Abstract

Label-free biosensors are important tools for clinical diagnostics and for studying biology at the single molecule level. The development of optical label-free sensors has allowed extreme sensitivity but can expose the biological sample to photodamage. Moreover, the fragility and complexity of these sensors can be prohibitive to applications. To overcome these problems, we develop a quantum noise limited exposed-core fiber sensor providing robust platform for label-free biosensing with a natural path toward microfluidic integration. We demonstrate the detection of single nanoparticles down to 25 nm in radius with optical intensities beneath known biophysical damage thresholds.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silica exposed-core microstructured optical fibers

Roman Kostecki, Heike Ebendorff-Heidepriem, Claire Davis, Grant McAdam, Stephen C. Warren-Smith, and Tanya M. Monro
Opt. Mater. Express 2(11) 1538-1547 (2012)

Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing

S. C. Warren-Smith, S. Afshar V., and T. M. Monro
Opt. Express 16(12) 9034-9045 (2008)

Novel polymer functionalization method for exposed-core optical fiber

Roman Kostecki, Heike Ebendorff-Heidepriem, Shahraam Afshar V., Grant McAdam, Claire Davis, and Tanya M. Monro
Opt. Mater. Express 4(8) 1515-1525 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933 (2014).
    [Crossref]
  2. N. Mauranyapin, L. Madsen, M. Taylor, M. Waleed, and W. Bowen, “Evanescent single-molecule biosensing with quantum-limited precision,” Nat. Photonics 11, 477 (2017).
    [Crossref]
  3. Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2011).
    [Crossref] [PubMed]
  4. S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9, 12349–12357 (2015).
    [Crossref] [PubMed]
  5. E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Advances 3, e1603044 (2017).
    [Crossref]
  6. M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733 (2016).
    [Crossref]
  7. J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
    [Crossref]
  8. S. Arnold, D. Keng, S. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel–a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17, 6230–6238 (2009).
    [Crossref] [PubMed]
  9. C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12, 125–132 (2011).
    [Crossref] [PubMed]
  10. U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
    [Crossref]
  11. M. P. Landry, P. M. McCall, Z. Qi, and Y. R. Chemla, “Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments,” Biophys. J 97, 2128–2136 (2009).
    [Crossref]
  12. S. Wäldchen, J. Lehmann, T. Klein, S. Van De Linde, and M. Sauer, “Light-induced cell damage in live-cell super-resolution microscopy,” Sci. Rep. 5, 15348 (2015).
    [Crossref]
  13. L. Ma, S. Zhu, Y. Tian, W. Zhang, S. Wang, C. Chen, L. Wu, and X. Yan, “Label-free analysis of single viruses with a resolution comparable to that of electron microscopy and the throughput of flow cytometry,” Angewandte Chemie Int. Ed. 55, 10239–10243 (2016).
    [Crossref]
  14. N. Luan and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire,” IEEE Photonics J. 8, 1–8 (2016).
  15. E. P. Schartner, A. Dowler, and H. Ebendorff-Heidepriem, “Fabrication of low-loss, small-core exposed core microstructured optical fibers,” Opt. Mater. Express 7, 1496–1502 (2017).
    [Crossref]
  16. R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2, 1538–1547 (2012).
    [Crossref]
  17. R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4, 29–40 (2014).
    [Crossref]
  18. X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sensors Actuators B: Chem. 269, 103–109 (2018).
    [Crossref]
  19. L. V. Nguyen, K. Hill, S. Warren-Smith, and T. Monro, “Interferometric-type optical biosensor based on exposed core microstructured optical fiber,” Sensors Actuators B: Chem. 221, 320–327 (2015).
    [Crossref]
  20. S. C. Warren-Smith, E. Sinchenko, P. R. Stoddart, and T. M. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photonics Technol. Lett. 22, 1385–1387 (2010).
    [Crossref]
  21. R. Kostecki, H. Ebendorff-Heidepriem, S. V. Afshar, G. McAdam, C. Davis, and T. M. Monro, “Novel polymer functionalization method for exposed-core optical fiber,” Opt. Mater. Express 4, 1515–1525 (2014).
    [Crossref]
  22. L. S. Madsen, C. Baker, H. Rubinsztein-Dunlop, and W. P. Bowen, “Nondestructive profilometry of optical nanofibers,” Nano Lett. 16, 7333–7337 (2016).
    [Crossref] [PubMed]
  23. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  24. M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Reports 615, 1–59 (2016).
    [Crossref]
  25. M. Chemnitz, M. Zeisberger, and M. A. Schmidt, “Performance limits of single nano-object detection with optical fiber tapers,” J. Opt. Soc. Am. B 34, 1833–1841 (2017).
    [Crossref]
  26. X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
    [Crossref] [PubMed]
  27. J. D. Swaim, J. Knittel, and W. P. Bowen, “Tapered nanofiber trapping of high-refractive-index nanoparticles,” Appl. Phys. Lett. 103, 203111 (2013).
    [Crossref]

