Abstract

We demonstrate that efficient broadband absorption of infrared radiation can be obtained with deeply subwavelength spherical dielectric particles covered by a thin metal layer. Considerations based on Mie theory and the quasi-static approximation reveala wide range of configuration parameters, within which the absorption cross section reaches the geometrical one and exceeds more than by order of magnitude the scattering cross section in the infrared spectrum. We show that the absorption is not only efficient but also broadband with the spectral width being close to the resonant wavelength corresponding to the maximum of the absorption cross section. We obtain a simple analytical expression for the absorption resonance that allows one to quickly identify the configuration parameters ensuring strong infrared absorption in a given spectral range. Relation between the absorption resonance and excitation of the short-range surface palsmon modes in the metal shell of particles is demonstrated and discussed. Our results can be used as practical guidelines for realization of efficient broadband infrared absorbers of subwavelength sizes desirable in diverse applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband zero backward scattering by all-dielectric core-shell nanoparticles

Runmin Li, Xin Zhou, Mingcheng Panmai, Jin Xiang, Haiying Liu, Min Ouyang, Haihua Fan, Qiaofeng Dai, and Zhongchao Wei
Opt. Express 26(22) 28891-28901 (2018)

Surface scattering of core–shell particles with anisotropic shell

Pieter A. A. De Beule
J. Opt. Soc. Am. A 31(1) 162-171 (2014)

Engineering the optical response of nanodipole antennas using equivalent circuit representations of core-shell particle loads

Anastasios H. Panaretos and Douglas H. Werner
J. Opt. Soc. Am. B 30(11) 2840-2848 (2013)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [Crossref] [PubMed]
  2. K Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun.,  2, 517 (2011).
    [Crossref] [PubMed]
  3. X. L Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
    [Crossref] [PubMed]
  4. T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
    [Crossref] [PubMed]
  5. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
    [PubMed]
  6. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8, 495–520 (2014).
    [Crossref]
  7. S. Ogawa and M. Kimata, “Metal-insulator-metal-based plasmonic metamaterial absorbers at visible and infrared Wavelengths: A Review,” Materials 11, 458 (2018).
    [Crossref]
  8. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual bandterahertz metamaterial absorber: Design, fabrication, andcharacterization,” Appl. Phys. Lett. 95, 241111 (2009).
    [Crossref]
  9. F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadbandmicrowave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
    [Crossref]
  10. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett,  10, 2342–2348 (2010).
    [Crossref] [PubMed]
  11. C. H. Lin, R. L. Chern, and H. Y. Lin, “Polarization-independent broadband nearly perfect absorbers in the visible regime,” Opt Express 19, 415–424 (2011).
    [Crossref] [PubMed]
  12. Y. Q. Ye, Y. Jin, and S. L. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B. 3, 498–504 (2010).
    [Crossref]
  13. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multisized disk arrays,” Opt. Express 20, 10376–10381 (2012).
    [Crossref] [PubMed]
  14. B. Y. Zhang, J. Hendrickson, and J. P. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B. 30, 656–662 (2013).
    [Crossref]
  15. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt Lett. 37, 1038–1040 (2012).
    [Crossref] [PubMed]
  16. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express,  19, 9401–9407 (2011).
    [Crossref] [PubMed]
  17. S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99, 253104 (2011).
    [Crossref]
  18. T. Maurer, P.-M. Adam, and G. Lévêque, “Coupling between plasmonic films and nanostructures: from basics to applications,” Nanophoton. 4, 363–382 (2015).
    [Crossref]
  19. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, (Pergamon Press, 1960), (Volume 8 of A Course of Theoretical Physics).
  20. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles(Wiley, New York, 1983).
  21. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824–1832 (1999).
    [Crossref]
  22. N. J. Halas, S. Lal, Wei-Shun Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
    [Crossref] [PubMed]
  23. A. Alú and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
    [Crossref]
  24. A. Alú and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15, 3318–3332 (2007).
    [Crossref] [PubMed]
  25. T. Søndergaard and S. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys Rev. B 75, 073402 (2007).
    [Crossref]
  26. P. Lalanne, S. Coudert, G. Duchateau, S. Dilhaire, and K. Vynck, “Structural slow waves: parallels between photonic crystals and plasmonic waveguides,” ACS Photonics 6, 4–17 (2019).
    [Crossref]
  27. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1120 (1983).
    [Crossref] [PubMed]
  28. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
    [Crossref]
  29. www.photonics.com/Articles/Optical_Materials_Transmission_and_Refractive/a25498
  30. R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G.D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
    [Crossref]

