Sci. Reports 6, 27377 (2016).
[Crossref]

Cruz-Ramirez, H.

K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
[Crossref]

D. Cruz-Delgado, R. Ramirez-Alarcon, E. Ortiz-Ricardo, J. Monroy-Ruz, F. Dominguez-Serna, H. Cruz-Ramirez, K. Garay-Palmett, and A. B. U’Ren, “Fiber-based photon-pair source capable of hybrid entanglement in frequency and transverse mode, controllably scalable to higher dimensions,” Sci. Reports 6, 27377 (2016).
[Crossref]

Diamanti, E.

Dominguez-Serna, F.

D. Cruz-Delgado, R. Ramirez-Alarcon, E. Ortiz-Ricardo, J. Monroy-Ruz, F. Dominguez-Serna, H. Cruz-Ramirez, K. Garay-Palmett, and A. B. U’Ren, “Fiber-based photon-pair source capable of hybrid entanglement in frequency and transverse mode, controllably scalable to higher dimensions,” Sci. Reports 6, 27377 (2016).
[Crossref]

K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
[Crossref]

Donohue, J. M.

Dorenbos, S. N.

Du, S.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115, 193601 (2015).
[Crossref] [PubMed]

Dyer, S. D.

Eckstein, A.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

Eggleton, B. J.

Engin, E.

Ezaki, M.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104 (2013).
[Crossref]

Fan, J.

Fang, B.

Fedrizzi, A.

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
[Crossref]

A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
[Crossref]

Flayac, H.

M. D. Anderson, S. Tarrago Velez, K. Seibold, H. Flayac, V. Savona, N. Sangouard, and C. Galland, “Two-color pump-probe measurement of photonic quantum correlations mediated by a single phonon,” Phys. Rev. Lett. 120, 233601 (2018).
[Crossref] [PubMed]

Frey, R.

Fulconis, J.

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[Crossref]

Galland, C.

M. D. Anderson, S. Tarrago Velez, K. Seibold, H. Flayac, V. Savona, N. Sangouard, and C. Galland, “Two-color pump-probe measurement of photonic quantum correlations mediated by a single phonon,” Phys. Rev. Lett. 120, 233601 (2018).
[Crossref] [PubMed]

Garay-Palmett, K.

J. Monroy-Ruz, K. Garay-Palmett, and A. B. U’Ren, “Counter-propagating spontaneous four wave mixing: photon-pair factorability and ultra-narrowband single photons,” New J. Phys. 18, 103026 (2016).
[Crossref]

D. Cruz-Delgado, R. Ramirez-Alarcon, E. Ortiz-Ricardo, J. Monroy-Ruz, F. Dominguez-Serna, H. Cruz-Ramirez, K. Garay-Palmett, and A. B. U’Ren, “Fiber-based photon-pair source capable of hybrid entanglement in frequency and transverse mode, controllably scalable to higher dimensions,” Sci. Reports 6, 27377 (2016).
[Crossref]

K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
[Crossref]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870–14886 (2007).
[Crossref] [PubMed]

Ghalbouni, J.

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
[Crossref] [PubMed]

Gisin, N.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photon. 1, 165–171 (2007).
[Crossref]

Graffitti, F.

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
[Crossref]

Guilbaud, S.

Guo, X.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115, 193601 (2015).
[Crossref] [PubMed]

Hadfield, R. H.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Hall, M. A.

He, J.

Helwig, W.

W. Mauerer, M. Avenhaus, W. Helwig, and C. Silberhorn, “How colors influence numbers: Photon statistics of parametric down-conversion,” Phys. Rev. A 80, 053815 (2009).
[Crossref]

Herrmann, H.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95, 061803 (2017).
[Crossref]

Huang, Y.

Humphreys, P. C.

Ihn, Y. S.

K. Park, D. Lee, Y. S. Ihn, Y.-H. Kim, and H. Shin, “Observation of photon-pair generation in the normal group-velocity-dispersion regime with slight detuning from the pump wavelength,” New J. Phys. 20, 103004 (2018).
[Crossref]

Iizuka, N.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Jin, X.-M.

Kim, Y.-H.

K. Park, D. Lee, Y. S. Ihn, Y.-H. Kim, and H. Shin, “Observation of photon-pair generation in the normal group-velocity-dispersion regime with slight detuning from the pump wavelength,” New J. Phys. 20, 103004 (2018).
[Crossref]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Kolthammer, W. S.