2018 (1)

X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sensors Actuators B: Chem. 269, 103–109 (2018).
[Crossref]

2017 (4)

M. Chemnitz, M. Zeisberger, and M. A. Schmidt, “Performance limits of single nano-object detection with optical fiber tapers,” J. Opt. Soc. Am. B 34, 1833–1841 (2017).
[Crossref]

N. Mauranyapin, L. Madsen, M. Taylor, M. Waleed, and W. Bowen, “Evanescent single-molecule biosensing with quantum-limited precision,” Nat. Photonics 11, 477 (2017).
[Crossref]

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Advances 3, e1603044 (2017).
[Crossref]

E. P. Schartner, A. Dowler, and H. Ebendorff-Heidepriem, “Fabrication of low-loss, small-core exposed core microstructured optical fibers,” Opt. Mater. Express 7, 1496–1502 (2017).
[Crossref]

2016 (5)

L. Ma, S. Zhu, Y. Tian, W. Zhang, S. Wang, C. Chen, L. Wu, and X. Yan, “Label-free analysis of single viruses with a resolution comparable to that of electron microscopy and the throughput of flow cytometry,” Angewandte Chemie Int. Ed. 55, 10239–10243 (2016).
[Crossref]

N. Luan and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire,” IEEE Photonics J. 8, 1–8 (2016).

M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733 (2016).
[Crossref]

L. S. Madsen, C. Baker, H. Rubinsztein-Dunlop, and W. P. Bowen, “Nondestructive profilometry of optical nanofibers,” Nano Lett. 16, 7333–7337 (2016).
[Crossref] [PubMed]

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Reports 615, 1–59 (2016).
[Crossref]

2015 (3)

L. V. Nguyen, K. Hill, S. Warren-Smith, and T. Monro, “Interferometric-type optical biosensor based on exposed core microstructured optical fiber,” Sensors Actuators B: Chem. 221, 320–327 (2015).
[Crossref]

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

S. Wäldchen, J. Lehmann, T. Klein, S. Van De Linde, and M. Sauer, “Light-induced cell damage in live-cell super-resolution microscopy,” Sci. Rep. 5, 15348 (2015).
[Crossref]

2014 (4)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933 (2014).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4, 29–40 (2014).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, S. V. Afshar, G. McAdam, C. Davis, and T. M. Monro, “Novel polymer functionalization method for exposed-core optical fiber,” Opt. Mater. Express 4, 1515–1525 (2014).
[Crossref]

X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
[Crossref] [PubMed]

2013 (2)

J. D. Swaim, J. Knittel, and W. P. Bowen, “Tapered nanofiber trapping of high-refractive-index nanoparticles,” Appl. Phys. Lett. 103, 203111 (2013).
[Crossref]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

2012 (1)

2011 (2)

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12, 125–132 (2011).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2011).
[Crossref] [PubMed]

2010 (1)

S. C. Warren-Smith, E. Sinchenko, P. R. Stoddart, and T. M. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photonics Technol. Lett. 22, 1385–1387 (2010).
[Crossref]

2009 (2)

S. Arnold, D. Keng, S. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel–a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17, 6230–6238 (2009).
[Crossref] [PubMed]

M. P. Landry, P. M. McCall, Z. Qi, and Y. R. Chemla, “Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments,” Biophys. J 97, 2128–2136 (2009).
[Crossref]

2008 (1)

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[Crossref]

Afshar, S. V.

