K. Höschel and L. Vasudevan, “Genetic algorithms for lens design: a review,” J. Opt. 48(1), 134–144 (2019).

[Crossref]

Z. Shen, J. Yu, Z. Song, L. Chen, Q. Yuan, Z. Gao, S. Pei, B. Liu, and J. Ye, “Customized design and efficient fabrication of two freeform aluminum mirrors by single point diamond turning technique,” Appl. Opt. 58(9), 2269–2276 (2019).

[Crossref]
[PubMed]

Q. Meng, H. Wang, W. Liang, Z. Yan, and B. Wang, “Design of off-axis three-mirror systems with ultrawide field of view based on an expansion process of surface freeform and field of view,” Appl. Opt. 58(3), 609–615 (2019).

[Crossref]
[PubMed]

Z. Li, X. Liu, F. Fang, X. Zhang, Z. Zeng, L. Zhu, and N. Yan, “Integrated manufacture of a freeform off-axis multi-reflective imaging system without optical alignment,” Opt. Express 26(6), 7625–7637 (2018).

[Crossref]
[PubMed]

C. Menke, “Application of particle swarm optimization to the automatic design of optical systems,” Proc. SPIE 10690, 106901A (2018).

[Crossref]

A. Bauer, E. M. Schiesser, and J. P. Rolland, “Starting geometry creation and design method for freeform optics,” Nat. Commun. 9(1), 1756 (2018).

[Crossref]
[PubMed]

J. C. Papa, J. M. Howard, and J. P. Rolland, “Starting point designs for freeform four-mirror systems,” Opt. Eng. 57(10), 101705 (2018).

[Crossref]

C. Leboucher, S. Hyo-Sang, C. Rachid, L. M. Stéphane, S. Patrick, F. Mathias, T. Antonios, and K. Alexandre, “An Enhanced Particle Swarm Optimization Method Integrated With Evolutionary Game Theory,” IEEE Trans. Games 10, 221–230 (2018).

[Crossref]

S. Özyön, Y. Celal, and T. Hasan, “Incremental gravitational search algorithm for high-dimensional benchmark functions,” Neural Comput. Appl. 29, 1–25 (2018).

A. Broemel, C. Liu, Y. Zhong, Y. Zhang, and H. Gross, “Freeform surface descriptions. Part II: application benchmark,” Adv. Opt. Technol. 6(15), 337–347 (2017).

T. Yang, G. F. Jin, and J. Zhu, “Automated design of freeform imaging systems,” Light Sci. Appl. 6(10), e17081 (2017).

[Crossref]
[PubMed]

L. I. Jun, W. Huang, and F. Hongjie, “A novel method for finding the initial structure parameters of optical systems via a genetic algorithm,” Opt. Commun. 361, 28–35 (2016).

[Crossref]

M. I. Nikolic, B. Pablo, N. Bharathwaj, A. G. Dejan, L. Jayao, and M. Juan Carlos, “Optical design through optimization for rectangular apertures using freeform orthogonal polynomials: a case study,” Opt. Eng. 55(7), 071204 (2016).

G.-G. Wang, D. Suash, A. H. Gandomi, Z. Zhaojun, and A. H. Alavi, “Chaotic cuckoo search,” Soft Comput. 20, 3349–3362 (2016).

[Crossref]
[PubMed]

A. Broemel, H. Gross, D. Ochse, U. Lippmann, C. Ma, Y. Zhong, and M. Oleszko, “Performance comparison of polynomial representations for optimizing optical freeform systems,” Proc. SPIE 9626, 96260W (2015).

J. Zhu, H. Wei, Z. Xiaodong, and J. Guofan, “Design of a low F-number freeform off-axis three-mirror system with rectangular field-of-view,” J. Opt. 17(1), 015605 (2015).

[Crossref]

J. P. Rolland, K. Fuerschbach, G. E. Davis, and K. P. Thompson, “Pamplemousse: The optical design, fabrication, and assembly of a three-mirror freeform imaging telescope,” Proc. SPIE 9293, 92930L (2014).

X.-S. Yang and D. Suash, “Cuckoo search: recent advances and applications,” Neural Comput. Appl. 24, 169–174 (2014).

[Crossref]

A. H. Gandomi, X.-S. Yan, and A. H. Alavi, “Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems,” Eng. Comput. 29, 17–35 (2013).

[Crossref]

X.-S. Yang and D. Suash, “Engineering optimisation by cuckoo search,” Math. Model. Num. Opt. 1(4), 330–343 (2010).

