Abstract

The propagation of an optical discharge (OD) along hollow-core optical fibers (HCFs) is investigated experimentally. Silica-based revolver-type HCFs filled with atmospheric air were used as test samples. We observed that the average propagation velocity of an OD along the HCF (VAV) depends on the properties of the medium around the silica structure of the fiber. It is shown that the value of VAV changes by approximately a factor of three, depending on whether the optical discharge is moving along a polymer coated or uncoated fiber. The value of VAV practically does not change when the polymer is replaced by an immersion liquid (such as glycerol) or liquid gallium. By analyzing the destruction region’s patterns that appear in the fiber cladding after an OD propagation, we propose the physical picture of the phenomenon.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited]

A. V. Vasudevan Nampoothiri, Andrew M. Jones, C. Fourcade-Dutin, Chenchen Mao, Neda Dadashzadeh, Bastian Baumgart, Y.Y. Wang, M. Alharbi, T. Bradley, Neil Campbell, F. Benabid, Brian R. Washburn, Kristan L. Corwin, and Wolfgang Rudolph
Opt. Mater. Express 2(7) 948-961 (2012)

High-power tunable mid-infrared fiber gas laser source by acetylene-filled hollow-core fibers

Zhiyue Zhou, Ni Tang, Zhixian Li, Wei Huang, Zefeng Wang, Wuming Wu, and Weihong Hua
Opt. Express 26(15) 19144-19153 (2018)

Hollow-fiber delivery of high-power pulsed Nd:YAG laser light

Yuji Matsuura, Konosuke Hanamoto, Shunichi Sato, and Mitsunobu Miyagi
Opt. Lett. 23(23) 1858-1860 (1998)

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap and K. J. Blow, “Spectacular demonstration of catastrophic failure in long lengths of optical fiber via self-propelled self-focusing,” Post deadline paper PD7, 8th National Quantum Electronics Conf., QE8, St. Andrews, Scotland, UK, (21–25 September 1987).
  2. D. P. Hand and P. St. J. Russell, “Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse,” Opt. Lett. 13(9), 767–769 (1988).
    [Crossref] [PubMed]
  3. R. Kashyap, “The fiber fuse--from a curious effect to a critical issue: a 25th year retrospective,” Opt. Express 21(5), 6422–6441 (2013).
    [Crossref] [PubMed]
  4. Shin-ichi Todoroki, Fiber Fuse. Light-Induced Continuous Breakdown of Silica Glass Optical Fibers (Springer, 2014).
  5. E. M. Dianov, A. A. Frolov, I. A. Bufetov, S. L. Semenov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorob’ev, “The fibre fuse effect in microstructured fibres,” Quantum Electron. 34(1), 59–61 (2004).
    [Crossref]
  6. W. Ha, Y. Jeong, and K. Oh, “Fiber fuse effect in hollow optical fibers,” Opt. Lett. 36(9), 1536–1538 (2011).
    [Crossref] [PubMed]
  7. E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibres of various composition caused by laser radiation,” Quantum Electron. 32(6), 476–478 (2002).
    [Crossref]
  8. S. Xing, S. Kharitonov, J. Hu, and C.-S. Brès, “Fiber fuse in chalcogenide photonic crystal fibers,” Opt. Lett. 43(7), 1443–1446 (2018).
    [Crossref] [PubMed]
  9. Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
    [Crossref]
  10. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, ” Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(3 September), 1537–1539 (1999).
  11. Laser light cable for industrial ultrafast lasers LLK-UKP. Photonicstools. https://www.photonic-tools.de/products/llk-ultrafast/
  12. I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, S. V. Lavrishchev, and E. M. Dianov, “Propagation of an optical discharge through optical fibres upon interference of modes,” Quantum Electron. 38(5), 441–444 (2008).
    [Crossref]
  13. I. A. Bufetov, V. B. Fedorov, and V. K. Fomin, “Propagation of an Optical Flame along a Tube,” Combust. Explos. Shock Waves 22(3), 274–284 (1986).
    [Crossref]
  14. Yu. P. Raizer, Laser-Induced Discharge Phenomena (Consultants Bureau, 1977).
  15. J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
    [Crossref]
  16. C. Dumitrache, J. Rath, and A. P. Yalin, “High Power Spark Delivery System Using Hollow Core Kagome Lattice Fibers,” Materials (Basel) 7(8), 5700–5710 (2014).
    [Crossref] [PubMed]
  17. P. Jaworski, F. Yu, R. R. J. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications,” Opt. Express 21(19), 22742–22753 (2013).
    [Crossref] [PubMed]
  18. A. N. Kolyadin, A. F. Kosolapov, and I. A. Bufetov, “Optical discharge propagation along hollow-core optical fibres,” Quantum Electron. 48(12), 1138–1142 (2018).
    [Crossref]
  19. I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Yu. P. Yatsenko, and A. S. Biriukov, “Revolver Hollow Core Optical Fibers,” Fibers (Basel) 6(2), 39 (2018).
    [Crossref]
  20. E. M. Dianov, I. A. Bufetov, and A. A. Frolov, “Catastrophic damage in specialty optical fibers under CW medium-power laser radiation,” J. Opt. 33(3), 171–180 (2004).
    [Crossref]
  21. A. A. Frolov, I. A. Bufetov, V. P. Efremov, M. Y. Schelev, V. I. Lozovoy, V. E. Fortov, and E. M. Dianov, “Optical discharge in silica-based fibers: high-speed propagation under kW-range laser radiation,” Proc. SPIE 6193, 61930W (2006).
    [Crossref]
  22. I. A. Bufetov and E. M. Dianov, “Optical discharge in optical fibers,” Phys. Uspekhi 48(1), 91–94 (2005).
    [Crossref]
  23. A. Ramsden and W. E. R. Davies, “Radiation scattered from the plasma produced by a focused ruby laser beam,” Phys. Rev. Lett. 13(7), 227–229 (1964).
    [Crossref]
  24. S. L. Mandel’shtam, P. P. Pashinin, A. M. Prokhorov, Yu. P. Raizer, and N. K. Sukhodrev, “Investigation of the spark discharge produced in air by focusing laser radiation,” Sov. Phys. JETP 22(1), 91–96 (1966).
  25. S. Jiang, L. Ma, X. Fan, S. Wang, and Z. He, “Observation of fiber fuse propagation speed with high temporal resolution using heterodyne detection and time-frequency analysis,” Opt. Lett. 42(17), 3355–3358 (2017).
    [Crossref] [PubMed]
  26. S. D. Kaitmazov, A. A. Medvedev, and A. M. Prokhorov, “Investigation of Optical Breakdown in Air by a Laser Operating in the Mode-Synchronization Regime,” Sov. Phys. Dokl. 13, 581–582 (1968).
  27. A. J. Alcock, C. DeMichelis, and M. C. Richardson, “Production of a spark by a train of mode-locked laser pulses,” Phys. Lett. 28(5), 356–357 (1968).
    [Crossref]
  28. C. C. Wang and L. I. Davis, “New Observations of Dielectric Breakdown in Air Induced by a Focused Nd-Glass Laser with Various Pulse Widths,” Phys. Rev. Lett. 26(14), 822–825 (1971).
    [Crossref]
  29. S. A. Ramsden and P. Savic, “A radiative detonation model for the development of a laser-induced spark in air,” Nature 203(4951), 1217–1219 (1964).
    [Crossref]
  30. L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Academic Press, 1959).
  31. R. M. Jones, Buckling of bars, plates, and shells (Bull Ridge Publishing, 2006).
  32. L. D. Landau and E. M. Lifshits, Fluid Mechanics (Elsevier, 2013).
  33. H. L. Brode, “Numerical Solutions of Spherical Blast Waves,” J. Appl. Phys. 26(6), 766–775 (1955).
    [Crossref]