Arnold, S.

Baaske, M. D.

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Advances 3, e1603044 (2017).
[Crossref]

M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733 (2016).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933 (2014).
[Crossref]

Baker, C.

L. S. Madsen, C. Baker, H. Rubinsztein-Dunlop, and W. P. Bowen, “Nondestructive profilometry of optical nanofibers,” Nano Lett. 16, 7333–7337 (2016).
[Crossref] [PubMed]

Borghs, G.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12, 125–132 (2011).
[Crossref] [PubMed]

Bowen, W.

N. Mauranyapin, L. Madsen, M. Taylor, M. Waleed, and W. Bowen, “Evanescent single-molecule biosensing with quantum-limited precision,” Nat. Photonics 11, 477 (2017).
[Crossref]

Bowen, W. P.

L. S. Madsen, C. Baker, H. Rubinsztein-Dunlop, and W. P. Bowen, “Nondestructive profilometry of optical nanofibers,” Nano Lett. 16, 7333–7337 (2016).
[Crossref] [PubMed]

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Reports 615, 1–59 (2016).
[Crossref]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Tapered nanofiber trapping of high-refractive-index nanoparticles,” Appl. Phys. Lett. 103, 203111 (2013).
[Crossref]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

Chemla, Y. R.

M. P. Landry, P. M. McCall, Z. Qi, and Y. R. Chemla, “Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments,” Biophys. J 97, 2128–2136 (2009).
[Crossref]

Chemnitz, M.

Chen, C.

L. Ma, S. Zhu, Y. Tian, W. Zhang, S. Wang, C. Chen, L. Wu, and X. Yan, “Label-free analysis of single viruses with a resolution comparable to that of electron microscopy and the throughput of flow cytometry,” Angewandte Chemie Int. Ed. 55, 10239–10243 (2016).
[Crossref]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12, 125–132 (2011).
[Crossref] [PubMed]

Davis, C.

Dowler, A.

Ebendorff-Heidepriem, H.

Faez, S.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

Foreman, M. R.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933 (2014).
[Crossref]

Garmann, R. F.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

Gong, Q.

X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
[Crossref] [PubMed]

Gordon, R.

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2011).
[Crossref] [PubMed]

Hill, K.

L. V. Nguyen, K. Hill, S. Warren-Smith, and T. Monro, “Interferometric-type optical biosensor based on exposed core microstructured optical fiber,” Sensors Actuators B: Chem. 221, 320–327 (2015).
[Crossref]

Holler, S.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Jiang, X.-F.

X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
[Crossref] [PubMed]

Juan, M. L.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12, 125–132 (2011).
[Crossref] [PubMed]

Keng, D.

Kim, E.

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Advances 3, e1603044 (2017).
[Crossref]

Klein, T.

S. Wäldchen, J. Lehmann, T. Klein, S. Van De Linde, and M. Sauer, “Light-induced cell damage in live-cell super-resolution microscopy,” Sci. Rep. 5, 15348 (2015).
[Crossref]

Knittel, J.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Tapered nanofiber trapping of high-refractive-index nanoparticles,” Appl. Phys. Lett. 103, 203111 (2013).
[Crossref]

Kostecki, R.

Lahini, Y.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

Landry, M. P.

M. P. Landry, P. M. McCall, Z. Qi, and Y. R. Chemla, “Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments,” Biophys. J 97, 2128–2136 (2009).
[Crossref]

Lehmann, J.

S. Wäldchen, J. Lehmann, T. Klein, S. Van De Linde, and M. Sauer, “Light-induced cell damage in live-cell super-resolution microscopy,” Sci. Rep. 5, 15348 (2015).
[Crossref]

Li, B.-B.

X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
[Crossref] [PubMed]

Li, X.

X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sensors Actuators B: Chem. 269, 103–109 (2018).
[Crossref]

Li, Y.

X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
[Crossref] [PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12, 125–132 (2011).
[Crossref] [PubMed]

Luan, N.