2019 (1)

P. Lalanne, S. Coudert, G. Duchateau, S. Dilhaire, and K. Vynck, “Structural slow waves: parallels between photonic crystals and plasmonic waveguides,” ACS Photonics 6, 4–17 (2019).
[Crossref]

2018 (1)

S. Ogawa and M. Kimata, “Metal-insulator-metal-based plasmonic metamaterial absorbers at visible and infrared Wavelengths: A Review,” Materials 11, 458 (2018).
[Crossref]

2015 (1)

T. Maurer, P.-M. Adam, and G. Lévêque, “Coupling between plasmonic films and nanostructures: from basics to applications,” Nanophoton. 4, 363–382 (2015).
[Crossref]

2014 (1)

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8, 495–520 (2014).
[Crossref]

2013 (1)

B. Y. Zhang, J. Hendrickson, and J. P. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B. 30, 656–662 (2013).
[Crossref]

2012 (6)

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt Lett. 37, 1038–1040 (2012).
[Crossref] [PubMed]

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadbandmicrowave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multisized disk arrays,” Opt. Express 20, 10376–10381 (2012).
[Crossref] [PubMed]

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G.D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

2011 (5)

N. J. Halas, S. Lal, Wei-Shun Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

K Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun.,  2, 517 (2011).
[Crossref] [PubMed]

C. H. Lin, R. L. Chern, and H. Y. Lin, “Polarization-independent broadband nearly perfect absorbers in the visible regime,” Opt Express 19, 415–424 (2011).
[Crossref] [PubMed]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express,  19, 9401–9407 (2011).
[Crossref] [PubMed]

S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99, 253104 (2011).
[Crossref]

2010 (3)

Y. Q. Ye, Y. Jin, and S. L. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B. 3, 498–504 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett,  10, 2342–2348 (2010).
[Crossref] [PubMed]

X. L Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref] [PubMed]

2009 (1)

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual bandterahertz metamaterial absorber: Design, fabrication, andcharacterization,” Appl. Phys. Lett. 95, 241111 (2009).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

2007 (2)

A. Alú and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15, 3318–3332 (2007).
[Crossref] [PubMed]

T. Søndergaard and S. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys Rev. B 75, 073402 (2007).
[Crossref]

2005 (1)

A. Alú and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

1999 (1)

1983 (1)

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[Crossref]

Abbas, M. N.

Adam, P.-M.

T. Maurer, P.-M. Adam, and G. Lévêque, “Coupling between plasmonic films and nanostructures: from basics to applications,” Nanophoton. 4, 363–382 (2015).
[Crossref]

Alexander, R. W.

Alú, A.

Atwater, H. A.

K Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun.,  2, 517 (2011).
[Crossref] [PubMed]

Averitt, R. D.

Aydin, K

K Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun.,  2, 517 (2011).
[Crossref] [PubMed]

Beermann, J.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles(Wiley, New York, 1983).

Boreman, G.D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G.D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Bouchon, P.

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt Lett. 37, 1038–1040 (2012).
[Crossref] [PubMed]

Bozhevolnyi, S.

T. Søndergaard and S. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys Rev. B 75, 073402 (2007).
[Crossref]

Bozhevolnyi, S. I.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Briggs, R. M.

K Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun.,  2, 517 (2011).
[Crossref] [PubMed]

Chang, Wei-Shun

N. J. Halas, S. Lal, Wei-Shun Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Chang, Y. C.

Chen, S. Q.

S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99, 253104 (2011).
[Crossref]

Cheng, C. W.

Cheng, H.

S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99, 253104 (2011).
[Crossref]

Chern, R. L.

C. H. Lin, R. L. Chern, and H. Y. Lin, “Polarization-independent broadband nearly perfect absorbers in the visible regime,” Opt Express 19, 415–424 (2011).
[Crossref] [PubMed]

Chiu, C. W.

Coudert, S.

P. Lalanne, S. Coudert, G. Duchateau, S. Dilhaire, and K. Vynck, “Structural slow waves: parallels between photonic crystals and plasmonic waveguides,” ACS Photonics 6, 4–17 (2019).
[Crossref]

Cui, T. J.