[Crossref]

E. Rashedi, N.-P. Hossein, and S. Saeid, “GSA: a gravitational search algorithm,” Inf. Sci. 179(13), 2232–2248 (2009).

[Crossref]

X. Cheng, W. Yongtian, H. Qun, and I. Masaki, “Global and local optimization for optical systems,” Optik (Stuttg.) 117, 111–117 (2006).

[Crossref]

A. Luersen, L. R. Marco, Rodolphe, and G. Frédéric, “A constrained, globalized, and bounded Nelder–Mead method for engineering optimization,” Struct. Multidis. Optim. 27, 43–54 (2004).

L. Hazra and B. Saswatee, “Genetic algorithm in the structural design of Cooke triplet lenses,” Proc. SPIE 3737, 172–180 (1999).

[Crossref]

D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Comput. 1, 67–82 (1997).

[Crossref]

D. Shafer, “Global optimization in optical design,” Comput. Phys. 8, 188–195 (1994).

[Crossref]

M. J. Kidger, “Use of the Levenberg-Marquardt (damped least-squares) optimization method in lens design,” Opt. Eng. 32, 1731–1740 (1993).

[Crossref]

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

[Crossref]

G.-G. Wang, D. Suash, A. H. Gandomi, Z. Zhaojun, and A. H. Alavi, “Chaotic cuckoo search,” Soft Comput. 20, 3349–3362 (2016).

[Crossref]
[PubMed]

A. H. Gandomi, X.-S. Yan, and A. H. Alavi, “Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems,” Eng. Comput. 29, 17–35 (2013).

[Crossref]

C. Leboucher, S. Hyo-Sang, C. Rachid, L. M. Stéphane, S. Patrick, F. Mathias, T. Antonios, and K. Alexandre, “An Enhanced Particle Swarm Optimization Method Integrated With Evolutionary Game Theory,” IEEE Trans. Games 10, 221–230 (2018).

[Crossref]

C. Leboucher, S. Hyo-Sang, C. Rachid, L. M. Stéphane, S. Patrick, F. Mathias, T. Antonios, and K. Alexandre, “An Enhanced Particle Swarm Optimization Method Integrated With Evolutionary Game Theory,” IEEE Trans. Games 10, 221–230 (2018).

[Crossref]

A. Hagg, A. Asteroth, and T. Bäck, “Prototype discovery using quality-diversity,” International Conference on Parallel Problem Solving from Nature (2018), pp. 500–511.

[Crossref]

A. Auger and H. Nikolaus, “A restart CMA evolution strategy with increasing population size,” 2005 IEEE Congress on Evolutionary Computation (IEEE, 2005), pp. 1769–1776.

[Crossref]

N. Hansen, A. Auger, R. Ros, S. Finck, and P. Pošík, “Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009,” Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation (2010). pp. 1689–1696.

[Crossref]

A. Hagg, A. Asteroth, and T. Bäck, “Prototype discovery using quality-diversity,” International Conference on Parallel Problem Solving from Nature (2018), pp. 500–511.

[Crossref]

A. Bauer, E. M. Schiesser, and J. P. Rolland, “Starting geometry creation and design method for freeform optics,” Nat. Commun. 9(1), 1756 (2018).

[Crossref]
[PubMed]

M. I. Nikolic, B. Pablo, N. Bharathwaj, A. G. Dejan, L. Jayao, and M. Juan Carlos, “Optical design through optimization for rectangular apertures using freeform orthogonal polynomials: a case study,” Opt. Eng. 55(7), 071204 (2016).

A. Broemel, C. Liu, Y. Zhong, Y. Zhang, and H. Gross, “Freeform surface descriptions. Part II: application benchmark,” Adv. Opt. Technol. 6(15), 337–347 (2017).

A. Broemel, H. Gross, D. Ochse, U. Lippmann, C. Ma, Y. Zhong, and M. Oleszko, “Performance comparison of polynomial representations for optimizing optical freeform systems,” Proc. SPIE 9626, 96260W (2015).

S. Özyön, Y. Celal, and T. Hasan, “Incremental gravitational search algorithm for high-dimensional benchmark functions,” Neural Comput. Appl. 29, 1–25 (2018).

Z. Shen, J. Yu, Z. Song, L. Chen, Q. Yuan, Z. Gao, S. Pei, B. Liu, and J. Ye, “Customized design and efficient fabrication of two freeform aluminum mirrors by single point diamond turning technique,” Appl. Opt. 58(9), 2269–2276 (2019).

[Crossref]
[PubMed]

X. Cheng, W. Yongtian, H. Qun, and I. Masaki, “Global and local optimization for optical systems,” Optik (Stuttg.) 117, 111–117 (2006).