N. Luan and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire,” IEEE Photonics J. 8, 1–8 (2016).

Ma, L.

L. Ma, S. Zhu, Y. Tian, W. Zhang, S. Wang, C. Chen, L. Wu, and X. Yan, “Label-free analysis of single viruses with a resolution comparable to that of electron microscopy and the throughput of flow cytometry,” Angewandte Chemie Int. Ed. 55, 10239–10243 (2016).
[Crossref]

Madsen, L.

N. Mauranyapin, L. Madsen, M. Taylor, M. Waleed, and W. Bowen, “Evanescent single-molecule biosensing with quantum-limited precision,” Nat. Photonics 11, 477 (2017).
[Crossref]

Madsen, L. S.

L. S. Madsen, C. Baker, H. Rubinsztein-Dunlop, and W. P. Bowen, “Nondestructive profilometry of optical nanofibers,” Nano Lett. 16, 7333–7337 (2016).
[Crossref] [PubMed]

Maes, G.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12, 125–132 (2011).
[Crossref] [PubMed]

Manoharan, V. N.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

Matsudaira, P.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[Crossref]

Mauranyapin, N.

N. Mauranyapin, L. Madsen, M. Taylor, M. Waleed, and W. Bowen, “Evanescent single-molecule biosensing with quantum-limited precision,” Nat. Photonics 11, 477 (2017).
[Crossref]

McAdam, G.

McCall, P. M.

M. P. Landry, P. M. McCall, Z. Qi, and Y. R. Chemla, “Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments,” Biophys. J 97, 2128–2136 (2009).
[Crossref]

Mir, M.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[Crossref]

Mirsaidov, U.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[Crossref]

Monro, T.

L. V. Nguyen, K. Hill, S. Warren-Smith, and T. Monro, “Interferometric-type optical biosensor based on exposed core microstructured optical fiber,” Sensors Actuators B: Chem. 221, 320–327 (2015).
[Crossref]

Monro, T. M.

Nguyen, L. V.

X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sensors Actuators B: Chem. 269, 103–109 (2018).
[Crossref]

L. V. Nguyen, K. Hill, S. Warren-Smith, and T. Monro, “Interferometric-type optical biosensor based on exposed core microstructured optical fiber,” Sensors Actuators B: Chem. 221, 320–327 (2015).
[Crossref]

Orrit, M.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

Pang, Y.

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2011).
[Crossref] [PubMed]

Qi, Z.

M. P. Landry, P. M. McCall, Z. Qi, and Y. R. Chemla, “Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments,” Biophys. J 97, 2128–2136 (2009).
[Crossref]

Quidant, R.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12, 125–132 (2011).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

L. S. Madsen, C. Baker, H. Rubinsztein-Dunlop, and W. P. Bowen, “Nondestructive profilometry of optical nanofibers,” Nano Lett. 16, 7333–7337 (2016).
[Crossref] [PubMed]

Sauer, M.

S. Wäldchen, J. Lehmann, T. Klein, S. Van De Linde, and M. Sauer, “Light-induced cell damage in live-cell super-resolution microscopy,” Sci. Rep. 5, 15348 (2015).
[Crossref]

Schartner, E. P.

Schmidt, M. A.

M. Chemnitz, M. Zeisberger, and M. A. Schmidt, “Performance limits of single nano-object detection with optical fiber tapers,” J. Opt. Soc. Am. B 34, 1833–1841 (2017).
[Crossref]

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

Schuldes, I.

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Advances 3, e1603044 (2017).
[Crossref]

Shopova, S.

Sinchenko, E.

S. C. Warren-Smith, E. Sinchenko, P. R. Stoddart, and T. M. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photonics Technol. Lett. 22, 1385–1387 (2010).
[Crossref]

Stoddart, P. R.

S. C. Warren-Smith, E. Sinchenko, P. R. Stoddart, and T. M. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photonics Technol. Lett. 22, 1385–1387 (2010).
[Crossref]

Swaim, J. D.

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Tapered nanofiber trapping of high-refractive-index nanoparticles,” Appl. Phys. Lett. 103, 203111 (2013).
[Crossref]

Taylor, M.