2018 (3)

S. Xing, S. Kharitonov, J. Hu, and C.-S. Brès, “Fiber fuse in chalcogenide photonic crystal fibers,” Opt. Lett. 43(7), 1443–1446 (2018).
[Crossref] [PubMed]

A. N. Kolyadin, A. F. Kosolapov, and I. A. Bufetov, “Optical discharge propagation along hollow-core optical fibres,” Quantum Electron. 48(12), 1138–1142 (2018).
[Crossref]

I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Yu. P. Yatsenko, and A. S. Biriukov, “Revolver Hollow Core Optical Fibers,” Fibers (Basel) 6(2), 39 (2018).
[Crossref]

2017 (1)

2014 (2)

C. Dumitrache, J. Rath, and A. P. Yalin, “High Power Spark Delivery System Using Hollow Core Kagome Lattice Fibers,” Materials (Basel) 7(8), 5700–5710 (2014).
[Crossref] [PubMed]

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

2013 (2)

2011 (1)

2008 (1)

I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, S. V. Lavrishchev, and E. M. Dianov, “Propagation of an optical discharge through optical fibres upon interference of modes,” Quantum Electron. 38(5), 441–444 (2008).
[Crossref]

2007 (1)

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
[Crossref]

2006 (1)

A. A. Frolov, I. A. Bufetov, V. P. Efremov, M. Y. Schelev, V. I. Lozovoy, V. E. Fortov, and E. M. Dianov, “Optical discharge in silica-based fibers: high-speed propagation under kW-range laser radiation,” Proc. SPIE 6193, 61930W (2006).
[Crossref]

2005 (1)

I. A. Bufetov and E. M. Dianov, “Optical discharge in optical fibers,” Phys. Uspekhi 48(1), 91–94 (2005).
[Crossref]

2004 (2)

E. M. Dianov, I. A. Bufetov, and A. A. Frolov, “Catastrophic damage in specialty optical fibers under CW medium-power laser radiation,” J. Opt. 33(3), 171–180 (2004).
[Crossref]