Cui, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8, 495–520 (2014).
[Crossref]

Cui, Y. X.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadbandmicrowave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

Dilhaire, S.

P. Lalanne, S. Coudert, G. Duchateau, S. Dilhaire, and K. Vynck, “Structural slow waves: parallels between photonic crystals and plasmonic waveguides,” ACS Photonics 6, 4–17 (2019).
[Crossref]

Ding, F.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8, 495–520 (2014).
[Crossref]

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadbandmicrowave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

Duan, X. Y.

S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99, 253104 (2011).
[Crossref]

Duchateau, G.

P. Lalanne, S. Coudert, G. Duchateau, S. Dilhaire, and K. Vynck, “Structural slow waves: parallels between photonic crystals and plasmonic waveguides,” ACS Photonics 6, 4–17 (2019).
[Crossref]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[Crossref]

Engheta, N.

Eriksen, R. L.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Ferry, V. E.

K Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun.,  2, 517 (2011).
[Crossref] [PubMed]

Ge, X. C.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadbandmicrowave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett,  10, 2342–2348 (2010).
[Crossref] [PubMed]

Gu, C. Z.

S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99, 253104 (2011).
[Crossref]

Guo, J. P.

B. Y. Zhang, J. Hendrickson, and J. P. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B. 30, 656–662 (2013).
[Crossref]

Haïdar, R.

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt Lett. 37, 1038–1040 (2012).
[Crossref] [PubMed]

Halas, N. J.

N. J. Halas, S. Lal, Wei-Shun Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824–1832 (1999).
[Crossref]

Han, Z.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

He, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8, 495–520 (2014).
[Crossref]

He, S. L.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadbandmicrowave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

Y. Q. Ye, Y. Jin, and S. L. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B. 3, 498–504 (2010).
[Crossref]

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8, 495–520 (2014).
[Crossref]

Hendrickson, J.

B. Y. Zhang, J. Hendrickson, and J. P. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B. 30, 656–662 (2013).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett,  10, 2342–2348 (2010).
[Crossref] [PubMed]

Holmgaard, T.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles(Wiley, New York, 1983).

Jiang, W. X.

Jin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8, 495–520 (2014).
[Crossref]

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadbandmicrowave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

Y. Q. Ye, Y. Jin, and S. L. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B. 3, 498–504 (2010).
[Crossref]

Johnson, T. W.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G.D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Kimata, M.

S. Ogawa and M. Kimata, “Metal-insulator-metal-based plasmonic metamaterial absorbers at visible and infrared Wavelengths: A Review,” Materials 11, 458 (2018).
[Crossref]

Koechlin, C.

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt Lett. 37, 1038–1040 (2012).
[Crossref] [PubMed]

Lai, K. T.

Lal, S.

N. J. Halas, S. Lal, Wei-Shun Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Lalanne, P.

P. Lalanne, S. Coudert, G. Duchateau, S. Dilhaire, and K. Vynck, “Structural slow waves: parallels between photonic crystals and plasmonic waveguides,” ACS Photonics 6, 4–17 (2019).
[Crossref]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, (Pergamon Press, 1960), (Volume 8 of A Course of Theoretical Physics).

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Lévêque, G.

T. Maurer, P.-M. Adam, and G. Lévêque, “Coupling between plasmonic films and nanostructures: from basics to applications,” Nanophoton. 4, 363–382 (2015).
[Crossref]

Li, H.

Li, J. J.

S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99, 253104 (2011).
[Crossref]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, (Pergamon Press, 1960), (Volume 8 of A Course of Theoretical Physics).

Lin, C. H.

C. H. Lin, R. L. Chern, and H. Y. Lin, “Polarization-independent broadband nearly perfect absorbers in the visible regime,” Opt Express 19, 415–424 (2011).
[Crossref] [PubMed]

Lin, H. Y.

C. H. Lin, R. L. Chern, and H. Y. Lin, “Polarization-independent broadband nearly perfect absorbers in the visible regime,” Opt Express 19, 415–424 (2011).
[Crossref] [PubMed]

Lin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8, 495–520 (2014).
[Crossref]

Link, S.

