Abstract

In this paper, a holographic display system with adjustable viewing angle is proposed. The system consists of a collimated beam, a spatial light modulator (SLM), a multi-focus optofluidic (MFO) lens and an aperture. The MFO lens with high focal power is produced and it consists of two substrates, one multilayer substrate and two chambers. When the liquids are pulled in/out from the channels, the curvature of the liquid-liquid interface changes due to the surface tension and adsorption between the liquids and the multilayer substrate. The relationship between the parameters of the MFO lens and the holographic display viewing angle is revealed for the first time. Based on the theoretical analysis, the mechanisms of the high focal power and mechanical stability of the proposed MFO lens are also clarified. The experiments show that the focal power of the proposed MFO lens can be varied from −20 D (m−1) to 4 D (m−1), respectively. By using the MFO lens, the viewing angle of the holographic display system can be adjusted without moving any components mechanically. Meanwhile the setup of the system is greatly simplified. The experimental results verify the feasibility of the system, and it is expected to bring new ideas to the holographic display with large viewing angle.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Full parallax viewing-angle enhanced computer-generated holographic 3D display system using integral lens array

Kyongsik Choi, Joohwan Kim, Yongjun Lim, and Byoungho Lee
Opt. Express 13(26) 10494-10502 (2005)

Electronic holographic three-dimensional display with enlarged viewing angle using non-mechanical scanning technology

Guanglin Yang, Weihao Han, Taomin Xie, and Haiyan Xie
OSA Continuum 2(6) 1917-1924 (2019)