N. Mauranyapin, L. Madsen, M. Taylor, M. Waleed, and W. Bowen, “Evanescent single-molecule biosensing with quantum-limited precision,” Nat. Photonics 11, 477 (2017).
[Crossref]

Taylor, M. A.

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Reports 615, 1–59 (2016).
[Crossref]

Tian, Y.

L. Ma, S. Zhu, Y. Tian, W. Zhang, S. Wang, C. Chen, L. Wu, and X. Yan, “Label-free analysis of single viruses with a resolution comparable to that of electron microscopy and the throughput of flow cytometry,” Angewandte Chemie Int. Ed. 55, 10239–10243 (2016).
[Crossref]

Timp, G.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[Crossref]

Timp, K.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[Crossref]

Timp, W.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[Crossref]

Tong, L.

X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
[Crossref] [PubMed]

Van De Linde, S.

S. Wäldchen, J. Lehmann, T. Klein, S. Van De Linde, and M. Sauer, “Light-induced cell damage in live-cell super-resolution microscopy,” Sci. Rep. 5, 15348 (2015).
[Crossref]

Van Dorpe, P.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12, 125–132 (2011).
[Crossref] [PubMed]

Vollmer, F.

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Advances 3, e1603044 (2017).
[Crossref]

M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733 (2016).
[Crossref]

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933 (2014).
[Crossref]

S. Arnold, D. Keng, S. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode carousel–a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17, 6230–6238 (2009).
[Crossref] [PubMed]

Wäldchen, S.

S. Wäldchen, J. Lehmann, T. Klein, S. Van De Linde, and M. Sauer, “Light-induced cell damage in live-cell super-resolution microscopy,” Sci. Rep. 5, 15348 (2015).
[Crossref]

Waleed, M.

N. Mauranyapin, L. Madsen, M. Taylor, M. Waleed, and W. Bowen, “Evanescent single-molecule biosensing with quantum-limited precision,” Nat. Photonics 11, 477 (2017).
[Crossref]

Wang, P.

X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
[Crossref] [PubMed]

Wang, S.

L. Ma, S. Zhu, Y. Tian, W. Zhang, S. Wang, C. Chen, L. Wu, and X. Yan, “Label-free analysis of single viruses with a resolution comparable to that of electron microscopy and the throughput of flow cytometry,” Angewandte Chemie Int. Ed. 55, 10239–10243 (2016).
[Crossref]

Warren-Smith, S.

L. V. Nguyen, K. Hill, S. Warren-Smith, and T. Monro, “Interferometric-type optical biosensor based on exposed core microstructured optical fiber,” Sensors Actuators B: Chem. 221, 320–327 (2015).
[Crossref]

Warren-Smith, S. C.

X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sensors Actuators B: Chem. 269, 103–109 (2018).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4, 29–40 (2014).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2, 1538–1547 (2012).
[Crossref]

S. C. Warren-Smith, E. Sinchenko, P. R. Stoddart, and T. M. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photonics Technol. Lett. 22, 1385–1387 (2010).
[Crossref]

Weidlich, S.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

Wilsch, P. S.

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Advances 3, e1603044 (2017).
[Crossref]

Wondraczek, K.

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

Wu, L.

L. Ma, S. Zhu, Y. Tian, W. Zhang, S. Wang, C. Chen, L. Wu, and X. Yan, “Label-free analysis of single viruses with a resolution comparable to that of electron microscopy and the throughput of flow cytometry,” Angewandte Chemie Int. Ed. 55, 10239–10243 (2016).
[Crossref]

Xiao, Y.-F.

X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
[Crossref] [PubMed]

Yan, X.

L. Ma, S. Zhu, Y. Tian, W. Zhang, S. Wang, C. Chen, L. Wu, and X. Yan, “Label-free analysis of single viruses with a resolution comparable to that of electron microscopy and the throughput of flow cytometry,” Angewandte Chemie Int. Ed. 55, 10239–10243 (2016).
[Crossref]

Yao, J.

N. Luan and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire,” IEEE Photonics J. 8, 1–8 (2016).

Yu, X.-C.

X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
[Crossref] [PubMed]

Zeisberger, M.