Krauss, T. F.

Kumar, P.

Kundys, D.

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Langford, N. K.

Lee, D.

K. Park, D. Lee, Y. S. Ihn, Y.-H. Kim, and H. Shin, “Observation of photon-pair generation in the normal group-velocity-dispersion regime with slight detuning from the pump wavelength,” New J. Phys. 20, 103004 (2018).
[Crossref]

Li, J.

Liscidini, M.

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
[Crossref] [PubMed]

Lorenz, V. O.

Lougovski, P.

Loy, M. M. T.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115, 193601 (2015).
[Crossref] [PubMed]

Lu, H.-H.

Lukens, J. M.

Lundeen, J. S.

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
[Crossref] [PubMed]

Mahou, P.

Marshall, G. D.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104 (2013).
[Crossref]

Mauerer, W.

W. Mauerer, M. Avenhaus, W. Helwig, and C. Silberhorn, “How colors influence numbers: Photon statistics of parametric down-conversion,” Phys. Rev. A 80, 053815 (2009).
[Crossref]

McGuinness, H. J.

McKinstrie, C. J.

Medic, M.

Metcalf, B. J.

Meyer-Scott, E.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95, 061803 (2017).
[Crossref]

Migdall, A.

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Monroy-Ruz, J.

J. Monroy-Ruz, K. Garay-Palmett, and A. B. U’Ren, “Counter-propagating spontaneous four wave mixing: photon-pair factorability and ultra-narrowband single photons,” New J. Phys. 18, 103026 (2016).
[Crossref]

D. Cruz-Delgado, R. Ramirez-Alarcon, E. Ortiz-Ricardo, J. Monroy-Ruz, F. Dominguez-Serna, H. Cruz-Ramirez, K. Garay-Palmett, and A. B. U’Ren, “Fiber-based photon-pair source capable of hybrid entanglement in frequency and transverse mode, controllably scalable to higher dimensions,” Sci. Reports 6, 27377 (2016).
[Crossref]

K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
[Crossref]

Montaut, N.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95, 061803 (2017).
[Crossref]

Moore, M.

Moreno, J. B.

Mosley, P. J.

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

Murdoch, S. G.

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[Crossref]

Nam, S. W.

Natarajan, C. M.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

O’Brien, J. L.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104 (2013).
[Crossref]

Ohira, K.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Ortiz-Ricardo, E.

D. Cruz-Delgado, R. Ramirez-Alarcon, E. Ortiz-Ricardo, J. Monroy-Ruz, F. Dominguez-Serna, H. Cruz-Ramirez, K. Garay-Palmett, and A. B. U’Ren, “Fiber-based photon-pair source capable of hybrid entanglement in frequency and transverse mode, controllably scalable to higher dimensions,” Sci. Reports 6, 27377 (2016).
[Crossref]

K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
[Crossref]

Park, K.

K. Park, D. Lee, Y. S. Ihn, Y.-H. Kim, and H. Shin, “Observation of photon-pair generation in the normal group-velocity-dispersion regime with slight detuning from the pump wavelength,” New J. Phys. 20, 103004 (2018).
[Crossref]

Patel, M.

Peng, J.

Peters, N. A.

Quesada, N.

N. Quesada and A. M. Brańczyk, “Gaussian functions are optimal for waveguided nonlinear-quantum-optical processes,” Phys. Rev. A 98, 043813 (2018).
[Crossref]

Radic, S.

Ralph, T. C.

Ramirez-Alarcon, R.

K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
[Crossref]

D. Cruz-Delgado, R. Ramirez-Alarcon, E. Ortiz-Ricardo, J. Monroy-Ruz, F. Dominguez-Serna, H. Cruz-Ramirez, K. Garay-Palmett, and A. B. U’Ren, “Fiber-based photon-pair source capable of hybrid entanglement in frequency and transverse mode, controllably scalable to higher dimensions,” Sci. Reports 6, 27377 (2016).
[Crossref]

Rangel-Rojo, R.

Rarity, J. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104 (2013).
[Crossref]

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[Crossref]

Raymer, M. G.

Reid, D. T.

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
[Crossref]

Rottwitt, K.