[Crossref]

J. P. Rolland, K. Fuerschbach, G. E. Davis, and K. P. Thompson, “Pamplemousse: The optical design, fabrication, and assembly of a three-mirror freeform imaging telescope,” Proc. SPIE 9293, 92930L (2014).

M. I. Nikolic, B. Pablo, N. Bharathwaj, A. G. Dejan, L. Jayao, and M. Juan Carlos, “Optical design through optimization for rectangular apertures using freeform orthogonal polynomials: a case study,” Opt. Eng. 55(7), 071204 (2016).

R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” Proceedings of the Sixth International Symposium on Micro Machine and Human Science (1995), pp. 39–43.

[Crossref]

N. Hansen, A. Auger, R. Ros, S. Finck, and P. Pošík, “Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009,” Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation (2010). pp. 1689–1696.

[Crossref]

A. Luersen, L. R. Marco, Rodolphe, and G. Frédéric, “A constrained, globalized, and bounded Nelder–Mead method for engineering optimization,” Struct. Multidis. Optim. 27, 43–54 (2004).

J. P. Rolland, K. Fuerschbach, G. E. Davis, and K. P. Thompson, “Pamplemousse: The optical design, fabrication, and assembly of a three-mirror freeform imaging telescope,” Proc. SPIE 9293, 92930L (2014).

G.-G. Wang, D. Suash, A. H. Gandomi, Z. Zhaojun, and A. H. Alavi, “Chaotic cuckoo search,” Soft Comput. 20, 3349–3362 (2016).

[Crossref]
[PubMed]

A. H. Gandomi, X.-S. Yan, and A. H. Alavi, “Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems,” Eng. Comput. 29, 17–35 (2013).

[Crossref]

Z. Shen, J. Yu, Z. Song, L. Chen, Q. Yuan, Z. Gao, S. Pei, B. Liu, and J. Ye, “Customized design and efficient fabrication of two freeform aluminum mirrors by single point diamond turning technique,” Appl. Opt. 58(9), 2269–2276 (2019).

[Crossref]
[PubMed]

A. Broemel, C. Liu, Y. Zhong, Y. Zhang, and H. Gross, “Freeform surface descriptions. Part II: application benchmark,” Adv. Opt. Technol. 6(15), 337–347 (2017).

A. Broemel, H. Gross, D. Ochse, U. Lippmann, C. Ma, Y. Zhong, and M. Oleszko, “Performance comparison of polynomial representations for optimizing optical freeform systems,” Proc. SPIE 9626, 96260W (2015).

J. Zhu, H. Wei, Z. Xiaodong, and J. Guofan, “Design of a low F-number freeform off-axis three-mirror system with rectangular field-of-view,” J. Opt. 17(1), 015605 (2015).

[Crossref]

A. Hagg, A. Asteroth, and T. Bäck, “Prototype discovery using quality-diversity,” International Conference on Parallel Problem Solving from Nature (2018), pp. 500–511.

[Crossref]

N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in evolution strategies,” Evol. Comput. 9(2), 159–195 (2001).

[Crossref]
[PubMed]

N. Hansen, “Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed,” Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers (2009), pp. 2389–2396.

[Crossref]

N. Hansen, A. Auger, R. Ros, S. Finck, and P. Pošík, “Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009,” Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation (2010). pp. 1689–1696.

[Crossref]

S. Özyön, Y. Celal, and T. Hasan, “Incremental gravitational search algorithm for high-dimensional benchmark functions,” Neural Comput. Appl. 29, 1–25 (2018).

L. I. Jun, W. Huang, and F. Hongjie, “A novel method for finding the initial structure parameters of optical systems via a genetic algorithm,” Opt. Commun. 361, 28–35 (2016).

[Crossref]

K. Höschel and L. Vasudevan, “Genetic algorithms for lens design: a review,” J. Opt. 48(1), 134–144 (2019).

[Crossref]

E. Rashedi, N.-P. Hossein, and S. Saeid, “GSA: a gravitational search algorithm,” Inf. Sci. 179(13), 2232–2248 (2009).

[Crossref]

J. C. Papa, J. M. Howard, and J. P. Rolland, “Starting point designs for freeform four-mirror systems,” Opt. Eng. 57(10), 101705 (2018).

[Crossref]

L. I. Jun, W. Huang, and F. Hongjie, “A novel method for finding the initial structure parameters of optical systems via a genetic algorithm,” Opt. Commun. 361, 28–35 (2016).

[Crossref]

C. Leboucher, S. Hyo-Sang, C. Rachid, L. M. Stéphane, S. Patrick, F. Mathias, T. Antonios, and K. Alexandre, “An Enhanced Particle Swarm Optimization Method Integrated With Evolutionary Game Theory,” IEEE Trans. Games 10, 221–230 (2018).