M. Chemnitz, M. Zeisberger, and M. A. Schmidt, “Performance limits of single nano-object detection with optical fiber tapers,” J. Opt. Soc. Am. B 34, 1833–1841 (2017).
[Crossref]

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

Zhang, W.

L. Ma, S. Zhu, Y. Tian, W. Zhang, S. Wang, C. Chen, L. Wu, and X. Yan, “Label-free analysis of single viruses with a resolution comparable to that of electron microscopy and the throughput of flow cytometry,” Angewandte Chemie Int. Ed. 55, 10239–10243 (2016).
[Crossref]

Zhao, Y.

X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sensors Actuators B: Chem. 269, 103–109 (2018).
[Crossref]

Zhu, S.

L. Ma, S. Zhu, Y. Tian, W. Zhang, S. Wang, C. Chen, L. Wu, and X. Yan, “Label-free analysis of single viruses with a resolution comparable to that of electron microscopy and the throughput of flow cytometry,” Angewandte Chemie Int. Ed. 55, 10239–10243 (2016).
[Crossref]

Zurawsky, W.

ACS Nano (1)

S. Faez, Y. Lahini, S. Weidlich, R. F. Garmann, K. Wondraczek, M. Zeisberger, M. A. Schmidt, M. Orrit, and V. N. Manoharan, “Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber,” ACS Nano 9, 12349–12357 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

X.-C. Yu, B.-B. Li, P. Wang, L. Tong, X.-F. Jiang, Y. Li, Q. Gong, and Y.-F. Xiao, “Single nanoparticle detection and sizing using a nanofiber pair in an aqueous environment,” Adv. Mater. 26, 7462–7467 (2014).
[Crossref] [PubMed]

Angewandte Chemie Int. Ed. (1)

L. Ma, S. Zhu, Y. Tian, W. Zhang, S. Wang, C. Chen, L. Wu, and X. Yan, “Label-free analysis of single viruses with a resolution comparable to that of electron microscopy and the throughput of flow cytometry,” Angewandte Chemie Int. Ed. 55, 10239–10243 (2016).
[Crossref]

Appl. Phys. Lett. (2)

J. D. Swaim, J. Knittel, and W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

J. D. Swaim, J. Knittel, and W. P. Bowen, “Tapered nanofiber trapping of high-refractive-index nanoparticles,” Appl. Phys. Lett. 103, 203111 (2013).
[Crossref]

Biophys. J (1)

M. P. Landry, P. M. McCall, Z. Qi, and Y. R. Chemla, “Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments,” Biophys. J 97, 2128–2136 (2009).
[Crossref]

IEEE Photonics J. (1)

N. Luan and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire,” IEEE Photonics J. 8, 1–8 (2016).

IEEE Photonics Technol. Lett. (1)

S. C. Warren-Smith, E. Sinchenko, P. R. Stoddart, and T. M. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photonics Technol. Lett. 22, 1385–1387 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Lett. (3)

L. S. Madsen, C. Baker, H. Rubinsztein-Dunlop, and W. P. Bowen, “Nondestructive profilometry of optical nanofibers,” Nano Lett. 16, 7333–7337 (2016).
[Crossref] [PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12, 125–132 (2011).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9, 933 (2014).
[Crossref]

Nat. Photonics (2)

N. Mauranyapin, L. Madsen, M. Taylor, M. Waleed, and W. Bowen, “Evanescent single-molecule biosensing with quantum-limited precision,” Nat. Photonics 11, 477 (2017).
[Crossref]

M. D. Baaske and F. Vollmer, “Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution,” Nat. Photonics 10, 733 (2016).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (4)

Phys. Reports (1)

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Reports 615, 1–59 (2016).
[Crossref]

Phys. Rev. E (1)

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E 78, 021910 (2008).
[Crossref]

Sci. Advances (1)

E. Kim, M. D. Baaske, I. Schuldes, P. S. Wilsch, and F. Vollmer, “Label-free optical detection of single enzyme-reactant reactions and associated conformational changes,” Sci. Advances 3, e1603044 (2017).
[Crossref]

Sci. Rep. (1)