J. B. Christensen, C. J. McKinstrie, and K. Rottwitt, “Temporally uncorrelated photon-pair generation by dual-pump four-wave mixing,” Phys. Rev. A 94, 013819 (2016).
[Crossref]

Salter, P. S.

Sangouard, N.

M. D. Anderson, S. Tarrago Velez, K. Seibold, H. Flayac, V. Savona, N. Sangouard, and C. Galland, “Two-color pump-probe measurement of photonic quantum correlations mediated by a single phonon,” Phys. Rev. Lett. 120, 233601 (2018).
[Crossref] [PubMed]

Sansoni, L.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95, 061803 (2017).
[Crossref]

Savona, V.

M. D. Anderson, S. Tarrago Velez, K. Seibold, H. Flayac, V. Savona, N. Sangouard, and C. Galland, “Two-color pump-probe measurement of photonic quantum correlations mediated by a single phonon,” Phys. Rev. Lett. 120, 233601 (2018).
[Crossref] [PubMed]

Seibold, K.

M. D. Anderson, S. Tarrago Velez, K. Seibold, H. Flayac, V. Savona, N. Sangouard, and C. Galland, “Two-color pump-probe measurement of photonic quantum correlations mediated by a single phonon,” Phys. Rev. Lett. 120, 233601 (2018).
[Crossref] [PubMed]

Shin, H.

K. Park, D. Lee, Y. S. Ihn, Y.-H. Kim, and H. Shin, “Observation of photon-pair generation in the normal group-velocity-dispersion regime with slight detuning from the pump wavelength,” New J. Phys. 20, 103004 (2018).
[Crossref]

Silberhorn, C.

V. Ansari, J. M. Donohue, B. Brecht, and C. Silberhorn, “Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings,” Optica 5, 534–550 (2018).
[Crossref]

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95, 061803 (2017).
[Crossref]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A 83, 031806 (2011).
[Crossref]

W. Mauerer, M. Avenhaus, W. Helwig, and C. Silberhorn, “How colors influence numbers: Photon statistics of parametric down-conversion,” Phys. Rev. A 80, 053815 (2009).
[Crossref]

Silverstone, J. W.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104 (2013).
[Crossref]

Sipe, J. E.

Smirr, J.-L.

Smith, B. J.

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A 83, 031806 (2011).
[Crossref]

B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express 17, 23589–23602 (2009).
[Crossref]

Söller, C.

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A 83, 031806 (2011).
[Crossref]

Spring, J. B.

Stace, T. M.

Stevens, M. J.

Su, Y.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115, 193601 (2015).
[Crossref] [PubMed]

Sun, Y.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115, 193601 (2015).
[Crossref] [PubMed]

Suzuki, N.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Tanner, M. G.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104 (2013).
[Crossref]

Tarrago Velez, S.

M. D. Anderson, S. Tarrago Velez, K. Seibold, H. Flayac, V. Savona, N. Sangouard, and C. Galland, “Two-color pump-probe measurement of photonic quantum correlations mediated by a single phonon,” Phys. Rev. Lett. 120, 233601 (2018).
[Crossref] [PubMed]

Teo, K. L.

X. M. Yang, X. Q. Yang, and K. L. Teo, “A matrix trace inequality,” J. Math. Analysis Appl. 263, 327–331 (2001).
[Crossref]

Thew, R.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photon. 1, 165–171 (2007).
[Crossref]

Thomas-Peter, N.

Thompson, M. G.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104 (2013).
[Crossref]

Tiedau, J.

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95, 061803 (2017).
[Crossref]

U’Ren, A. B.

J. Monroy-Ruz, K. Garay-Palmett, and A. B. U’Ren, “Counter-propagating spontaneous four wave mixing: photon-pair factorability and ultra-narrowband single photons,” New J. Phys. 18, 103026 (2016).
[Crossref]

D. Cruz-Delgado, R. Ramirez-Alarcon, E. Ortiz-Ricardo, J. Monroy-Ruz, F. Dominguez-Serna, H. Cruz-Ramirez, K. Garay-Palmett, and A. B. U’Ren, “Fiber-based photon-pair source capable of hybrid entanglement in frequency and transverse mode, controllably scalable to higher dimensions,” Sci. Reports 6, 27377 (2016).
[Crossref]

K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
[Crossref]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870–14886 (2007).
[Crossref] [PubMed]

Wadsworth, W. J.