[Crossref]

M. I. Nikolic, B. Pablo, N. Bharathwaj, A. G. Dejan, L. Jayao, and M. Juan Carlos, “Optical design through optimization for rectangular apertures using freeform orthogonal polynomials: a case study,” Opt. Eng. 55(7), 071204 (2016).

T. Yang, G. F. Jin, and J. Zhu, “Automated design of freeform imaging systems,” Light Sci. Appl. 6(10), e17081 (2017).

[Crossref]
[PubMed]

M. I. Nikolic, B. Pablo, N. Bharathwaj, A. G. Dejan, L. Jayao, and M. Juan Carlos, “Optical design through optimization for rectangular apertures using freeform orthogonal polynomials: a case study,” Opt. Eng. 55(7), 071204 (2016).

L. I. Jun, W. Huang, and F. Hongjie, “A novel method for finding the initial structure parameters of optical systems via a genetic algorithm,” Opt. Commun. 361, 28–35 (2016).

[Crossref]

R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” Proceedings of the Sixth International Symposium on Micro Machine and Human Science (1995), pp. 39–43.

[Crossref]

M. J. Kidger, “Use of the Levenberg-Marquardt (damped least-squares) optimization method in lens design,” Opt. Eng. 32, 1731–1740 (1993).

[Crossref]

C. Leboucher, S. Hyo-Sang, C. Rachid, L. M. Stéphane, S. Patrick, F. Mathias, T. Antonios, and K. Alexandre, “An Enhanced Particle Swarm Optimization Method Integrated With Evolutionary Game Theory,” IEEE Trans. Games 10, 221–230 (2018).

[Crossref]

A. Broemel, H. Gross, D. Ochse, U. Lippmann, C. Ma, Y. Zhong, and M. Oleszko, “Performance comparison of polynomial representations for optimizing optical freeform systems,” Proc. SPIE 9626, 96260W (2015).

Z. Shen, J. Yu, Z. Song, L. Chen, Q. Yuan, Z. Gao, S. Pei, B. Liu, and J. Ye, “Customized design and efficient fabrication of two freeform aluminum mirrors by single point diamond turning technique,” Appl. Opt. 58(9), 2269–2276 (2019).

[Crossref]
[PubMed]

A. Broemel, C. Liu, Y. Zhong, Y. Zhang, and H. Gross, “Freeform surface descriptions. Part II: application benchmark,” Adv. Opt. Technol. 6(15), 337–347 (2017).

A. Luersen, L. R. Marco, Rodolphe, and G. Frédéric, “A constrained, globalized, and bounded Nelder–Mead method for engineering optimization,” Struct. Multidis. Optim. 27, 43–54 (2004).

A. Broemel, H. Gross, D. Ochse, U. Lippmann, C. Ma, Y. Zhong, and M. Oleszko, “Performance comparison of polynomial representations for optimizing optical freeform systems,” Proc. SPIE 9626, 96260W (2015).

D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Comput. 1, 67–82 (1997).

[Crossref]

A. Luersen, L. R. Marco, Rodolphe, and G. Frédéric, “A constrained, globalized, and bounded Nelder–Mead method for engineering optimization,” Struct. Multidis. Optim. 27, 43–54 (2004).

X. Cheng, W. Yongtian, H. Qun, and I. Masaki, “Global and local optimization for optical systems,” Optik (Stuttg.) 117, 111–117 (2006).

[Crossref]

C. Leboucher, S. Hyo-Sang, C. Rachid, L. M. Stéphane, S. Patrick, F. Mathias, T. Antonios, and K. Alexandre, “An Enhanced Particle Swarm Optimization Method Integrated With Evolutionary Game Theory,” IEEE Trans. Games 10, 221–230 (2018).

[Crossref]

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

[Crossref]

C. Menke, “Application of particle swarm optimization to the automatic design of optical systems,” Proc. SPIE 10690, 106901A (2018).

[Crossref]

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

[Crossref]

A. Auger and H. Nikolaus, “A restart CMA evolution strategy with increasing population size,” 2005 IEEE Congress on Evolutionary Computation (IEEE, 2005), pp. 1769–1776.

[Crossref]

M. I. Nikolic, B. Pablo, N. Bharathwaj, A. G. Dejan, L. Jayao, and M. Juan Carlos, “Optical design through optimization for rectangular apertures using freeform orthogonal polynomials: a case study,” Opt. Eng. 55(7), 071204 (2016).