Holographic zoom micro-projection system based on three spatial light modulators

Di Wang, Chao Liu, and Qiong-Hua Wang
Opt. Express 27(6) 8048-8058 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. Chen, J. Yeom, J. H. Jung, J. H. Park, and B. Lee, “Resolution comparison between integral-imaging-based hologram synthesis methods using rectangular and hexagonal lens arrays,” Opt. Express 19(27), 26917–26927 (2011).
    [Crossref] [PubMed]
  2. L. Wang, S. Kruk, H. Tang, T. Li, I. Kravchenko, D. N. Neshev, and Y. S. Kivshar, “Grayscale transparent metasurface holograms,” Optica 3(12), 1504–1505 (2016).
    [Crossref] [PubMed]
  3. Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
    [Crossref] [PubMed]
  4. Y. Sando, K. Satoh, T. Kitagawa, M. Kawamura, D. Barada, and T. Yatagai, “Super-wide viewing-zone holographic 3D display using a convex parabolic mirror,” Sci. Rep. 8(1), 11333 (2018).
    [Crossref] [PubMed]
  5. H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
    [Crossref]
  6. X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
    [Crossref] [PubMed]
  7. N. Fukaya, K. Maeno, O. Nishikawa, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystal devices,” Proc. SPIE 2406, 283–289 (1995).
    [Crossref]
  8. F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19(10), 9147–9156 (2011).
    [Crossref] [PubMed]
  9. Z. Zeng, H. Zheng, Y. Yu, A. K. Asundi, and S. Valyukh, “Full-color holographic display with increased viewing angle,” Appl. Opt. 56(13), F112–F120 (2017).
    [Crossref] [PubMed]
  10. T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp. Technol. 7(7), 382–390 (2011).
    [Crossref]
  11. J. S. Lee, Y. K. Kim, and Y. H. Won, “Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display,” Opt. Express 26(2), 2149–2159 (2018).
    [Crossref] [PubMed]
  12. Y. Zhao, L. Cao, H. Zhang, W. Tan, S. Wu, Z. Wang, Q. Yang, and G. Jin, “Time-division multiplexing holographic display using angular-spectrum layer-oriented method,” Chin. Opt. Lett. 14(1), 010005 (2016).
    [Crossref]
  13. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9(1), 812 (2018).
    [Crossref] [PubMed]
  14. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [Crossref]
  15. O. D. Supekar, M. Zohrabi, J. T. Gopinath, and V. M. Bright, “Enhanced response time of electrowetting lenses with shaped input voltage functions,” Langmuir 33(19), 4863–4869 (2017).
    [Crossref] [PubMed]
  16. M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” IEEE J. Disp. Technol. 10(6), 450–455 (2014).
    [Crossref]
  17. C. Clement, S. Thio, and S. Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sensor. Actuat. Biol. Chem. 240, 909–915 (2017).
  18. C. Liu, D. Wang, Q. H. Wang, and J. Fang, “Electrowetting-actuated multifunctional optofluidic lens to improve the quality of computer-generated holography,” Opt. Express 27(9), 12963–12975 (2019).
    [Crossref] [PubMed]
  19. D. Kopp, T. Brender, and H. Zappe, “All-liquid dual-lens optofluidic zoom system,” Appl. Opt. 56(13), 3758–3763 (2017).
    [Crossref] [PubMed]
  20. S. Prasad, M. Del Rosso, J. R. Vale, and C. M. Collier, “Optofluidic lenses with horizontal-to-vertical aspect ratios in the subunit regime,” Appl. Opt. 57(19), 5474–5482 (2018).
    [Crossref] [PubMed]
  21. H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
    [Crossref] [PubMed]
  22. C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
    [Crossref] [PubMed]
  23. C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” IEEE Photonics Technol. Lett. 21(19), 1396–1398 (2009).
    [Crossref]
  24. X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4(4), 043007 (2010).
    [Crossref] [PubMed]
  25. L. Hou, N. R. Smith, and J. Heikenfeld, “Tunable optofluidic microlens through active pressure control of an air-liquid interface,” Appl. Phys. Lett. 90(25), 251114 (2007).
    [Crossref]
  26. G. Holzner, Y. Du, X. Cao, J. Choo, A. J deMello, and S. Stavrakis, “An optofluidic system with integrated microlens arrays for parallel imaging flow cytometry,” Lab Chip 18(23), 3631–3637 (2018).
    [Crossref] [PubMed]
  27. L. Zhang, Z. Wang, Y. Wang, R. Qiu, W. Fang, and L. Tong, “In situ fabrication of a tunable microlens,” Opt. Lett. 40(16), 3850–3853 (2015).
    [Crossref] [PubMed]
  28. K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
    [Crossref] [PubMed]
  29. N. C. Lima, K. Mishra, and F. Mugele, “Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses,” Opt. Express 25(6), 6700–6711 (2017).
    [Crossref] [PubMed]
  30. N. C. Lima, A. Cavalli, K. Mishra, and F. Mugele, “Numerical simulation of astigmatic liquid lenses tuned by a stripe electrode,” Opt. Express 24(4), 4210–4220 (2016).
    [Crossref] [PubMed]
  31. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
    [Crossref] [PubMed]
  32. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
    [Crossref] [PubMed]
  33. I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
    [Crossref]
  34. D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
    [Crossref] [PubMed]
  35. J. S. Lee, Y. K. Kim, M. Y. Lee, and Y. H. Won, “Enhanced see-through near-eye display using time-division multiplexing of a Maxwellian-view and holographic display,” Opt. Express 27(2), 689–701 (2019).
    [Crossref] [PubMed]
  36. D. Wang, N. N. Li, C. Liu, and Q. H. Wang, “Holographic display method to suppress speckle noise based on effective utilization of two spatial light modulators,” Opt. Express 27(8), 11617–11625 (2019).
    [Crossref] [PubMed]
  37. Y. Takaki and Y. Hayashi, “Increased horizontal viewing zone angle of a hologram by resolution redistribution of a spatial light modulator,” Appl. Opt. 47(19), D6–D11 (2008).
    [Crossref] [PubMed]

2019 (3)

2018 (7)

J. S. Lee, Y. K. Kim, and Y. H. Won, “Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display,” Opt. Express 26(2), 2149–2159 (2018).
[Crossref] [PubMed]

S. Prasad, M. Del Rosso, J. R. Vale, and C. M. Collier, “Optofluidic lenses with horizontal-to-vertical aspect ratios in the subunit regime,” Appl. Opt. 57(19), 5474–5482 (2018).
[Crossref] [PubMed]

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Y. Sando, K. Satoh, T. Kitagawa, M. Kawamura, D. Barada, and T. Yatagai, “Super-wide viewing-zone holographic 3D display using a convex parabolic mirror,” Sci. Rep. 8(1), 11333 (2018).
[Crossref] [PubMed]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9(1), 812 (2018).
[Crossref] [PubMed]

G. Holzner, Y. Du, X. Cao, J. Choo, A. J deMello, and S. Stavrakis, “An optofluidic system with integrated microlens arrays for parallel imaging flow cytometry,” Lab Chip 18(23), 3631–3637 (2018).
[Crossref] [PubMed]

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

2017 (6)

C. Clement, S. Thio, and S. Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sensor. Actuat. Biol. Chem. 240, 909–915 (2017).