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[Crossref]

Walmsley, I. A.

Weiner, A. M.

White, A. G.

Williams, B. P.

Wong, G. K. L.

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[Crossref]

Xiong, C.

Yang, X. M.

X. M. Yang, X. Q. Yang, and K. L. Teo, “A matrix trace inequality,” J. Math. Analysis Appl. 263, 327–331 (2001).
[Crossref]

Yang, X. Q.

X. M. Yang, X. Q. Yang, and K. L. Teo, “A matrix trace inequality,” J. Math. Analysis Appl. 263, 327–331 (2001).
[Crossref]

Yoshida, H.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

Zaquine, I.

Zhang, W.

Zhao, L.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115, 193601 (2015).
[Crossref] [PubMed]

Zhou, Q.

Zwiller, V.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

J. Math. Analysis Appl. (1)

X. M. Yang, X. Q. Yang, and K. L. Teo, “A matrix trace inequality,” J. Math. Analysis Appl. 263, 327–331 (2001).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photon. (1)

N. Gisin and R. Thew, “Quantum communication,” Nat. Photon. 1, 165–171 (2007).
[Crossref]

Nat. Photonics (1)

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8, 104 (2013).
[Crossref]

Nature (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

New J. Phys. (3)

K. Park, D. Lee, Y. S. Ihn, Y.-H. Kim, and H. Shin, “Observation of photon-pair generation in the normal group-velocity-dispersion regime with slight detuning from the pump wavelength,” New J. Phys. 20, 103004 (2018).
[Crossref]

O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006).
[Crossref]

J. Monroy-Ruz, K. Garay-Palmett, and A. B. U’Ren, “Counter-propagating spontaneous four wave mixing: photon-pair factorability and ultra-narrowband single photons,” New J. Phys. 18, 103026 (2016).
[Crossref]

Opt. Express (10)

B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, “State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing,” Opt. Express 21, 2707–2717 (2013).
[Crossref] [PubMed]

B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers,” Opt. Express 17, 23589–23602 (2009).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21, 27826–27834 (2013).
[Crossref]

J. Fan and A. Migdall, “Generation of cross-polarized photon pairs in a microstructure fiber with frequency-conjugate laser pump pulses,” Opt. Express 13, 5777–5782 (2005).
[Crossref] [PubMed]

J.-L. Smirr, S. Guilbaud, J. Ghalbouni, R. Frey, E. Diamanti, R. Alléaume, and I. Zaquine, “Simple performance evaluation of pulsed spontaneous parametric down-conversion sources for quantum communications,” Opt. Express 19, 616–627 (2011).
[Crossref] [PubMed]

S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16, 9966–9977 (2008).
[Crossref] [PubMed]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14870–14886 (2007).
[Crossref] [PubMed]

A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express 19, 55–65 (2011).
[Crossref]

J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” Opt. Express 21, 13522 (2013).
[Crossref] [PubMed]

B. Fang, M. Liscidini, J. E. Sipe, and V. O. Lorenz, “Multidimensional characterization of an entangled photon-pair source via stimulated emission tomography,” Opt. Express 24, 10013–10019 (2016).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (3)

Phys. Rev. A (6)

E. Meyer-Scott, N. Montaut, J. Tiedau, L. Sansoni, H. Herrmann, T. J. Bartley, and C. Silberhorn, “Limits on the heralding efficiencies and spectral purities of spectrally filtered single photons from photon-pair sources,” Phys. Rev. A 95, 061803 (2017).
[Crossref]

N. Quesada and A. M. Brańczyk, “Gaussian functions are optimal for waveguided nonlinear-quantum-optical processes,” Phys. Rev. A 98, 043813 (2018).
[Crossref]

W. Mauerer, M. Avenhaus, W. Helwig, and C. Silberhorn, “How colors influence numbers: Photon statistics of parametric down-conversion,” Phys. Rev. A 80, 053815 (2009).
[Crossref]

K. Garay-Palmett, D. Cruz-Delgado, F. Dominguez-Serna, E. Ortiz-Ricardo, J. Monroy-Ruz, H. Cruz-Ramirez, R. Ramirez-Alarcon, and A. B. U’Ren, “Photon-pair generation by intermodal spontaneous four-wave mixing in birefringent, weakly guiding optical fibers,” Phys. Rev. A 93, 033810 (2016).
[Crossref]