A. Broemel, H. Gross, D. Ochse, U. Lippmann, C. Ma, Y. Zhong, and M. Oleszko, “Performance comparison of polynomial representations for optimizing optical freeform systems,” Proc. SPIE 9626, 96260W (2015).

A. Broemel, H. Gross, D. Ochse, U. Lippmann, C. Ma, Y. Zhong, and M. Oleszko, “Performance comparison of polynomial representations for optimizing optical freeform systems,” Proc. SPIE 9626, 96260W (2015).

N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in evolution strategies,” Evol. Comput. 9(2), 159–195 (2001).

[Crossref]
[PubMed]

S. Özyön, Y. Celal, and T. Hasan, “Incremental gravitational search algorithm for high-dimensional benchmark functions,” Neural Comput. Appl. 29, 1–25 (2018).

M. I. Nikolic, B. Pablo, N. Bharathwaj, A. G. Dejan, L. Jayao, and M. Juan Carlos, “Optical design through optimization for rectangular apertures using freeform orthogonal polynomials: a case study,” Opt. Eng. 55(7), 071204 (2016).

J. C. Papa, J. M. Howard, and J. P. Rolland, “Starting point designs for freeform four-mirror systems,” Opt. Eng. 57(10), 101705 (2018).

[Crossref]

C. Leboucher, S. Hyo-Sang, C. Rachid, L. M. Stéphane, S. Patrick, F. Mathias, T. Antonios, and K. Alexandre, “An Enhanced Particle Swarm Optimization Method Integrated With Evolutionary Game Theory,” IEEE Trans. Games 10, 221–230 (2018).

[Crossref]

Z. Shen, J. Yu, Z. Song, L. Chen, Q. Yuan, Z. Gao, S. Pei, B. Liu, and J. Ye, “Customized design and efficient fabrication of two freeform aluminum mirrors by single point diamond turning technique,” Appl. Opt. 58(9), 2269–2276 (2019).

[Crossref]
[PubMed]

N. Hansen, A. Auger, R. Ros, S. Finck, and P. Pošík, “Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009,” Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation (2010). pp. 1689–1696.

[Crossref]

X. Cheng, W. Yongtian, H. Qun, and I. Masaki, “Global and local optimization for optical systems,” Optik (Stuttg.) 117, 111–117 (2006).

[Crossref]

C. Leboucher, S. Hyo-Sang, C. Rachid, L. M. Stéphane, S. Patrick, F. Mathias, T. Antonios, and K. Alexandre, “An Enhanced Particle Swarm Optimization Method Integrated With Evolutionary Game Theory,” IEEE Trans. Games 10, 221–230 (2018).

[Crossref]

E. Rashedi, N.-P. Hossein, and S. Saeid, “GSA: a gravitational search algorithm,” Inf. Sci. 179(13), 2232–2248 (2009).

[Crossref]

A. Luersen, L. R. Marco, Rodolphe, and G. Frédéric, “A constrained, globalized, and bounded Nelder–Mead method for engineering optimization,” Struct. Multidis. Optim. 27, 43–54 (2004).

A. Bauer, E. M. Schiesser, and J. P. Rolland, “Starting geometry creation and design method for freeform optics,” Nat. Commun. 9(1), 1756 (2018).

[Crossref]
[PubMed]

J. C. Papa, J. M. Howard, and J. P. Rolland, “Starting point designs for freeform four-mirror systems,” Opt. Eng. 57(10), 101705 (2018).

[Crossref]

J. P. Rolland, K. Fuerschbach, G. E. Davis, and K. P. Thompson, “Pamplemousse: The optical design, fabrication, and assembly of a three-mirror freeform imaging telescope,” Proc. SPIE 9293, 92930L (2014).

N. Hansen, A. Auger, R. Ros, S. Finck, and P. Pošík, “Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009,” Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation (2010). pp. 1689–1696.

[Crossref]

E. Rashedi, N.-P. Hossein, and S. Saeid, “GSA: a gravitational search algorithm,” Inf. Sci. 179(13), 2232–2248 (2009).

[Crossref]

L. Hazra and B. Saswatee, “Genetic algorithm in the structural design of Cooke triplet lenses,” Proc. SPIE 3737, 172–180 (1999).

[Crossref]

A. Bauer, E. M. Schiesser, and J. P. Rolland, “Starting geometry creation and design method for freeform optics,” Nat. Commun. 9(1), 1756 (2018).

[Crossref]
[PubMed]

D. Shafer, “Global optimization in optical design,” Comput. Phys. 8, 188–195 (1994).

[Crossref]

Z. Shen, J. Yu, Z. Song, L. Chen, Q. Yuan, Z. Gao, S. Pei, B. Liu, and J. Ye, “Customized design and efficient fabrication of two freeform aluminum mirrors by single point diamond turning technique,” Appl. Opt. 58(9), 2269–2276 (2019).