O. D. Supekar, M. Zohrabi, J. T. Gopinath, and V. M. Bright, “Enhanced response time of electrowetting lenses with shaped input voltage functions,” Langmuir 33(19), 4863–4869 (2017).
[Crossref] [PubMed]

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Z. Zeng, H. Zheng, Y. Yu, A. K. Asundi, and S. Valyukh, “Full-color holographic display with increased viewing angle,” Appl. Opt. 56(13), F112–F120 (2017).
[Crossref] [PubMed]

N. C. Lima, K. Mishra, and F. Mugele, “Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses,” Opt. Express 25(6), 6700–6711 (2017).
[Crossref] [PubMed]

D. Kopp, T. Brender, and H. Zappe, “All-liquid dual-lens optofluidic zoom system,” Appl. Opt. 56(13), 3758–3763 (2017).
[Crossref] [PubMed]

2016 (4)

2015 (3)

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref] [PubMed]

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref] [PubMed]

L. Zhang, Z. Wang, Y. Wang, R. Qiu, W. Fang, and L. Tong, “In situ fabrication of a tunable microlens,” Opt. Lett. 40(16), 3850–3853 (2015).
[Crossref] [PubMed]

2014 (1)

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” IEEE J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

2011 (3)

2010 (1)

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4(4), 043007 (2010).
[Crossref] [PubMed]

2009 (1)

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” IEEE Photonics Technol. Lett. 21(19), 1396–1398 (2009).
[Crossref]

2008 (2)

2007 (2)

C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[Crossref] [PubMed]

L. Hou, N. R. Smith, and J. Heikenfeld, “Tunable optofluidic microlens through active pressure control of an air-liquid interface,” Appl. Phys. Lett. 90(25), 251114 (2007).
[Crossref]

2006 (2)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
[Crossref] [PubMed]

2004 (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

1995 (1)

N. Fukaya, K. Maeno, O. Nishikawa, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystal devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Anderson, P. A.

Arbabi, A.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9(1), 812 (2018).
[Crossref] [PubMed]

Arbabi, E.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9(1), 812 (2018).
[Crossref] [PubMed]

Asundi, A. K.

Barada, D.

Y. Sando, K. Satoh, T. Kitagawa, M. Kawamura, D. Barada, and T. Yatagai, “Super-wide viewing-zone holographic 3D display using a convex parabolic mirror,” Sci. Rep. 8(1), 11333 (2018).
[Crossref] [PubMed]

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Brender, T.

Bright, V. M.

O. D. Supekar, M. Zohrabi, J. T. Gopinath, and V. M. Bright, “Enhanced response time of electrowetting lenses with shaped input voltage functions,” Langmuir 33(19), 4863–4869 (2017).
[Crossref] [PubMed]

Cao, L.

Y. Zhao, L. Cao, H. Zhang, W. Tan, S. Wu, Z. Wang, Q. Yang, and G. Jin, “Time-division multiplexing holographic display using angular-spectrum layer-oriented method,” Chin. Opt. Lett. 14(1), 010005 (2016).
[Crossref]

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref] [PubMed]

Cao, X.

G. Holzner, Y. Du, X. Cao, J. Choo, A. J deMello, and S. Stavrakis, “An optofluidic system with integrated microlens arrays for parallel imaging flow cytometry,” Lab Chip 18(23), 3631–3637 (2018).
[Crossref] [PubMed]

Cao, Y.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Carreel, B.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref] [PubMed]

Cavalli, A.

Chen, C. N.

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” IEEE Photonics Technol. Lett. 21(19), 1396–1398 (2009).
[Crossref]

Chen, M. S.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” IEEE J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

Chen, N.

Chen, X.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref] [PubMed]

Cheng, C. C.

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” IEEE Photonics Technol. Lett. 21(19), 1396–1398 (2009).
[Crossref]

C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[Crossref] [PubMed]

Cheng, L. S.

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” IEEE Photonics Technol. Lett. 21(19), 1396–1398 (2009).
[Crossref]

Cheng, X.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Choo, J.

G. Holzner, Y. Du, X. Cao, J. Choo, A. J deMello, and S. Stavrakis, “An optofluidic system with integrated microlens arrays for parallel imaging flow cytometry,” Lab Chip 18(23), 3631–3637 (2018).
[Crossref] [PubMed]

Chung, S. K.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

Clement, C.