E. M. Dianov, A. A. Frolov, I. A. Bufetov, S. L. Semenov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorob’ev, “The fibre fuse effect in microstructured fibres,” Quantum Electron. 34(1), 59–61 (2004).
[Crossref]

2002 (1)

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibres of various composition caused by laser radiation,” Quantum Electron. 32(6), 476–478 (2002).
[Crossref]

1988 (1)

1986 (1)

I. A. Bufetov, V. B. Fedorov, and V. K. Fomin, “Propagation of an Optical Flame along a Tube,” Combust. Explos. Shock Waves 22(3), 274–284 (1986).
[Crossref]

1971 (1)

C. C. Wang and L. I. Davis, “New Observations of Dielectric Breakdown in Air Induced by a Focused Nd-Glass Laser with Various Pulse Widths,” Phys. Rev. Lett. 26(14), 822–825 (1971).
[Crossref]

1968 (2)

S. D. Kaitmazov, A. A. Medvedev, and A. M. Prokhorov, “Investigation of Optical Breakdown in Air by a Laser Operating in the Mode-Synchronization Regime,” Sov. Phys. Dokl. 13, 581–582 (1968).

A. J. Alcock, C. DeMichelis, and M. C. Richardson, “Production of a spark by a train of mode-locked laser pulses,” Phys. Lett. 28(5), 356–357 (1968).
[Crossref]

1966 (1)

S. L. Mandel’shtam, P. P. Pashinin, A. M. Prokhorov, Yu. P. Raizer, and N. K. Sukhodrev, “Investigation of the spark discharge produced in air by focusing laser radiation,” Sov. Phys. JETP 22(1), 91–96 (1966).

1964 (2)

S. A. Ramsden and P. Savic, “A radiative detonation model for the development of a laser-induced spark in air,” Nature 203(4951), 1217–1219 (1964).
[Crossref]

A. Ramsden and W. E. R. Davies, “Radiation scattered from the plasma produced by a focused ruby laser beam,” Phys. Rev. Lett. 13(7), 227–229 (1964).
[Crossref]

1955 (1)

H. L. Brode, “Numerical Solutions of Spherical Blast Waves,” J. Appl. Phys. 26(6), 766–775 (1955).
[Crossref]

Alcock, A. J.

A. J. Alcock, C. DeMichelis, and M. C. Richardson, “Production of a spark by a train of mode-locked laser pulses,” Phys. Lett. 28(5), 356–357 (1968).
[Crossref]

Biriukov, A. S.

I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Yu. P. Yatsenko, and A. S. Biriukov, “Revolver Hollow Core Optical Fibers,” Fibers (Basel) 6(2), 39 (2018).
[Crossref]

Brès, C.-S.

Brode, H. L.

H. L. Brode, “Numerical Solutions of Spherical Blast Waves,” J. Appl. Phys. 26(6), 766–775 (1955).
[Crossref]

Bufetov, I. A.

A. N. Kolyadin, A. F. Kosolapov, and I. A. Bufetov, “Optical discharge propagation along hollow-core optical fibres,” Quantum Electron. 48(12), 1138–1142 (2018).
[Crossref]

I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Yu. P. Yatsenko, and A. S. Biriukov, “Revolver Hollow Core Optical Fibers,” Fibers (Basel) 6(2), 39 (2018).
[Crossref]

I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, S. V. Lavrishchev, and E. M. Dianov, “Propagation of an optical discharge through optical fibres upon interference of modes,” Quantum Electron. 38(5), 441–444 (2008).
[Crossref]

A. A. Frolov, I. A. Bufetov, V. P. Efremov, M. Y. Schelev, V. I. Lozovoy, V. E. Fortov, and E. M. Dianov, “Optical discharge in silica-based fibers: high-speed propagation under kW-range laser radiation,” Proc. SPIE 6193, 61930W (2006).
[Crossref]

I. A. Bufetov and E. M. Dianov, “Optical discharge in optical fibers,” Phys. Uspekhi 48(1), 91–94 (2005).
[Crossref]

E. M. Dianov, I. A. Bufetov, and A. A. Frolov, “Catastrophic damage in specialty optical fibers under CW medium-power laser radiation,” J. Opt. 33(3), 171–180 (2004).
[Crossref]

E. M. Dianov, A. A. Frolov, I. A. Bufetov, S. L. Semenov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorob’ev, “The fibre fuse effect in microstructured fibres,” Quantum Electron. 34(1), 59–61 (2004).
[Crossref]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibres of various composition caused by laser radiation,” Quantum Electron. 32(6), 476–478 (2002).
[Crossref]

I. A. Bufetov, V. B. Fedorov, and V. K. Fomin, “Propagation of an Optical Flame along a Tube,” Combust. Explos. Shock Waves 22(3), 274–284 (1986).
[Crossref]

Chamorovsky, Y. K.