N. J. Halas, S. Lal, Wei-Shun Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett,  10, 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

Liu, X. L

X. L Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref] [PubMed]

Liu, Y. L.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual bandterahertz metamaterial absorber: Design, fabrication, andcharacterization,” Appl. Phys. Lett. 95, 241111 (2009).
[Crossref]

Long, L. L.

Ma, H. F.

Maurer, T.

T. Maurer, P.-M. Adam, and G. Lévêque, “Coupling between plasmonic films and nanostructures: from basics to applications,” Nanophoton. 4, 363–382 (2015).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett,  10, 2342–2348 (2010).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Nordlander, P.

N. J. Halas, S. Lal, Wei-Shun Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Novikov, S. M.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Ogawa, S.

S. Ogawa and M. Kimata, “Metal-insulator-metal-based plasmonic metamaterial absorbers at visible and infrared Wavelengths: A Review,” Materials 11, 458 (2018).
[Crossref]

Oh, S.-H.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G.D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Olmon, R. L.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G.D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Ordal, M. A.

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

X. L Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Pardo, F.

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt Lett. 37, 1038–1040 (2012).
[Crossref] [PubMed]

Pedersen, K.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Pelouard, J. L.

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt Lett. 37, 1038–1040 (2012).
[Crossref] [PubMed]

Raschke, M. B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G.D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Shelton, D.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G.D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Shen, X.

Shih, M. H.

Slovick, B.

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G.D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

Søndergaard, T.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

T. Søndergaard and S. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys Rev. B 75, 073402 (2007).
[Crossref]

Starr, A. F.

X. L Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref] [PubMed]

Starr, T.

X. L Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref] [PubMed]

Tian, J. G.

S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99, 253104 (2011).
[Crossref]

Vynck, K.

P. Lalanne, S. Coudert, G. Duchateau, S. Dilhaire, and K. Vynck, “Structural slow waves: parallels between photonic crystals and plasmonic waveguides,” ACS Photonics 6, 4–17 (2019).
[Crossref]

Ward, C. A.

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett,  10, 2342–2348 (2010).
[Crossref] [PubMed]

Wen, Q. Y.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual bandterahertz metamaterial absorber: Design, fabrication, andcharacterization,” Appl. Phys. Lett. 95, 241111 (2009).
[Crossref]

Westcott, S. L.

Xie, Y. S.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual bandterahertz metamaterial absorber: Design, fabrication, andcharacterization,” Appl. Phys. Lett. 95, 241111 (2009).
[Crossref]

Yang, H. F.

S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99, 253104 (2011).
[Crossref]

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8, 495–520 (2014).
[Crossref]

Yang, Q. H.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual bandterahertz metamaterial absorber: Design, fabrication, andcharacterization,” Appl. Phys. Lett. 95, 241111 (2009).
[Crossref]

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8, 495–520 (2014).
[Crossref]

Ye, Y. Q.

Y. Q. Ye, Y. Jin, and S. L. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B. 3, 498–504 (2010).
[Crossref]

Zhang, B. Y.

B. Y. Zhang, J. Hendrickson, and J. P. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B. 30, 656–662 (2013).
[Crossref]

Zhang, H. W.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual bandterahertz metamaterial absorber: Design, fabrication, andcharacterization,” Appl. Phys. Lett. 95, 241111 (2009).
[Crossref]

Zhao, J.

Zhong, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8, 495–520 (2014).
[Crossref]

ACS Photonics (1)

P. Lalanne, S. Coudert, G. Duchateau, S. Dilhaire, and K. Vynck, “Structural slow waves: parallels between photonic crystals and plasmonic waveguides,” ACS Photonics 6, 4–17 (2019).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, “Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99, 253104 (2011).
[Crossref]

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual bandterahertz metamaterial absorber: Design, fabrication, andcharacterization,” Appl. Phys. Lett. 95, 241111 (2009).
[Crossref]

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadbandmicrowave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012).
[Crossref]

Chem. Rev. (1)

N. J. Halas, S. Lal, Wei-Shun Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B. (2)

Y. Q. Ye, Y. Jin, and S. L. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B. 3, 498–504 (2010).
[Crossref]

B. Y. Zhang, J. Hendrickson, and J. P. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B. 30, 656–662 (2013).
[Crossref]

Laser Photonics Rev. (1)

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8, 495–520 (2014).
[Crossref]

Materials (1)