C. Clement, S. Thio, and S. Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sensor. Actuat. Biol. Chem. 240, 909–915 (2017).

Collier, C. M.

Collings, N.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” IEEE J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

Del Rosso, M.

Deng, J.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Deng, Z. L.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Du, Y.

G. Holzner, Y. Du, X. Cao, J. Choo, A. J deMello, and S. Stavrakis, “An optofluidic system with integrated microlens arrays for parallel imaging flow cytometry,” Lab Chip 18(23), 3631–3637 (2018).
[Crossref] [PubMed]

Fang, J.

Fang, W.

Faraji-Dana, M.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9(1), 812 (2018).
[Crossref] [PubMed]

Faraon, A.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9(1), 812 (2018).
[Crossref] [PubMed]

Fox, D.

Fukaya, N.

N. Fukaya, K. Maeno, O. Nishikawa, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystal devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

Gopinath, J. T.

O. D. Supekar, M. Zohrabi, J. T. Gopinath, and V. M. Bright, “Enhanced response time of electrowetting lenses with shaped input voltage functions,” Langmuir 33(19), 4863–4869 (2017).
[Crossref] [PubMed]

Gu, M.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref] [PubMed]

Hayashi, Y.

Heikenfeld, J.

L. Hou, N. R. Smith, and J. Heikenfeld, “Tunable optofluidic microlens through active pressure control of an air-liquid interface,” Appl. Phys. Lett. 90(25), 251114 (2007).
[Crossref]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Holzner, G.

G. Holzner, Y. Du, X. Cao, J. Choo, A. J deMello, and S. Stavrakis, “An optofluidic system with integrated microlens arrays for parallel imaging flow cytometry,” Lab Chip 18(23), 3631–3637 (2018).
[Crossref] [PubMed]

Honda, T.

N. Fukaya, K. Maeno, O. Nishikawa, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystal devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

Horie, Y.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9(1), 812 (2018).
[Crossref] [PubMed]

Hou, L.

L. Hou, N. R. Smith, and J. Heikenfeld, “Tunable optofluidic microlens through active pressure control of an air-liquid interface,” Appl. Phys. Lett. 90(25), 251114 (2007).
[Crossref]

Hu, B.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref] [PubMed]

Huang, T. J.

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4(4), 043007 (2010).
[Crossref] [PubMed]

J deMello, A.

G. Holzner, Y. Du, X. Cao, J. Choo, A. J deMello, and S. Stavrakis, “An optofluidic system with integrated microlens arrays for parallel imaging flow cytometry,” Lab Chip 18(23), 3631–3637 (2018).
[Crossref] [PubMed]

Jia, J.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref] [PubMed]

Jiang, H.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Jin, G.

Y. Zhao, L. Cao, H. Zhang, W. Tan, S. Wu, Z. Wang, Q. Yang, and G. Jin, “Time-division multiplexing holographic display using angular-spectrum layer-oriented method,” Chin. Opt. Lett. 14(1), 010005 (2016).
[Crossref]

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref] [PubMed]

Jung, J. H.

Kamali, S. M.

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9(1), 812 (2018).
[Crossref] [PubMed]

Kang, H.

Kawamura, M.

Y. Sando, K. Satoh, T. Kitagawa, M. Kawamura, D. Barada, and T. Yatagai, “Super-wide viewing-zone holographic 3D display using a convex parabolic mirror,” Sci. Rep. 8(1), 11333 (2018).
[Crossref] [PubMed]

Kim, Y. K.

Kitagawa, T.

Y. Sando, K. Satoh, T. Kitagawa, M. Kawamura, D. Barada, and T. Yatagai, “Super-wide viewing-zone holographic 3D display using a convex parabolic mirror,” Sci. Rep. 8(1), 11333 (2018).
[Crossref] [PubMed]

Kivshar, Y. S.

Kopp, D.

Kravchenko, I.

Kruk, S.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Kurita, T.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Lee, B.

Lee, J. S.

Lee, K.

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Lee, M. Y.

Li, C.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref] [PubMed]

Li, G.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Li, L.

Li, N. N.

Li, Q.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref] [PubMed]

Li, T.

Li, X.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref] [PubMed]

Lima, N. C.

Lin, H. C.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” IEEE J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

Lin, S. C. S.

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4(4), 043007 (2010).
[Crossref] [PubMed]

Lin, Y. H.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” IEEE J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

Liu, C.