E. M. Dianov, A. A. Frolov, I. A. Bufetov, S. L. Semenov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorob’ev, “The fibre fuse effect in microstructured fibres,” Quantum Electron. 34(1), 59–61 (2004).
[Crossref]

Churbanov, M. F.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibres of various composition caused by laser radiation,” Quantum Electron. 32(6), 476–478 (2002).
[Crossref]

Davies, W. E. R.

A. Ramsden and W. E. R. Davies, “Radiation scattered from the plasma produced by a focused ruby laser beam,” Phys. Rev. Lett. 13(7), 227–229 (1964).
[Crossref]

Davis, L. I.

C. C. Wang and L. I. Davis, “New Observations of Dielectric Breakdown in Air Induced by a Focused Nd-Glass Laser with Various Pulse Widths,” Phys. Rev. Lett. 26(14), 822–825 (1971).
[Crossref]

DeMichelis, C.

A. J. Alcock, C. DeMichelis, and M. C. Richardson, “Production of a spark by a train of mode-locked laser pulses,” Phys. Lett. 28(5), 356–357 (1968).
[Crossref]

Dianov, E. M.

I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, S. V. Lavrishchev, and E. M. Dianov, “Propagation of an optical discharge through optical fibres upon interference of modes,” Quantum Electron. 38(5), 441–444 (2008).
[Crossref]

A. A. Frolov, I. A. Bufetov, V. P. Efremov, M. Y. Schelev, V. I. Lozovoy, V. E. Fortov, and E. M. Dianov, “Optical discharge in silica-based fibers: high-speed propagation under kW-range laser radiation,” Proc. SPIE 6193, 61930W (2006).
[Crossref]

I. A. Bufetov and E. M. Dianov, “Optical discharge in optical fibers,” Phys. Uspekhi 48(1), 91–94 (2005).
[Crossref]

E. M. Dianov, I. A. Bufetov, and A. A. Frolov, “Catastrophic damage in specialty optical fibers under CW medium-power laser radiation,” J. Opt. 33(3), 171–180 (2004).
[Crossref]

E. M. Dianov, A. A. Frolov, I. A. Bufetov, S. L. Semenov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorob’ev, “The fibre fuse effect in microstructured fibres,” Quantum Electron. 34(1), 59–61 (2004).
[Crossref]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibres of various composition caused by laser radiation,” Quantum Electron. 32(6), 476–478 (2002).
[Crossref]

Dumitrache, C.

C. Dumitrache, J. Rath, and A. P. Yalin, “High Power Spark Delivery System Using Hollow Core Kagome Lattice Fibers,” Materials (Basel) 7(8), 5700–5710 (2014).
[Crossref] [PubMed]

Efremov, V. P.

A. A. Frolov, I. A. Bufetov, V. P. Efremov, M. Y. Schelev, V. I. Lozovoy, V. E. Fortov, and E. M. Dianov, “Optical discharge in silica-based fibers: high-speed propagation under kW-range laser radiation,” Proc. SPIE 6193, 61930W (2006).
[Crossref]

Fan, X.

Fedorov, V. B.

I. A. Bufetov, V. B. Fedorov, and V. K. Fomin, “Propagation of an Optical Flame along a Tube,” Combust. Explos. Shock Waves 22(3), 274–284 (1986).
[Crossref]

Fedotov, A. B.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
[Crossref]

Fedotov, I. V.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
[Crossref]

Fomin, V. K.

I. A. Bufetov, V. B. Fedorov, and V. K. Fomin, “Propagation of an Optical Flame along a Tube,” Combust. Explos. Shock Waves 22(3), 274–284 (1986).
[Crossref]

Fortov, V. E.

A. A. Frolov, I. A. Bufetov, V. P. Efremov, M. Y. Schelev, V. I. Lozovoy, V. E. Fortov, and E. M. Dianov, “Optical discharge in silica-based fibers: high-speed propagation under kW-range laser radiation,” Proc. SPIE 6193, 61930W (2006).
[Crossref]

Frolov, A. A.

I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, S. V. Lavrishchev, and E. M. Dianov, “Propagation of an optical discharge through optical fibres upon interference of modes,” Quantum Electron. 38(5), 441–444 (2008).
[Crossref]

A. A. Frolov, I. A. Bufetov, V. P. Efremov, M. Y. Schelev, V. I. Lozovoy, V. E. Fortov, and E. M. Dianov, “Optical discharge in silica-based fibers: high-speed propagation under kW-range laser radiation,” Proc. SPIE 6193, 61930W (2006).
[Crossref]

E. M. Dianov, I. A. Bufetov, and A. A. Frolov, “Catastrophic damage in specialty optical fibers under CW medium-power laser radiation,” J. Opt. 33(3), 171–180 (2004).
[Crossref]

E. M. Dianov, A. A. Frolov, I. A. Bufetov, S. L. Semenov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorob’ev, “The fibre fuse effect in microstructured fibres,” Quantum Electron. 34(1), 59–61 (2004).
[Crossref]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibres of various composition caused by laser radiation,” Quantum Electron. 32(6), 476–478 (2002).
[Crossref]

Gladyshev, A. V.

