Abstract

A subwavelength polarizer with an extinction ratio greater than 50 dB in the visible region (exceeding 80 dB in the 500 to 800 nm wavelength region) is presented that uses hyperbolic metamaterial decorated on each side with a subwavelength grating. The approach is based on the spatial frequency filtering characteristics of the hyperbolic metamaterial with its alternating metal-dielectric nano-film, which enables squeezing of bulk plasmon polaritons to support transverse magnetic polarized light transmission in the high spatial wavevector modes while suppressing other polarization mode waves over the broad visible spectrum. The proposed method exhibits a more realizable fabrication process than that used for a subwavelength polarizer based on high-aspect-ratio grating for broad spectrum and high-extinction-ratio performance. The subwavelength polarizer in this work is potential for the high-sensitivity polarimetric imaging.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Double-grating polarizer for terahertz radiation with high extinction ratio

Lin Sun, Zhi-Hui Lv, Wei Wu, Wei-Tao Liu, and Jian-Min Yuan
Appl. Opt. 49(11) 2066-2071 (2010)

Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions

Z.Y. Yang and Y.F. Lu
Opt. Express 15(15) 9510-9519 (2007)

Realization of integrated polarizer and color filters based on subwavelength metallic gratings using a hybrid numerical scheme

Nghia Nguyen-Huu, Yu-Lung Lo, Yu-Bin Chen, and Tsai-Yu Yang
Appl. Opt. 50(4) 415-426 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, A. Bénière, I. Baarstad, T. Løke, P. Kaspersen, X. Normandin, and G. Berginc, “Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection,” Appl. Opt. 48(8), 1610–1618 (2009).
    [Crossref] [PubMed]
  2. F. Snik, J. C. Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).
  3. D. K. Beamer, U. Abeywickrema, and P. Banerjee, “Polarization vector signatures for target identification,” Proc. SPIE 10407, 104070T (2017).
  4. G. R. Bird and M. Parrish, “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50(9), 886–891 (1960).
    [Crossref]
  5. H. Tamada, T. Doumuki, T. Yamaguchi, and S. Matsumoto, “Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-microm-wavelength band,” Opt. Lett. 22(6), 419–421 (1997).
    [Crossref] [PubMed]
  6. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
    [Crossref]
  7. Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77(7), 927–929 (2000).
    [Crossref]
  8. J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
    [Crossref]
  9. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14(6), 2323–2334 (2006).
    [Crossref] [PubMed]
  10. F. Meng, J. Chu, Z. Han, and K. Zhao, “The design of the sub-wavelength wire-grid polarizer,” in Proceedings of the 7th IEEE International Conference on Nanotechnology (IEEE, 2007), pp. 942–946.
  11. J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
    [Crossref]
  12. L. J. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D Appl. Phys. 37(11), R123–R141 (2004).
    [Crossref]
  13. R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength gold grating as polarizers integrated with InP-based InGaAs sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
    [Crossref] [PubMed]
  14. D. Sun, T. Li, B. Yang, X. Shao, X. Li, and Y. Chen, “Research on polarization performance of InGaAs focal plane array integrated with superpixel-structured subwavelength grating,” Opt. Express 27(7), 9447–9458 (2019).
    [Crossref] [PubMed]
  15. J. J. Peltzer, P. D. Flammer, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Ultra-high extinction ratio micropolarizers using plasmonic lenses,” Opt. Express 19(19), 18072–18079 (2011).
    [Crossref] [PubMed]
  16. C. Lee, E. Sim, and D. Kim, “Blazed wire-grid polarizer for plasmon-enhanced polarization extinction: design and analysis,” Opt. Express 25(7), 8098–8107 (2017).
    [Crossref] [PubMed]
  17. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
    [Crossref] [PubMed]
  18. T. Xu and H. J. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nat. Commun. 5(1), 4141 (2014).
    [Crossref] [PubMed]
  19. W. Kong, W. Du, K. Liu, C. Wang, L. Liu, Z. Zhao, and X. Luo, “Launching deep subwavelength bulk plasmon polaritons through hyperbolic metamaterials for surface imaging with a tuneable ultra-short illumination depth,” Nanoscale 8(38), 17030–17038 (2016).
    [Crossref] [PubMed]
  20. E. D. Palik, The handbook of optical constants of solids (Academic 1985)
  21. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  22. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  23. M. Born and E. Wolf, Principles of optics (Elsevier 2013).
  24. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]

2019 (1)

2017 (2)

C. Lee, E. Sim, and D. Kim, “Blazed wire-grid polarizer for plasmon-enhanced polarization extinction: design and analysis,” Opt. Express 25(7), 8098–8107 (2017).
[Crossref] [PubMed]

D. K. Beamer, U. Abeywickrema, and P. Banerjee, “Polarization vector signatures for target identification,” Proc. SPIE 10407, 104070T (2017).