[Crossref]
[PubMed]

Z. Shen, J. Yu, Z. Song, L. Chen, Q. Yuan, Z. Gao, S. Pei, B. Liu, and J. Ye, “Customized design and efficient fabrication of two freeform aluminum mirrors by single point diamond turning technique,” Appl. Opt. 58(9), 2269–2276 (2019).

[Crossref]
[PubMed]

C. Leboucher, S. Hyo-Sang, C. Rachid, L. M. Stéphane, S. Patrick, F. Mathias, T. Antonios, and K. Alexandre, “An Enhanced Particle Swarm Optimization Method Integrated With Evolutionary Game Theory,” IEEE Trans. Games 10, 221–230 (2018).

[Crossref]

G.-G. Wang, D. Suash, A. H. Gandomi, Z. Zhaojun, and A. H. Alavi, “Chaotic cuckoo search,” Soft Comput. 20, 3349–3362 (2016).

[Crossref]
[PubMed]

X.-S. Yang and D. Suash, “Cuckoo search: recent advances and applications,” Neural Comput. Appl. 24, 169–174 (2014).

[Crossref]

X.-S. Yang and D. Suash, “Engineering optimisation by cuckoo search,” Math. Model. Num. Opt. 1(4), 330–343 (2010).

[Crossref]

J. P. Rolland, K. Fuerschbach, G. E. Davis, and K. P. Thompson, “Pamplemousse: The optical design, fabrication, and assembly of a three-mirror freeform imaging telescope,” Proc. SPIE 9293, 92930L (2014).

K. Höschel and L. Vasudevan, “Genetic algorithms for lens design: a review,” J. Opt. 48(1), 134–144 (2019).

[Crossref]

G.-G. Wang, D. Suash, A. H. Gandomi, Z. Zhaojun, and A. H. Alavi, “Chaotic cuckoo search,” Soft Comput. 20, 3349–3362 (2016).

[Crossref]
[PubMed]

J. Zhu, H. Wei, Z. Xiaodong, and J. Guofan, “Design of a low F-number freeform off-axis three-mirror system with rectangular field-of-view,” J. Opt. 17(1), 015605 (2015).

[Crossref]

D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Comput. 1, 67–82 (1997).

[Crossref]

J. Zhu, H. Wei, Z. Xiaodong, and J. Guofan, “Design of a low F-number freeform off-axis three-mirror system with rectangular field-of-view,” J. Opt. 17(1), 015605 (2015).

[Crossref]

A. H. Gandomi, X.-S. Yan, and A. H. Alavi, “Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems,” Eng. Comput. 29, 17–35 (2013).

[Crossref]

T. Yang, G. F. Jin, and J. Zhu, “Automated design of freeform imaging systems,” Light Sci. Appl. 6(10), e17081 (2017).

[Crossref]
[PubMed]

X.-S. Yang and D. Suash, “Cuckoo search: recent advances and applications,” Neural Comput. Appl. 24, 169–174 (2014).

[Crossref]

X.-S. Yang and D. Suash, “Engineering optimisation by cuckoo search,” Math. Model. Num. Opt. 1(4), 330–343 (2010).

[Crossref]

Z. Shen, J. Yu, Z. Song, L. Chen, Q. Yuan, Z. Gao, S. Pei, B. Liu, and J. Ye, “Customized design and efficient fabrication of two freeform aluminum mirrors by single point diamond turning technique,” Appl. Opt. 58(9), 2269–2276 (2019).

[Crossref]
[PubMed]

X. Cheng, W. Yongtian, H. Qun, and I. Masaki, “Global and local optimization for optical systems,” Optik (Stuttg.) 117, 111–117 (2006).

[Crossref]

Z. Shen, J. Yu, Z. Song, L. Chen, Q. Yuan, Z. Gao, S. Pei, B. Liu, and J. Ye, “Customized design and efficient fabrication of two freeform aluminum mirrors by single point diamond turning technique,” Appl. Opt. 58(9), 2269–2276 (2019).

[Crossref]
[PubMed]

Z. Shen, J. Yu, Z. Song, L. Chen, Q. Yuan, Z. Gao, S. Pei, B. Liu, and J. Ye, “Customized design and efficient fabrication of two freeform aluminum mirrors by single point diamond turning technique,” Appl. Opt. 58(9), 2269–2276 (2019).

[Crossref]
[PubMed]

A. Broemel, C. Liu, Y. Zhong, Y. Zhang, and H. Gross, “Freeform surface descriptions. Part II: application benchmark,” Adv. Opt. Technol. 6(15), 337–347 (2017).