I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Yu. P. Yatsenko, and A. S. Biriukov, “Revolver Hollow Core Optical Fibers,” Fibers (Basel) 6(2), 39 (2018).
[Crossref]

Ha, W.

Hand, D. P.

Hayashi, N.

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

He, Z.

Hu, J.

Ivanov, G. A.

E. M. Dianov, A. A. Frolov, I. A. Bufetov, S. L. Semenov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorob’ev, “The fibre fuse effect in microstructured fibres,” Quantum Electron. 34(1), 59–61 (2004).
[Crossref]

Jaworski, P.

Jeong, Y.

Jiang, S.

Kaitmazov, S. D.

S. D. Kaitmazov, A. A. Medvedev, and A. M. Prokhorov, “Investigation of Optical Breakdown in Air by a Laser Operating in the Mode-Synchronization Regime,” Sov. Phys. Dokl. 13, 581–582 (1968).

Kashyap, R.

Kharitonov, S.

Knight, J. C.

Kofler, H.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
[Crossref]

Kolyadin, A. N.

I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Yu. P. Yatsenko, and A. S. Biriukov, “Revolver Hollow Core Optical Fibers,” Fibers (Basel) 6(2), 39 (2018).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, and I. A. Bufetov, “Optical discharge propagation along hollow-core optical fibres,” Quantum Electron. 48(12), 1138–1142 (2018).
[Crossref]

Kosolapov, A. F.

A. N. Kolyadin, A. F. Kosolapov, and I. A. Bufetov, “Optical discharge propagation along hollow-core optical fibres,” Quantum Electron. 48(12), 1138–1142 (2018).
[Crossref]

I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Yu. P. Yatsenko, and A. S. Biriukov, “Revolver Hollow Core Optical Fibers,” Fibers (Basel) 6(2), 39 (2018).
[Crossref]

Krylov, A. A.

I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Yu. P. Yatsenko, and A. S. Biriukov, “Revolver Hollow Core Optical Fibers,” Fibers (Basel) 6(2), 39 (2018).
[Crossref]

Lavrishchev, S. V.

I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, S. V. Lavrishchev, and E. M. Dianov, “Propagation of an optical discharge through optical fibres upon interference of modes,” Quantum Electron. 38(5), 441–444 (2008).
[Crossref]

Likhachev, M. E.

I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, S. V. Lavrishchev, and E. M. Dianov, “Propagation of an optical discharge through optical fibres upon interference of modes,” Quantum Electron. 38(5), 441–444 (2008).
[Crossref]

Lozovoy, V. I.

A. A. Frolov, I. A. Bufetov, V. P. Efremov, M. Y. Schelev, V. I. Lozovoy, V. E. Fortov, and E. M. Dianov, “Optical discharge in silica-based fibers: high-speed propagation under kW-range laser radiation,” Proc. SPIE 6193, 61930W (2006).
[Crossref]

Ma, L.

Maier, R. R. J.

Mandel’shtam, S. L.

S. L. Mandel’shtam, P. P. Pashinin, A. M. Prokhorov, Yu. P. Raizer, and N. K. Sukhodrev, “Investigation of the spark discharge produced in air by focusing laser radiation,” Sov. Phys. JETP 22(1), 91–96 (1966).

Mashinsky, V. M.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibres of various composition caused by laser radiation,” Quantum Electron. 32(6), 476–478 (2002).
[Crossref]

Medvedev, A. A.

S. D. Kaitmazov, A. A. Medvedev, and A. M. Prokhorov, “Investigation of Optical Breakdown in Air by a Laser Operating in the Mode-Synchronization Regime,” Sov. Phys. Dokl. 13, 581–582 (1968).

Mitrokhin, V. P.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
[Crossref]

Mizuno, Y.

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

Nakamura, K.

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

Oh, K.

Orban, F.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
[Crossref]

Pashinin, P. P.

S. L. Mandel’shtam, P. P. Pashinin, A. M. Prokhorov, Yu. P. Raizer, and N. K. Sukhodrev, “Investigation of the spark discharge produced in air by focusing laser radiation,” Sov. Phys. JETP 22(1), 91–96 (1966).

Plotnichenko, V. G.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibres of various composition caused by laser radiation,” Quantum Electron. 32(6), 476–478 (2002).
[Crossref]

Prokhorov, A. M.

S. D. Kaitmazov, A. A. Medvedev, and A. M. Prokhorov, “Investigation of Optical Breakdown in Air by a Laser Operating in the Mode-Synchronization Regime,” Sov. Phys. Dokl. 13, 581–582 (1968).

S. L. Mandel’shtam, P. P. Pashinin, A. M. Prokhorov, Yu. P. Raizer, and N. K. Sukhodrev, “Investigation of the spark discharge produced in air by focusing laser radiation,” Sov. Phys. JETP 22(1), 91–96 (1966).