2016 (1)

W. Kong, W. Du, K. Liu, C. Wang, L. Liu, Z. Zhao, and X. Luo, “Launching deep subwavelength bulk plasmon polaritons through hyperbolic metamaterials for surface imaging with a tuneable ultra-short illumination depth,” Nanoscale 8(38), 17030–17038 (2016).
[Crossref] [PubMed]

2015 (1)

R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength gold grating as polarizers integrated with InP-based InGaAs sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
[Crossref] [PubMed]

2014 (2)

F. Snik, J. C. Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

T. Xu and H. J. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nat. Commun. 5(1), 4141 (2014).
[Crossref] [PubMed]

2011 (1)

2009 (1)

2007 (2)

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref] [PubMed]

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

2006 (2)

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14(6), 2323–2334 (2006).
[Crossref] [PubMed]

2005 (2)

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

2004 (1)

L. J. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D Appl. Phys. 37(11), R123–R141 (2004).
[Crossref]

2000 (1)

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77(7), 927–929 (2000).
[Crossref]

1997 (1)

1995 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1960 (1)

Abeywickrema, U.

D. K. Beamer, U. Abeywickrema, and P. Banerjee, “Polarization vector signatures for target identification,” Proc. SPIE 10407, 104070T (2017).

Ahn, S. W.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Alouini, M.

Baarstad, I.

Banerjee, P.

D. K. Beamer, U. Abeywickrema, and P. Banerjee, “Polarization vector signatures for target identification,” Proc. SPIE 10407, 104070T (2017).

Beamer, D. K.

D. K. Beamer, U. Abeywickrema, and P. Banerjee, “Polarization vector signatures for target identification,” Proc. SPIE 10407, 104070T (2017).

Bénière, A.

Berginc, G.

Bird, G. R.

Bourderionnet, J.

Chen, L.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Chen, Y.

D. Sun, T. Li, B. Yang, X. Shao, X. Li, and Y. Chen, “Research on polarization performance of InGaAs focal plane array integrated with superpixel-structured subwavelength grating,” Opt. Express 27(7), 9447–9458 (2019).
[Crossref] [PubMed]

R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength gold grating as polarizers integrated with InP-based InGaAs sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
[Crossref] [PubMed]

Chou, S. Y.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77(7), 927–929 (2000).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, J.

F. Meng, J. Chu, Z. Han, and K. Zhao, “The design of the sub-wavelength wire-grid polarizer,” in Proceedings of the 7th IEEE International Conference on Nanotechnology (IEEE, 2007), pp. 942–946.

Collins, R. T.

David, C.

Deng, X.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Deshpande, P.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77(7), 927–929 (2000).
[Crossref]

Dolfi, D.

Doumuki, T.

Du, W.

W. Kong, W. Du, K. Liu, C. Wang, L. Liu, Z. Zhao, and X. Luo, “Launching deep subwavelength bulk plasmon polaritons through hyperbolic metamaterials for surface imaging with a tuneable ultra-short illumination depth,” Nanoscale 8(38), 17030–17038 (2016).
[Crossref] [PubMed]

Ekinci, Y.

Escuti, M.

F. Snik, J. C. Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Fineschi, S.

F. Snik, J. C. Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Flammer, P. D.

Furtak, T. E.

Gaylord, T. K.

Gong, H.

R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength gold grating as polarizers integrated with InP-based InGaAs sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
[Crossref] [PubMed]

Goudail, F.

Grann, E. B.

Grisard, A.

Guo, L. J.

L. J. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D Appl. Phys. 37(11), R123–R141 (2004).
[Crossref]

Han, Z.

F. Meng, J. Chu, Z. Han, and K. Zhao, “The design of the sub-wavelength wire-grid polarizer,” in Proceedings of the 7th IEEE International Conference on Nanotechnology (IEEE, 2007), pp. 942–946.

Harrington, D.

F. Snik, J. C. Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Hollingsworth, R. E.

Huang, X.

R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength gold grating as polarizers integrated with InP-based InGaAs sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jones, J. C.

F. Snik, J. C. Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Kaspersen, P.

Kim, D.

Kim, J. S.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Kim, S. H.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Kong, W.

W. Kong, W. Du, K. Liu, C. Wang, L. Liu, Z. Zhao, and X. Luo, “Launching deep subwavelength bulk plasmon polaritons through hyperbolic metamaterials for surface imaging with a tuneable ultra-short illumination depth,” Nanoscale 8(38), 17030–17038 (2016).
[Crossref] [PubMed]

Lee, C.

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Lee, K. D.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Lee, S. H.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Lezec, H. J.

T. Xu and H. J. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nat. Commun. 5(1), 4141 (2014).
[Crossref] [PubMed]

Li, T.