Liu, J.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref] [PubMed]

Maeno, K.

N. Fukaya, K. Maeno, O. Nishikawa, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystal devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

Manukyan, G.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref] [PubMed]

Mao, X.

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4(4), 043007 (2010).
[Crossref] [PubMed]

Mishina, T.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Mishra, K.

Mugele, F.

Murade, C.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref] [PubMed]

Nawaz, A. A.

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4(4), 043007 (2010).
[Crossref] [PubMed]

Neshev, D. N.

Nishikawa, O.

N. Fukaya, K. Maeno, O. Nishikawa, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystal devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

Oh, J. M.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref] [PubMed]

Oh, S. H.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

Oi, R.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Onural, L.

Park, I. S.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

Park, J.

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Park, J. H.

Park, S. Y.

C. Clement, S. Thio, and S. Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sensor. Actuat. Biol. Chem. 240, 909–915 (2017).

Park, Y.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Prasad, S.

Qiu, R.

Ren, H.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref] [PubMed]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[Crossref] [PubMed]

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
[Crossref] [PubMed]

Roghair, I.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref] [PubMed]

Sahu, A.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref] [PubMed]

Sando, Y.

Y. Sando, K. Satoh, T. Kitagawa, M. Kawamura, D. Barada, and T. Yatagai, “Super-wide viewing-zone holographic 3D display using a convex parabolic mirror,” Sci. Rep. 8(1), 11333 (2018).
[Crossref] [PubMed]

Satoh, K.

Y. Sando, K. Satoh, T. Kitagawa, M. Kawamura, D. Barada, and T. Yatagai, “Super-wide viewing-zone holographic 3D display using a convex parabolic mirror,” Sci. Rep. 8(1), 11333 (2018).
[Crossref] [PubMed]

Senoh, T.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Shi, T.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Smith, N. R.

L. Hou, N. R. Smith, and J. Heikenfeld, “Tunable optofluidic microlens through active pressure control of an air-liquid interface,” Appl. Phys. Lett. 90(25), 251114 (2007).
[Crossref]

Stavrakis, S.

G. Holzner, Y. Du, X. Cao, J. Choo, A. J deMello, and S. Stavrakis, “An optofluidic system with integrated microlens arrays for parallel imaging flow cytometry,” Lab Chip 18(23), 3631–3637 (2018).
[Crossref] [PubMed]

Stratton, Z. I.

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4(4), 043007 (2010).
[Crossref] [PubMed]

Supekar, O. D.

O. D. Supekar, M. Zohrabi, J. T. Gopinath, and V. M. Bright, “Enhanced response time of electrowetting lenses with shaped input voltage functions,” Langmuir 33(19), 4863–4869 (2017).
[Crossref] [PubMed]

Takaki, Y.

Tan, W.

Tang, H.

Thio, S.

C. Clement, S. Thio, and S. Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sensor. Actuat. Biol. Chem. 240, 909–915 (2017).

Tong, L.

Tsai, C. G.

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” IEEE Photonics Technol. Lett. 21(19), 1396–1398 (2009).
[Crossref]

Vale, J. R.

Valyukh, S.

van den Ende, D.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref] [PubMed]

Wang, D.

Wang, G. P.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Wang, L.

Wang, Q. H.

Wang, S.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Wang, X.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Wang, Y.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref] [PubMed]

L. Zhang, Z. Wang, Y. Wang, R. Qiu, W. Fang, and L. Tong, “In situ fabrication of a tunable microlens,” Opt. Lett. 40(16), 3850–3853 (2015).
[Crossref] [PubMed]

Wang, Z.

Won, Y. H.

Wu, B.

Wu, S.

Wu, S. T.

Xianyu, H.

Xu, J.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Xu, S.

Xue, G.

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref] [PubMed]

Yamamoto, K.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Yang, J. T.

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” IEEE Photonics Technol. Lett. 21(19), 1396–1398 (2009).
[Crossref]

Yang, J. W.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

Yang, Q.

Yaras, F.

Yatagai, T.

Y. Sando, K. Satoh, T. Kitagawa, M. Kawamura, D. Barada, and T. Yatagai, “Super-wide viewing-zone holographic 3D display using a convex parabolic mirror,” Sci. Rep. 8(1), 11333 (2018).
[Crossref] [PubMed]

Yeh, J. A.