Pryamikov, A. D.

I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Yu. P. Yatsenko, and A. S. Biriukov, “Revolver Hollow Core Optical Fibers,” Fibers (Basel) 6(2), 39 (2018).
[Crossref]

Raizer, Yu. P.

S. L. Mandel’shtam, P. P. Pashinin, A. M. Prokhorov, Yu. P. Raizer, and N. K. Sukhodrev, “Investigation of the spark discharge produced in air by focusing laser radiation,” Sov. Phys. JETP 22(1), 91–96 (1966).

Ramsden, A.

A. Ramsden and W. E. R. Davies, “Radiation scattered from the plasma produced by a focused ruby laser beam,” Phys. Rev. Lett. 13(7), 227–229 (1964).
[Crossref]

Ramsden, S. A.

S. A. Ramsden and P. Savic, “A radiative detonation model for the development of a laser-induced spark in air,” Nature 203(4951), 1217–1219 (1964).
[Crossref]

Rath, J.

C. Dumitrache, J. Rath, and A. P. Yalin, “High Power Spark Delivery System Using Hollow Core Kagome Lattice Fibers,” Materials (Basel) 7(8), 5700–5710 (2014).
[Crossref] [PubMed]

Richardson, M. C.

A. J. Alcock, C. DeMichelis, and M. C. Richardson, “Production of a spark by a train of mode-locked laser pulses,” Phys. Lett. 28(5), 356–357 (1968).
[Crossref]

Russell, P. St. J.

Savic, P.

S. A. Ramsden and P. Savic, “A radiative detonation model for the development of a laser-induced spark in air,” Nature 203(4951), 1217–1219 (1964).
[Crossref]

Schelev, M. Y.

A. A. Frolov, I. A. Bufetov, V. P. Efremov, M. Y. Schelev, V. I. Lozovoy, V. E. Fortov, and E. M. Dianov, “Optical discharge in silica-based fibers: high-speed propagation under kW-range laser radiation,” Proc. SPIE 6193, 61930W (2006).
[Crossref]

Semenov, S. L.

E. M. Dianov, A. A. Frolov, I. A. Bufetov, S. L. Semenov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorob’ev, “The fibre fuse effect in microstructured fibres,” Quantum Electron. 34(1), 59–61 (2004).
[Crossref]

Shephard, J. D.

Shubin, A. V.

I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, S. V. Lavrishchev, and E. M. Dianov, “Propagation of an optical discharge through optical fibres upon interference of modes,” Quantum Electron. 38(5), 441–444 (2008).
[Crossref]

Snopatin, G. E.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibres of various composition caused by laser radiation,” Quantum Electron. 32(6), 476–478 (2002).
[Crossref]

Sukhodrev, N. K.

S. L. Mandel’shtam, P. P. Pashinin, A. M. Prokhorov, Yu. P. Raizer, and N. K. Sukhodrev, “Investigation of the spark discharge produced in air by focusing laser radiation,” Sov. Phys. JETP 22(1), 91–96 (1966).

Tanaka, H.

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

Tauer, J.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
[Crossref]

Todoroki, S.

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

Vorob’ev, I. L.

E. M. Dianov, A. A. Frolov, I. A. Bufetov, S. L. Semenov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorob’ev, “The fibre fuse effect in microstructured fibres,” Quantum Electron. 34(1), 59–61 (2004).
[Crossref]

Wadsworth, W. J.

Wang, C. C.

C. C. Wang and L. I. Davis, “New Observations of Dielectric Breakdown in Air Induced by a Focused Nd-Glass Laser with Various Pulse Widths,” Phys. Rev. Lett. 26(14), 822–825 (1971).
[Crossref]

Wang, S.

Wintner, E.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
[Crossref]

Xing, S.

Yalin, A. P.

C. Dumitrache, J. Rath, and A. P. Yalin, “High Power Spark Delivery System Using Hollow Core Kagome Lattice Fibers,” Materials (Basel) 7(8), 5700–5710 (2014).
[Crossref] [PubMed]

Yatsenko, Yu. P.

I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Yu. P. Yatsenko, and A. S. Biriukov, “Revolver Hollow Core Optical Fibers,” Fibers (Basel) 6(2), 39 (2018).
[Crossref]

Yu, F.