D. Sun, T. Li, B. Yang, X. Shao, X. Li, and Y. Chen, “Research on polarization performance of InGaAs focal plane array integrated with superpixel-structured subwavelength grating,” Opt. Express 27(7), 9447–9458 (2019).
[Crossref] [PubMed]

R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength gold grating as polarizers integrated with InP-based InGaAs sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
[Crossref] [PubMed]

Li, X.

D. Sun, T. Li, B. Yang, X. Shao, X. Li, and Y. Chen, “Research on polarization performance of InGaAs focal plane array integrated with superpixel-structured subwavelength grating,” Opt. Express 27(7), 9447–9458 (2019).
[Crossref] [PubMed]

R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength gold grating as polarizers integrated with InP-based InGaAs sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
[Crossref] [PubMed]

Liu, F.

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Liu, K.

W. Kong, W. Du, K. Liu, C. Wang, L. Liu, Z. Zhao, and X. Luo, “Launching deep subwavelength bulk plasmon polaritons through hyperbolic metamaterials for surface imaging with a tuneable ultra-short illumination depth,” Nanoscale 8(38), 17030–17038 (2016).
[Crossref] [PubMed]

Liu, L.

W. Kong, W. Du, K. Liu, C. Wang, L. Liu, Z. Zhao, and X. Luo, “Launching deep subwavelength bulk plasmon polaritons through hyperbolic metamaterials for surface imaging with a tuneable ultra-short illumination depth,” Nanoscale 8(38), 17030–17038 (2016).
[Crossref] [PubMed]

Liu, X.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Liu, Z.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref] [PubMed]

Løke, T.

Luo, X.

W. Kong, W. Du, K. Liu, C. Wang, L. Liu, Z. Zhao, and X. Luo, “Launching deep subwavelength bulk plasmon polaritons through hyperbolic metamaterials for surface imaging with a tuneable ultra-short illumination depth,” Nanoscale 8(38), 17030–17038 (2016).
[Crossref] [PubMed]

Martino, A. D.

F. Snik, J. C. Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Matsumoto, S.

Mawet, D.

F. Snik, J. C. Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Meng, F.

F. Meng, J. Chu, Z. Han, and K. Zhao, “The design of the sub-wavelength wire-grid polarizer,” in Proceedings of the 7th IEEE International Conference on Nanotechnology (IEEE, 2007), pp. 942–946.

Moharam, M. G.

Normandin, X.

Park, J. D.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Parrish, M.

Peltzer, J. J.

Pommet, D. A.

Riedi, J.

F. Snik, J. C. Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Sciortino, P.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Shao, J.

R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength gold grating as polarizers integrated with InP-based InGaAs sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
[Crossref] [PubMed]

Shao, X.

D. Sun, T. Li, B. Yang, X. Shao, X. Li, and Y. Chen, “Research on polarization performance of InGaAs focal plane array integrated with superpixel-structured subwavelength grating,” Opt. Express 27(7), 9447–9458 (2019).
[Crossref] [PubMed]

R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength gold grating as polarizers integrated with InP-based InGaAs sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
[Crossref] [PubMed]

Sigg, H.

Sim, E.

Snik, F.

F. Snik, J. C. Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Solak, H. H.

Sun, C.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Sun, D.

Tamada, H.

Tyo, J. S.

F. Snik, J. C. Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Walters, F.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Wang, C.

W. Kong, W. Du, K. Liu, C. Wang, L. Liu, Z. Zhao, and X. Luo, “Launching deep subwavelength bulk plasmon polaritons through hyperbolic metamaterials for surface imaging with a tuneable ultra-short illumination depth,” Nanoscale 8(38), 17030–17038 (2016).
[Crossref] [PubMed]

Wang, J.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77(7), 927–929 (2000).
[Crossref]

Wang, J. J.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

Wang, R.

R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength gold grating as polarizers integrated with InP-based InGaAs sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
[Crossref] [PubMed]

Wu, W.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77(7), 927–929 (2000).
[Crossref]

Xiong, Y.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref] [PubMed]

Xu, T.

T. Xu and H. J. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nat. Commun. 5(1), 4141 (2014).
[Crossref] [PubMed]

Yamaguchi, T.

Yang, B.

Yoon, P. W.

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Yu, Z.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77(7), 927–929 (2000).
[Crossref]

Zhang, X.

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhao, K.

F. Meng, J. Chu, Z. Han, and K. Zhao, “The design of the sub-wavelength wire-grid polarizer,” in Proceedings of the 7th IEEE International Conference on Nanotechnology (IEEE, 2007), pp. 942–946.

Zhao, Z.