G.-G. Wang, D. Suash, A. H. Gandomi, Z. Zhaojun, and A. H. Alavi, “Chaotic cuckoo search,” Soft Comput. 20, 3349–3362 (2016).

[Crossref]
[PubMed]

A. Broemel, C. Liu, Y. Zhong, Y. Zhang, and H. Gross, “Freeform surface descriptions. Part II: application benchmark,” Adv. Opt. Technol. 6(15), 337–347 (2017).

A. Broemel, H. Gross, D. Ochse, U. Lippmann, C. Ma, Y. Zhong, and M. Oleszko, “Performance comparison of polynomial representations for optimizing optical freeform systems,” Proc. SPIE 9626, 96260W (2015).

T. Yang, G. F. Jin, and J. Zhu, “Automated design of freeform imaging systems,” Light Sci. Appl. 6(10), e17081 (2017).

[Crossref]
[PubMed]

J. Zhu, H. Wei, Z. Xiaodong, and J. Guofan, “Design of a low F-number freeform off-axis three-mirror system with rectangular field-of-view,” J. Opt. 17(1), 015605 (2015).

[Crossref]

A. Broemel, C. Liu, Y. Zhong, Y. Zhang, and H. Gross, “Freeform surface descriptions. Part II: application benchmark,” Adv. Opt. Technol. 6(15), 337–347 (2017).

Z. Shen, J. Yu, Z. Song, L. Chen, Q. Yuan, Z. Gao, S. Pei, B. Liu, and J. Ye, “Customized design and efficient fabrication of two freeform aluminum mirrors by single point diamond turning technique,” Appl. Opt. 58(9), 2269–2276 (2019).

[Crossref]
[PubMed]

Q. Meng, H. Wang, W. Liang, Z. Yan, and B. Wang, “Design of off-axis three-mirror systems with ultrawide field of view based on an expansion process of surface freeform and field of view,” Appl. Opt. 58(3), 609–615 (2019).

[Crossref]
[PubMed]

A. Yabe, “Representation of freeform surfaces suitable for optimization,” Appl. Opt. 51(15), 3054–3058 (2012).

[Crossref]
[PubMed]

E. Glatzel and R. Wilson, “Adaptive automatic correction in optical design,” Appl. Opt. 7(2), 265–276 (1968).

[Crossref]
[PubMed]

S. Banerjee and L. Hazra, “Experiments with a genetic algorithm for structural design of cemented doublets with prespecified aberration targets,” Appl. Opt. 40(34), 6265–6273 (2001).

[Crossref]
[PubMed]

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

[Crossref]

D. Shafer, “Global optimization in optical design,” Comput. Phys. 8, 188–195 (1994).

[Crossref]

A. H. Gandomi, X.-S. Yan, and A. H. Alavi, “Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems,” Eng. Comput. 29, 17–35 (2013).

[Crossref]

N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in evolution strategies,” Evol. Comput. 9(2), 159–195 (2001).

[Crossref]
[PubMed]

D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Comput. 1, 67–82 (1997).

[Crossref]

C. Leboucher, S. Hyo-Sang, C. Rachid, L. M. Stéphane, S. Patrick, F. Mathias, T. Antonios, and K. Alexandre, “An Enhanced Particle Swarm Optimization Method Integrated With Evolutionary Game Theory,” IEEE Trans. Games 10, 221–230 (2018).

[Crossref]

E. Rashedi, N.-P. Hossein, and S. Saeid, “GSA: a gravitational search algorithm,” Inf. Sci. 179(13), 2232–2248 (2009).

[Crossref]

J. Zhu, H. Wei, Z. Xiaodong, and J. Guofan, “Design of a low F-number freeform off-axis three-mirror system with rectangular field-of-view,” J. Opt. 17(1), 015605 (2015).

[Crossref]

K. Höschel and L. Vasudevan, “Genetic algorithms for lens design: a review,” J. Opt. 48(1), 134–144 (2019).

[Crossref]

T. Yang, G. F. Jin, and J. Zhu, “Automated design of freeform imaging systems,” Light Sci. Appl. 6(10), e17081 (2017).

[Crossref]
[PubMed]

X.-S. Yang and D. Suash, “Engineering optimisation by cuckoo search,” Math. Model. Num. Opt. 1(4), 330–343 (2010).

[Crossref]

A. Bauer, E. M. Schiesser, and J. P. Rolland, “Starting geometry creation and design method for freeform optics,” Nat. Commun. 9(1), 1756 (2018).