Zheltikov, A. M.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
[Crossref]

Appl. Phys. Lett. (1)

Y. Mizuno, N. Hayashi, H. Tanaka, K. Nakamura, and S. Todoroki, “Observation of polymer optical fiber fuse,” Appl. Phys. Lett. 104(4), 043302 (2014).
[Crossref]

Combust. Explos. Shock Waves (1)

I. A. Bufetov, V. B. Fedorov, and V. K. Fomin, “Propagation of an Optical Flame along a Tube,” Combust. Explos. Shock Waves 22(3), 274–284 (1986).
[Crossref]

Fibers (Basel) (1)

I. A. Bufetov, A. F. Kosolapov, A. D. Pryamikov, A. V. Gladyshev, A. N. Kolyadin, A. A. Krylov, Yu. P. Yatsenko, and A. S. Biriukov, “Revolver Hollow Core Optical Fibers,” Fibers (Basel) 6(2), 39 (2018).
[Crossref]

J. Appl. Phys. (1)

H. L. Brode, “Numerical Solutions of Spherical Blast Waves,” J. Appl. Phys. 26(6), 766–775 (1955).
[Crossref]

J. Opt. (1)

E. M. Dianov, I. A. Bufetov, and A. A. Frolov, “Catastrophic damage in specialty optical fibers under CW medium-power laser radiation,” J. Opt. 33(3), 171–180 (2004).
[Crossref]

Laser Phys. Lett. (1)

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic band gap fibers,” Laser Phys. Lett. 4(6), 444–448 (2007).
[Crossref]

Materials (Basel) (1)

C. Dumitrache, J. Rath, and A. P. Yalin, “High Power Spark Delivery System Using Hollow Core Kagome Lattice Fibers,” Materials (Basel) 7(8), 5700–5710 (2014).
[Crossref] [PubMed]

Nature (1)

S. A. Ramsden and P. Savic, “A radiative detonation model for the development of a laser-induced spark in air,” Nature 203(4951), 1217–1219 (1964).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Phys. Lett. (1)

A. J. Alcock, C. DeMichelis, and M. C. Richardson, “Production of a spark by a train of mode-locked laser pulses,” Phys. Lett. 28(5), 356–357 (1968).
[Crossref]

Phys. Rev. Lett. (2)

C. C. Wang and L. I. Davis, “New Observations of Dielectric Breakdown in Air Induced by a Focused Nd-Glass Laser with Various Pulse Widths,” Phys. Rev. Lett. 26(14), 822–825 (1971).
[Crossref]

A. Ramsden and W. E. R. Davies, “Radiation scattered from the plasma produced by a focused ruby laser beam,” Phys. Rev. Lett. 13(7), 227–229 (1964).
[Crossref]

Phys. Uspekhi (1)

I. A. Bufetov and E. M. Dianov, “Optical discharge in optical fibers,” Phys. Uspekhi 48(1), 91–94 (2005).
[Crossref]

Proc. SPIE (1)

A. A. Frolov, I. A. Bufetov, V. P. Efremov, M. Y. Schelev, V. I. Lozovoy, V. E. Fortov, and E. M. Dianov, “Optical discharge in silica-based fibers: high-speed propagation under kW-range laser radiation,” Proc. SPIE 6193, 61930W (2006).
[Crossref]

Quantum Electron. (4)

I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, S. V. Lavrishchev, and E. M. Dianov, “Propagation of an optical discharge through optical fibres upon interference of modes,” Quantum Electron. 38(5), 441–444 (2008).
[Crossref]

E. M. Dianov, A. A. Frolov, I. A. Bufetov, S. L. Semenov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorob’ev, “The fibre fuse effect in microstructured fibres,” Quantum Electron. 34(1), 59–61 (2004).
[Crossref]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibres of various composition caused by laser radiation,” Quantum Electron. 32(6), 476–478 (2002).
[Crossref]

A. N. Kolyadin, A. F. Kosolapov, and I. A. Bufetov, “Optical discharge propagation along hollow-core optical fibres,” Quantum Electron. 48(12), 1138–1142 (2018).
[Crossref]

Sov. Phys. Dokl. (1)

S. D. Kaitmazov, A. A. Medvedev, and A. M. Prokhorov, “Investigation of Optical Breakdown in Air by a Laser Operating in the Mode-Synchronization Regime,” Sov. Phys. Dokl. 13, 581–582 (1968).

Sov. Phys. JETP (1)

S. L. Mandel’shtam, P. P. Pashinin, A. M. Prokhorov, Yu. P. Raizer, and N. K. Sukhodrev, “Investigation of the spark discharge produced in air by focusing laser radiation,” Sov. Phys. JETP 22(1), 91–96 (1966).

Other (8)

L. I. Sedov, Similarity and Dimensional Methods in Mechanics (Academic Press, 1959).

R. M. Jones, Buckling of bars, plates, and shells (Bull Ridge Publishing, 2006).

L. D. Landau and E. M. Lifshits, Fluid Mechanics (Elsevier, 2013).

Yu. P. Raizer, Laser-Induced Discharge Phenomena (Consultants Bureau, 1977).

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, ” Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(3 September), 1537–1539 (1999).

Laser light cable for industrial ultrafast lasers LLK-UKP. Photonicstools. https://www.photonic-tools.de/products/llk-ultrafast/

R. Kashyap and K. J. Blow, “Spectacular demonstration of catastrophic failure in long lengths of optical fiber via self-propelled self-focusing,” Post deadline paper PD7, 8th National Quantum Electronics Conf., QE8, St. Andrews, Scotland, UK, (21–25 September 1987).