W. Kong, W. Du, K. Liu, C. Wang, L. Liu, Z. Zhao, and X. Luo, “Launching deep subwavelength bulk plasmon polaritons through hyperbolic metamaterials for surface imaging with a tuneable ultra-short illumination depth,” Nanoscale 8(38), 17030–17038 (2016).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

R. Wang, T. Li, X. Shao, X. Li, X. Huang, J. Shao, Y. Chen, and H. Gong, “Subwavelength gold grating as polarizers integrated with InP-based InGaAs sensors,” ACS Appl. Mater. Interfaces 7(26), 14471–14476 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77(7), 927–929 (2000).
[Crossref]

J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89(14), 141105 (2006).
[Crossref]

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

L. J. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D Appl. Phys. 37(11), R123–R141 (2004).
[Crossref]

Nano Lett. (1)

Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7(11), 3360–3365 (2007).
[Crossref] [PubMed]

Nanoscale (1)

W. Kong, W. Du, K. Liu, C. Wang, L. Liu, Z. Zhao, and X. Luo, “Launching deep subwavelength bulk plasmon polaritons through hyperbolic metamaterials for surface imaging with a tuneable ultra-short illumination depth,” Nanoscale 8(38), 17030–17038 (2016).
[Crossref] [PubMed]

Nanotechnology (1)

S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee, and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16(9), 1874–1877 (2005).
[Crossref]

Nat. Commun. (1)

T. Xu and H. J. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nat. Commun. 5(1), 4141 (2014).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Proc. SPIE (2)

F. Snik, J. C. Jones, M. Escuti, S. Fineschi, D. Harrington, A. D. Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

D. K. Beamer, U. Abeywickrema, and P. Banerjee, “Polarization vector signatures for target identification,” Proc. SPIE 10407, 104070T (2017).

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Other (3)

M. Born and E. Wolf, Principles of optics (Elsevier 2013).

E. D. Palik, The handbook of optical constants of solids (Academic 1985)

F. Meng, J. Chu, Z. Han, and K. Zhao, “The design of the sub-wavelength wire-grid polarizer,” in Proceedings of the 7th IEEE International Conference on Nanotechnology (IEEE, 2007), pp. 942–946.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of proposed subwavelength polarizer with high extinction ratio in the broadband visible region.
Fig. 2
Fig. 2 (a) Schematic diagrams for the prospective processes of structure fabrication. (b) Cross-section of electric field intensity for the structure of lower grating incorporating HMM under the 365nm illumination in the process of fabricating the upper grating. The color bar is on logarithmic scale.
Fig. 3
Fig. 3 Calculated real and imaginary parts of the longitudinal wavevector kz versus variant tangential wavevector kx in the proposed Ag/SiO2 multilayer-based hyperbolic metamaterial (HMM) at incident light wavelengths of 400 nm, 500 nm, 600 nm, 700 nm, 800 nm for (a) TE-polarized and (b) TM-polarized light. The inset in (a) shows the proposed HMM. The optical transmission function (OTF) distributions of the multilayer-based HMM structure on a logarithmic scale as a function of the normalized transverse wavevector kx/k0 and the free space wavelength λ0 are shown for (c) TE-polarized and (d) TM-polarized light illumination.
Fig. 4
Fig. 4 Transmission amplitude ratio for the TM polarization and the TE polarization for the zeroth and ± 1st orders of the light diffracted from the upper grating with or without the HMM. The inset shows the structure of the upper grating when combined with the HMM on a glass substrate. The parameters are same as those used in Fig. 1.
Fig. 5
Fig. 5 (a) Transmission efficiency of TM-polarized (red line) and TE-polarized (blue line) incident light and (b) extinction ratio as a function of incident wavelengths. The solid line represents the results for the designed structure; dashed lines show the results for the Al wire grid grating with period p = 170 nm and various values of groove depth h. (c) Intensity and phase distribution at the wavelengths of 532 nm and 632.8 nm under TM-polarized and TE-polarized light conditions. The scale bars represent 500 nm.
Fig. 6
Fig. 6 (a) Calculated OTF distributions versus the normalized transverse wavevector kx/k0 and the thickness of the SiO2 layer in the multilayer structure. (b) OTF distribution for variant thickness of the Ag layer. When tuning the thickness, other parameters are kept unchanged. The illumination wavelength is 532nm. (c) Transmission efficiency of TM-polarized light and (e) extinction ratio of the proposed subwavelength polarizer as a function of the thickness of the SiO2 layer and the wavelength. (d)Transmission efficiency of TM-polarized light and (f) extinction ratio of the proposed subwavelength polarizer for variant thickness of the Ag layer. The magnitude of the extinction ratio is on the decibel scale.
Fig. 7
Fig. 7 (a) Extinction ratio of the designed structure as a function of the number of pairs of SiO2/Ag layers and the wavelength. (b) Extinction ratio as a function of the grating period and wavelength. The magnitude of the extinction ratio is on the decibel scale.

Metrics