S. Wäldchen, J. Lehmann, T. Klein, S. Van De Linde, and M. Sauer, “Light-induced cell damage in live-cell super-resolution microscopy,” Sci. Rep. 5, 15348 (2015).
[Crossref]

Sensors Actuators B: Chem. (2)

X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sensors Actuators B: Chem. 269, 103–109 (2018).
[Crossref]

L. V. Nguyen, K. Hill, S. Warren-Smith, and T. Monro, “Interferometric-type optical biosensor based on exposed core microstructured optical fiber,” Sensors Actuators B: Chem. 221, 320–327 (2015).
[Crossref]

Other (1)

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) SEM image of the cross-section of an exposed-core fiber (scale bar = 100 μm). Inset: SEM picture of the core of the exposed-core fiber (scale bar = 5 μm). (b) Finite element simulation of the first fundamental propagating mode of a 2 μm diameter silica exposed-core fiber (scale bar = 2 μm). The bottom (internal) holes are filled with air and the top (open) hole is filled with water. Inset: normalized electric field as function of the distance from the center of the exposed core fiber. The inset is computed by taking a cut of (b) along the dashed line.
Fig. 2
Fig. 2 Scheme of the exposed-core sensor in dark field configuration. The incident light is sent to the nanoparticle (green sphere) on the exposed-core fiber from the top as a probe beam (yellow beam) and guided toward detection by the exposed-core fiber (in blue).
Fig. 3
Fig. 3 (a) Experimental setup where (P)BS stands for (polarized) beam splitter, LO for local oscillator, λ/2 for half wave plate and AOM for acousto-optic modulator. The camera is used to align the objective on the fiber visualized through the polarized beam splitter situated above the microscope objective. Note that the beam splitter before detection and the polarization controller (3-paddles) are in fiber but was represented in free space here for clarity. (b) PSD of the different noises in the apparatus. The black, red and blue curves represent the electronic noise, LO noise and probe noise respectively. (c) Mean power spectral density between -5 kHz and 5 kHz of the laser noise as function of optical power sent to the detector. The blue dots represent the experimental data with error bars as the standard error of the power spectral density over 10 measurements. The red curve represents a linear fit to the experimental data.
Fig. 4
Fig. 4 (a), (b), (c) Time trace in blue containing detection events of single 25 nm, 50 nm silica particles and 100 nm polystyrene particles highlighted in red, blue and green respectively. The red curve in each graph represents a quantum noise trace taken before particles where added to the solution. For clarity, the traces are band pass filtered at 4 Hz to 100 Hz (quantum noise limited frequencies) and the signal amplitude is normalized by the standard deviation of the quantum noise. Before each experiment, the nanoparticle solution was tested in a Zetasizer to verify that there was no contamination or aggregations.
Fig. 5
Fig. 5 Mean normalized signal amplitude against particle scattering cross-section from experiment (yellow stars, error bars given by the standard deviation). This is compared to finite element simulations (red curve) and dipole scattering theory (blue curve) of the collected power. The scattering cross-section can be converted to an equivalent silica particle radius (top x-axis) using Eq. (2). The scattering from the 100 nm PS particle is equivalent to the scattering of a ∼114 nm silica particle.
Fig. 6
Fig. 6 (a) Simulation geometry showing the silica core of an exposed-core fiber in water. The green surface represents the surface used to calculated the signal power and the red sphere represents a 100 nm nanoparticle. (b) Solution of the norm of the electric field. Left colorbar corresponds to the value of the field only at left end of the fiber and the right colorbar to the rest of the simulation volume. (c) First four higher order modes supported by the exposed-core fiber at a wavelength of 780 nm. For this mode analysis, all holes are filled with water to be compared to b). Modes are sorted with decreasing effective refractive index: 1.431, 1.409, 1.389, 1.379 and 1.357 for the fundamental mode (0, similar to Fig. 1(b)), modes 1, 2, 3 and 4 respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P s c a t t = σ 4 π w 2 P i n ,
σ = 8 π k 4 a 6 3 ( m 2 1 m 2 + 2 ) 2 ,
P s i g = S n . Π ( x , y ) d x d y ,