Shin-ichi Todoroki, Fiber Fuse. Light-Induced Continuous Breakdown of Silica Glass Optical Fibers (Springer, 2014).

Supplementary Material (1)

NameDescription
» Visualization 1       Optical discharge propagation along hollow-core fiber.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Experimental setup. (b) Laser radiation parameters: nanosecond trains of picosecond pulses (at left) and picosecond pulses (at right), not to scale.
Fig. 2
Fig. 2 Cross-sections of RF1 (a) and RF2 (b) without polymer coatings. 1-support tube, 2-capilliaries of the reflecting cladding, 3-hollow core. The main geometric dimensions of RF1/RF2 are as follows: the external diameter of the support tube is 125/100 μm; the hollow core diameter is 42/20 μm; the inner diameter of the support tube is 93/36 μm; the capillary wall thickness in the reflective cladding is 3.1/0.8 μm; the wall thickness of the support tube is 16/32 μm. A divergent shock wave (DSW) and a reflected convergent wave (RCW) are schematically shown.
Fig. 3
Fig. 3 Picture of an OD propagating through RF1 (shutter speed 1/120 s). The launching point of the laser radiation into RF1 is on the right, and the initiation point of the OD is on the left. OD propagation through RF1 (see Visualization 1). OD propagation is presented here with a slowdown of ≈4 times.
Fig. 4
Fig. 4 (а) Oscillogram of the Nd:YAG laser NTPP. The NTPP consists of 100-ps pulses with a period of 13 ns. The duration of the PPs is not displayed properly due to the limited frequency band of the registration scheme. (b) Oscillogram of the visible emission of the OD plasma in RF2 under the action of laser radiation. It was measured using the PD installed as shown in Fig. 1(a). Laser radiation was filtered out.
Fig. 5
Fig. 5 Position-time graph for the OD moving along the polymer coated fiber RF2 (1) and the partially uncovered fiber RF2 (2). On the right and left, the RF images are schematically shown as completely and partially coated with the polymer, respectively. The measured values of VAV for different parts of the RFs are indicated. PAV = 2 W in both experiments.
Fig. 6
Fig. 6 Pictures of the same section of RF2 before (a), during (b) and after (c) an OD propagation through it. The fiber without a polymer coating was immersed in an index-matching fluid. Laser radiation propagated from the left to the right. Lighting conditions: (a) backlight, (b) own emission of the OD plasma (laser radiation blocked by a filter), and (c) side lights. Scale: the total width of each frame is 3.5 mm.
Fig. 7
Fig. 7 Pictures of the same section of RF2 before (a), during (b) and after (c) an OD propagation through it. The fiber without a polymer coating was in the air in all three cases (there was no index-matching fluid, in contrast to the pictures in Fig. 6). Laser radiation propagated from the left to the right. Lighting conditions: (a) backlight, (b) own emission of the OD plasma, and (c) side lights. Scale: the total width of each frame is 9 mm.
Fig. 8
Fig. 8 The damaged lengths of RF2 fibers: (a) a length of polymer-coated RF2 after an OD propagation and (b) an unclad RF2 fiber. Scale: the total width of each frame is 9 mm. Laser radiation propagated from the left to the right. (c) and (d) are the I(x) functions for the panoramic pictures of the damaged fibers that are partially shown in (a) and (b), respectively. Black rectangles in (c) and (d) indicate positions of (a) and (b) pictures with respect to I(x) functions. The width of some undamaged fiber regions in (d) are labeled by δ.
Fig. 9
Fig. 9 Spatial frequency spectra of the I(x) functions shown in Fig. 8(c) and (d).
Fig. 10
Fig. 10 (a) Velocity of the air behind the shock wave front for a point explosion with an energy equal to the energy of a NTPP (1.6 mJ) as a function of time (calculated using the results of [33]). To demonstrate the moment the velocity transitions through zero, the vertical axis contains the gap with a change in scale. The inset shows the same graph but without a break on the vertical axis. (b) The particle path over time (approximation of a spherical shock wave). The graph refers to an air particle near the point of an explosion or a small particle of silica glass moving with air. The particle displacement reaches 0.6 mm, which in order of magnitude coincides with the size of the region of undamaged capillaries (see Fig. 7).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V LSDW = [ 2( γ 2 1 ) I p ρ 0 ] 1 3 , l LSDW (t)= V LSDW t.
l SW sp (t)= ( E ρ 0 ) 1 5 t 2 5 .
l SW p = ( E ρ 0 S ) 1 3 t 2 3 ,
p cr = E 4( 1 ν 2 ) d W 3 r 3
p LSDW = γ 1 γ 2 +1 ( V LSDW c S ) 2 p 0 0.5 10 6 atm
R= ( ρ 1 c S1 ρ 2 c S2 ρ 1 c S1 + ρ 2 c S2 ) 2
t R = R 2 ρ Si O 2 4.5η

Metrics