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” IEEE Photonics Technol. Lett. 21(19), 1396–1398 (2009).
[Crossref]

C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[Crossref] [PubMed]

Yeom, J.

Yu, H.

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Yu, Y.

Zappe, H.

Zeng, Z.

Zhang, H.

Zhang, L.

Zhao, Y.

Zheng, H.

Zhou, X.

Zhuang, X.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Zohrabi, M.

O. D. Supekar, M. Zohrabi, J. T. Gopinath, and V. M. Bright, “Enhanced response time of electrowetting lenses with shaped input voltage functions,” Langmuir 33(19), 4863–4869 (2017).
[Crossref] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

L. Hou, N. R. Smith, and J. Heikenfeld, “Tunable optofluidic microlens through active pressure control of an air-liquid interface,” Appl. Phys. Lett. 90(25), 251114 (2007).
[Crossref]

Biomicrofluidics (1)

X. Mao, Z. I. Stratton, A. A. Nawaz, S. C. S. Lin, and T. J. Huang, “Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure,” Biomicrofluidics 4(4), 043007 (2010).
[Crossref] [PubMed]

Chin. Opt. Lett. (1)

IEEE J. Disp. Technol. (2)

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” IEEE J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing-zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” IEEE J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. G. Tsai, C. N. Chen, L. S. Cheng, C. C. Cheng, J. T. Yang, and J. A. Yeh, “Planar liquid confinement for optical centering of dielectric liquid lenses,” IEEE Photonics Technol. Lett. 21(19), 1396–1398 (2009).
[Crossref]

Lab Chip (1)

G. Holzner, Y. Du, X. Cao, J. Choo, A. J deMello, and S. Stavrakis, “An optofluidic system with integrated microlens arrays for parallel imaging flow cytometry,” Lab Chip 18(23), 3631–3637 (2018).
[Crossref] [PubMed]

Langmuir (1)

O. D. Supekar, M. Zohrabi, J. T. Gopinath, and V. M. Bright, “Enhanced response time of electrowetting lenses with shaped input voltage functions,” Langmuir 33(19), 4863–4869 (2017).
[Crossref] [PubMed]

Light Sci. Appl. (1)

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Nat. Commun. (2)

X. Li, H. Ren, X. Chen, J. Liu, Q. Li, C. Li, G. Xue, J. Jia, L. Cao, A. Sahu, B. Hu, Y. Wang, G. Jin, and M. Gu, “Athermally photoreduced graphene oxides for three-dimensional holographic images,” Nat. Commun. 6(1), 6984 (2015).
[Crossref] [PubMed]

E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, and A. Faraon, “MEMS-tunable dielectric metasurface lens,” Nat. Commun. 9(1), 812 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Nature (1)

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature 442(7102), 551–554 (2006).
[Crossref] [PubMed]

Opt. Express (12)

D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref] [PubMed]

N. C. Lima, A. Cavalli, K. Mishra, and F. Mugele, “Numerical simulation of astigmatic liquid lenses tuned by a stripe electrode,” Opt. Express 24(4), 4210–4220 (2016).
[Crossref] [PubMed]

H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Opt. Express 16(19), 14954–14960 (2008).
[Crossref] [PubMed]

F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19(10), 9147–9156 (2011).
[Crossref] [PubMed]

N. Chen, J. Yeom, J. H. Jung, J. H. Park, and B. Lee, “Resolution comparison between integral-imaging-based hologram synthesis methods using rectangular and hexagonal lens arrays,” Opt. Express 19(27), 26917–26927 (2011).
[Crossref] [PubMed]

J. S. Lee, Y. K. Kim, M. Y. Lee, and Y. H. Won, “Enhanced see-through near-eye display using time-division multiplexing of a Maxwellian-view and holographic display,” Opt. Express 27(2), 689–701 (2019).
[Crossref] [PubMed]

D. Wang, N. N. Li, C. Liu, and Q. H. Wang, “Holographic display method to suppress speckle noise based on effective utilization of two spatial light modulators,” Opt. Express 27(8), 11617–11625 (2019).
[Crossref] [PubMed]

C. Liu, D. Wang, Q. H. Wang, and J. Fang, “Electrowetting-actuated multifunctional optofluidic lens to improve the quality of computer-generated holography,” Opt. Express 27(9), 12963–12975 (2019).
[Crossref] [PubMed]

N. C. Lima, K. Mishra, and F. Mugele, “Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses,” Opt. Express 25(6), 6700–6711 (2017).
[Crossref] [PubMed]