J. B. Christensen, C. J. McKinstrie, and K. Rottwitt, “Temporally uncorrelated photon-pair generation by dual-pump four-wave mixing,” Phys. Rev. A 94, 013819 (2016).
[Crossref]

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A 83, 031806 (2011).
[Crossref]

Phys. Rev. Lett. (5)

M. D. Anderson, S. Tarrago Velez, K. Seibold, H. Flayac, V. Savona, N. Sangouard, and C. Galland, “Two-color pump-probe measurement of photonic quantum correlations mediated by a single phonon,” Phys. Rev. Lett. 120, 233601 (2018).
[Crossref] [PubMed]

A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett. 106, 013603 (2011).
[Crossref] [PubMed]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006).
[Crossref] [PubMed]

M. Liscidini and J. E. Sipe, “Stimulated emission tomography,” Phys. Rev. Lett. 111, 193602 (2013).
[Crossref] [PubMed]

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115, 193601 (2015).
[Crossref] [PubMed]

Quantum Sci. Technol. (1)

F. Graffitti, D. Kundys, D. T. Reid, A. M. Brańczyk, and A. Fedrizzi, “Pure down-conversion photons through sub-coherence-length domain engineering,” Quantum Sci. Technol. 2, 035001 (2017).
[Crossref]

Sci. Reports (1)

D. Cruz-Delgado, R. Ramirez-Alarcon, E. Ortiz-Ricardo, J. Monroy-Ruz, F. Dominguez-Serna, H. Cruz-Ramirez, K. Garay-Palmett, and A. B. U’Ren, “Fiber-based photon-pair source capable of hybrid entanglement in frequency and transverse mode, controllably scalable to higher dimensions,” Sci. Reports 6, 27377 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of the dual-pump SFWM process. (b) Experimental setup for dual-pump SFWM. Different combinations of avalanche photo-diodes APDs, APD s and APDi are used, as described in the text; the dashed box indicates a fiber beam-splitter and APD s are present only for those measurements that require it. OPO: optical parametric oscillator; λ/2: half-wave plate; O: objective; PMF: polarization-maintaining fiber; Pol: polarizer; D: dichroic mirror; SF: spectral filter; TDC: time-to-digital converter.
Fig. 2
Fig. 2 (a-c) Photon detection counts (circles) and multi-curve fits (solid lines) vs. dual-pump delay for the (a) signal arm (Cs), (b) idler arm (Ci), and (c) coincidences (Csi). (d) g s i ( 2 ) second-order coherence cross-correlation calculated from the counts in (a-c).
Fig. 3
Fig. 3 Experimental setup for stimulated-emission-based measurement of the joint spectral density. CW: continuous-wave.
Fig. 4
Fig. 4 Experimental (top row) and theoretical (bottom row) joint spectral densities (JSDs) for various detunings. Experimental data is measured via stimulated emission. (a,b) degenerate pump at 715 nm, (c,d) dual pump at 772 nm and 652 nm, (e,f) dual pump at 772 nm and 565 nm, and (g,h) dual pump at 772 nm and 534 nm. Going from left to right, corresponding to increasing detuning between the two pumps, the sidelobes’ intensity weakens and the JSD of the signal and idler photons becomes less correlated.

Tables (1)

Tables Icon

Table 1 Measured raw purity Praw, measured noise purity Pnoise, ratio r (in our experiments t ≅ 1 − r) of SFWM signal photon counts to total (SFWM + noise) counts, corrected SFWM signal photon purity P, and theoretical quantum state purity Ptheory for various spectral detunings Δ between pumps 1 and 2. The statistical errors in the r values are <10−3.