[Crossref]
[PubMed]

S. Özyön, Y. Celal, and T. Hasan, “Incremental gravitational search algorithm for high-dimensional benchmark functions,” Neural Comput. Appl. 29, 1–25 (2018).

X.-S. Yang and D. Suash, “Cuckoo search: recent advances and applications,” Neural Comput. Appl. 24, 169–174 (2014).

[Crossref]

L. I. Jun, W. Huang, and F. Hongjie, “A novel method for finding the initial structure parameters of optical systems via a genetic algorithm,” Opt. Commun. 361, 28–35 (2016).

[Crossref]

J. C. Papa, J. M. Howard, and J. P. Rolland, “Starting point designs for freeform four-mirror systems,” Opt. Eng. 57(10), 101705 (2018).

[Crossref]

M. J. Kidger, “Use of the Levenberg-Marquardt (damped least-squares) optimization method in lens design,” Opt. Eng. 32, 1731–1740 (1993).

[Crossref]

M. I. Nikolic, B. Pablo, N. Bharathwaj, A. G. Dejan, L. Jayao, and M. Juan Carlos, “Optical design through optimization for rectangular apertures using freeform orthogonal polynomials: a case study,” Opt. Eng. 55(7), 071204 (2016).

X. Cheng, W. Yongtian, H. Qun, and I. Masaki, “Global and local optimization for optical systems,” Optik (Stuttg.) 117, 111–117 (2006).

[Crossref]

J. P. Rolland, K. Fuerschbach, G. E. Davis, and K. P. Thompson, “Pamplemousse: The optical design, fabrication, and assembly of a three-mirror freeform imaging telescope,” Proc. SPIE 9293, 92930L (2014).

L. Hazra and B. Saswatee, “Genetic algorithm in the structural design of Cooke triplet lenses,” Proc. SPIE 3737, 172–180 (1999).

[Crossref]

A. Broemel, H. Gross, D. Ochse, U. Lippmann, C. Ma, Y. Zhong, and M. Oleszko, “Performance comparison of polynomial representations for optimizing optical freeform systems,” Proc. SPIE 9626, 96260W (2015).

C. Menke, “Application of particle swarm optimization to the automatic design of optical systems,” Proc. SPIE 10690, 106901A (2018).

[Crossref]

G.-G. Wang, D. Suash, A. H. Gandomi, Z. Zhaojun, and A. H. Alavi, “Chaotic cuckoo search,” Soft Comput. 20, 3349–3362 (2016).

[Crossref]
[PubMed]

A. Luersen, L. R. Marco, Rodolphe, and G. Frédéric, “A constrained, globalized, and bounded Nelder–Mead method for engineering optimization,” Struct. Multidis. Optim. 27, 43–54 (2004).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes 3rd edition: The Art of Scientific Computing (Cambridge University, 2007).

N. Hansen, F. Steffen, R. Raymond, and A. Auger, “Real-parameter black-box optimization benchmarking 2010: Experimental setup,” Research report RR-7215, INRIA, 2010.

COCO, (COmparing Continuous Optimisers) homepage, (INRIA, 2019), http://coco.gforge.inria.fr/ .

N. Hansen, F. Steffen, R. Raymond, and A. Auger, “Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions,” Research report RR-6829, INRIA, 2009.

N. Hansen, A. Auger, R. Ros, S. Finck, and P. Pošík, “Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009,” Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation (2010). pp. 1689–1696.

[Crossref]

A. Hagg, A. Asteroth, and T. Bäck, “Prototype discovery using quality-diversity,” International Conference on Parallel Problem Solving from Nature (2018), pp. 500–511.

[Crossref]

Steel Bank Common Lisp (SBCL) homepage, (2019), http://www.sbcl.org/ .

“The CMA evolution strategy: A tutorial,” 2016, https://arxiv.org/pdf/1604.00772.pdf .

N. Hansen, “Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed,” Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers (2009), pp. 2389–2396.

[Crossref]

A. Auger and H. Nikolaus, “A restart CMA evolution strategy with increasing population size,” 2005 IEEE Congress on Evolutionary Computation (IEEE, 2005), pp. 1769–1776.

[Crossref]

R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” Proceedings of the Sixth International Symposium on Micro Machine and Human Science (1995), pp. 39–43.

[Crossref]

T. Zeugmann, P., Poupart and J. Kennedy, “Particle swarm optimization,” in Encyclopedia of Machine Learning, C. Sammut and G. I. Webb, ed. (Springer Science & Business Media, 2011).

D. Vasiljevic, Classical and Evolutionary Algorithms in the Optimization of Optical Systems (Springer Science & Business Media, 2012).