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
[Crossref] [PubMed]

C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15(12), 7140–7145 (2007).
[Crossref] [PubMed]

J. S. Lee, Y. K. Kim, and Y. H. Won, “Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display,” Opt. Express 26(2), 2149–2159 (2018).
[Crossref] [PubMed]

Opt. Lett. (1)

Optica (1)

Proc. SPIE (1)

N. Fukaya, K. Maeno, O. Nishikawa, and T. Honda, “Expansion of the image size and viewing zone in holographic display using liquid crystal devices,” Proc. SPIE 2406, 283–289 (1995).
[Crossref]

Sci. Rep. (2)

Y. Sando, K. Satoh, T. Kitagawa, M. Kawamura, D. Barada, and T. Yatagai, “Super-wide viewing-zone holographic 3D display using a convex parabolic mirror,” Sci. Rep. 8(1), 11333 (2018).
[Crossref] [PubMed]

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2015).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

Sensor. Actuat. Biol. Chem. (1)

C. Clement, S. Thio, and S. Y. Park, “An optofluidic tunable Fresnel lens for spatial focal control based on electrowetting-on-dielectric (EWOD),” Sensor. Actuat. Biol. Chem. 240, 909–915 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Principle of the holographic display system. (a) Original state of the CGH system. (b) State when the focal length of MFO lens is varied.
Fig. 2
Fig. 2 Mechanism of the proposed MFO lens. (a) Structure of the MFO lens. (b) State of injecting the liquid. (c) State of extracting the liquid.
Fig. 3
Fig. 3 Theoretical analysis of the surface tension between the liquids and multilayer substrate.
Fig. 4
Fig. 4 (a) Parameters of the multilayer substrate. (b) Fabrication procedure of the MFO lens.
Fig. 5
Fig. 5 Focal length changes of the MFO lens when liquid-2 is pulled out from channel-2. (a) ΔV = 0 μl. (b) ΔV = 20 μl. (c) ΔV = 40 μl. (d) ΔV = 120 μl. (e) ΔV = 200 μl. (f) ΔV = 260 μl.
Fig. 6
Fig. 6 Focal length changes of the MFO lens when liquid-2 is pulled out from the inlet.
Fig. 7
Fig. 7 Transmittance of the MFO lens.
Fig. 8
Fig. 8 Structure of the holographic display system.
Fig. 9
Fig. 9 Reconstructed image using the proposed system. (a) Original calculated image of ‘W’; (b) Left viewing angle @ F = 200mm; (c) Middle viewing angle @ F = 200mm; (d) Right viewing angle @ F = 200mm.
Fig. 10
Fig. 10 Reconstructed image using the proposed system. (a) Original calculated image of ‘W’; (b) Left viewing angle @ F = 150mm; (c) Middle viewing angle @ F = 150mm; (d) Right viewing angle @ F = 150mm. (e) Left viewing angle @ F = 100mm; (f) Middle viewing angle @ F = 100mm; (g) Right viewing angle @ F = 100mm.
Fig. 11
Fig. 11 Results of the 3D object. (a) Result when “B” is focused; (b) Result when “H” is focused.
Fig. 12
Fig. 12 Relationship between the focal length of the MFO lens and the viewing angle.
Fig. 13
Fig. 13 Results of the holographic zoom display. (a) M ~0.9; (b) M = 1; (c) M ~1.1.

Tables (1)

Tables Icon

Table 1 Focal length changes of the MFO lens in liquid-pulled-in model.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

d= Fλ p ,
θ=arctan( w 2F ),
ΔP=Δ P 1 +Δ P 2 sin α 2 = 2γ R ,
Δ P 1 = 2γ R 1 ,
Δ P 2 = f 2v Δ A 2 = f 2v cosβ π( r 2 2 r 1 2 ) .
f 2v = f 2 cos α 2 =γ[2π( r 1 + r 2 )]cos α 2 ,
cosβ= b a 2 + b 2 ,
F= R n 2 n 1 ,
θ=arctan[ w( n 2 n 1 )[γπ( r 2 r 1 )+sin α 2 cos α 2 cosβ] 2γπ R 1 ( r 2 r 1 ) ].
ΔV= π 6 (- R i ± R i 2 r i 2 )[3 r i 2 + (- R i ± R i 2 r i 2 ) 2 ]+Δ v i ,
Δ v i = πb( r i+1 2 r i 2 ) 2 ,

Metrics