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

Δ k = k ( ω p 1 ) + k ( ω p 2 ) k ( ω s ) k ( ω i ) + Δ n ω p 1 + ω p 2 c = 0 ,
| Ψ * = | vac * + κ d ν s d ν i F ( ν s , ν i ; τ ) | ν s , ν i * + O ( κ 2 ) ,
F ( ν s , ν i ; τ ) = exp   [ ( ν s + ν i ) 2 σ 1 2 + σ 2 2 ] exp   [ ( T s ν s + T i ν i σ τ p ) 2 ] × [ erf ( σ ( τ + τ p ) 2 i T s ν s + T i ν i σ τ p ) erf ( σ τ 2 i T s ν s + T i ν i σ τ p ) ] .
p ( τ ) = p max [ erf ( σ τ + σ τ p 2 ) erf ( σ τ 2 ) erf ( σ τ p 2 2 ) erf ( σ u p 2 2 ) ] ,
C s ( τ ) = N s + η s p ( τ ) R ,
C i ( τ ) = N i + η i p ( τ ) R ,
C s i ( τ ) = N s N i R + ( 1 η s ) p ( τ ) N i + ( 1 η i ) p ( τ ) N s + η s η i p ( τ ) R ,
f degen ( ν s , ν i ) = N exp  [ ( ν s + ν i ) 2 σ 1 2 + σ 2 2 ] sinc ( τ s ν s + τ i ν i ) ,
f ( ν s , ν i ) = N exp   [ ( ν s + ν i ) 2 σ 1 2 + σ 2 2 ] exp   [ ( T s ν s + T i ν i σ τ p ) 2 ] × [ erf ( σ τ p 4 i T s ν s + T i ν i σ τ p ) erf ( σ τ p 4 i T s ν s + T i ν i σ τ p ) ] .
f σ τ p 1 ( ν s , ν i ) = N exp  [ ( ν s + ν i ) 2 / ( σ 1 2 + σ 2 2 ) ] exp  [ ( ( T s ν s + T i ν s ) / σ τ p ) 2 ] .
P P r a w t 2 P n o i s e r 2 , P P r a w t 2 P n o i s e r 2 2 t r 2 P raw ( P noise u 2 P det ) ,
| Ψ = exp   [ β d ν s d ν i f ( ν s , ν i ) a ^ s ( ν s ) a ^ i ( ν i ) + γ d ν s d Ω g ( ν s , Ω ) a ^ s ( ν s ) b ^ ( Ω ) ] | vac ,
| Ψ ( 1 ) * = β | ψ s i * + γ | ψ s b * ,
| ψ s i * = d ν s d ν i f ( ν s , ν i ) a ^ s ( ν s ) a ^ i ( ν i ) | vac * ,
| ψ s b * = d ν s d Ω g ( ν s , Ω ) a ^ s ( ν s ) b ^ ( Ω ) | vac * ,
g ˜ s s ( 2 ) = d ν s d ν s ' Ψ | a ^ s ( ν s ) a ^ s ( ν s ' ) a ^ s ( ν s ) a ^ s ( ν s ' ) | Ψ | d ν s Ψ | a ^ s ( ν s ) a ^ s ( ν s ) | Ψ * | 2 * = 1 + P ˜ raw ,
P ˜ raw = w 2 P + ( 1 w ) 2 P spu + 2 w ( 1 w ) Tr ( ρ s ρ spu )
P ˜ raw w 2 P + ( 1 w ) 2 P spu , P ˜ raw w 2 P + ( 1 w ) 2 P spu + 2 w ( 1 w ) P P spu .
g s s ( 2 ) = p s s + q s s + p s q s + p s q s ( p s + q s ) ( p s + q s ) = 1 + ( 1 v s ) ( 1 v s ) P ˜ raw + v s v s P det ,
P raw ( 1 v s ) ( 1 v s ) ( w 2 P + ( 1 w ) 2 P spu ) + v s v s P det , P raw ( 1 v s ) ( 1 v s ) ( w 2 P + ( 1 w ) 2 P spu ) + v s v s P det + 2 w ( 1 w ) ( 1 v s ) ( 1 v s ' ) P P spu .
P raw r 2 P + t 2 ( 1 u s ) ( 1 u s ) P spu + t 2 u 2 P det , P raw r 2 P + t 2 ( 1 u s ) ( 1 u s ) P spu + t 2 u 2 P det + 2 r t ( 1 u s ) ( 1 u s ) P P spu ,
P raw r 2 P + t 2 P noise , P raw r 2 P + t 2 P noise + 2 r t P ( P noise u 2 P det ) ,
P P r a w t 2 P n o i s e r 2 , P P r a w t 2 P n o i s e r 2 2 t r 2 P raw ( P noise u 2 P det ) .