S. Ogawa and M. Kimata, “Metal-insulator-metal-based plasmonic metamaterial absorbers at visible and infrared Wavelengths: A Review,” Materials 11, 458 (2018).
[Crossref]

Nano Lett (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett,  10, 2342–2348 (2010).
[Crossref] [PubMed]

Nanophoton. (1)

T. Maurer, P.-M. Adam, and G. Lévêque, “Coupling between plasmonic films and nanostructures: from basics to applications,” Nanophoton. 4, 363–382 (2015).
[Crossref]

Nat Commun (1)

K Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun.,  2, 517 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Opt Express (1)

C. H. Lin, R. L. Chern, and H. Y. Lin, “Polarization-independent broadband nearly perfect absorbers in the visible regime,” Opt Express 19, 415–424 (2011).
[Crossref] [PubMed]

Opt Lett. (1)

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt Lett. 37, 1038–1040 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Phys Rev. B (1)

T. Søndergaard and S. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scattering and field enhancements,” Phys Rev. B 75, 073402 (2007).
[Crossref]

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[Crossref]

Phys. Rev. B (1)

R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G.D. Boreman, and M. B. Raschke, “Optical dielectric function of gold,” Phys. Rev. B 86, 235147 (2012).
[Crossref]

Phys. Rev. E (1)

A. Alú and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005).
[Crossref]

Phys. Rev. Lett. (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[Crossref] [PubMed]

X. L Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104, 207403 (2010).
[Crossref] [PubMed]

Other (3)

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, (Pergamon Press, 1960), (Volume 8 of A Course of Theoretical Physics).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles(Wiley, New York, 1983).

www.photonics.com/Articles/Optical_Materials_Transmission_and_Refractive/a25498

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Nanoshell particle parameters: ε1, ε2, and ε3 are the dielectric permittivities of the core, shell, and environment medium, respectively, R1 is the core radius, and R2 is the total particle radius. k and E are the wavevector and electric field of an incident plane wave.
Fig. 2
Fig. 2 Dielectric permittivity of Ti. “exp” means the experimental values from [27]; “app” means the polynomial approximation.
Fig. 3
Fig. 3 (a) Spectra of the absorption efficiency calculated by Mie theory for particles with R1 = 500 nm and different Ti-shell thickness ΔS. (b) Corresponding spectra of the scattering efficiency. The blue line in (a) corresponds to the absorption resonance calculated in the quasi-static approximation. Note that the scale of (b) is decreased by 5 times compared to that of (a).
Fig. 4
Fig. 4 (a) and (b) The scattering and absorption efficiencies for the Ti-shell-core spherical particles calculated by Mie theory (MT) and the quasi-static approximations (QS). ΔS is the thickness of the Ti-shell. The parameters of the systemare presented in the main text. (c) Ratios between the absorption and scattering cross sections. The particle are located in air with ε3 = 1.
Fig. 5
Fig. 5 (a) and (b) The scattering and absorption efficiencies for the Ti-shell-core spherical particles calculated by Mie theory (MT) and the quasi-static approximations (QS). ΔS is the thickness of the Ti-shell. (c) Ratios between the absorption and scattering cross sections. The parameters of the system are presented in the main text. The particles are located in medium with ε3 = 1.69. The wavelengths are shown in vacuum.
Fig. 6
Fig. 6 (a) and (b) Spectra of the absorption and scattering efficiency calculated by Mie theory for particles with R1 = 350 nm and different Au-shell thickness ΔS. The particles with ε1 = 2.25 are located in medium with ε3 = 1.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

p = 4 π ε 0 ε 3 R 2 3 χ E ,
χ = ( 1 + 2 η y ) ε 2 ( 1 η y ) ε 3 ( 1 + 2 η y ) ε 2 + 2 ( 1 η y ) ε 3 .
y = ε 1 ε 2 ε 1 + 2 ε 2 , η = R 1 3 R 2 3 .
σ e x t = k 0 ε 0 ε 3 Im α ,
σ a b s = 4 π k 0 ε 3 R 2 3 Im χ .
σ s c a = k 0 4 3 8 π ε 3 2 R 2 6 | χ | 2 .
| ε 2 | > > ε 1 ,   ε 3
Im χ 18 ( 1 η ) ε 3 ε 2   '' [ 3 ( ε 1 + 2 ε 3 ) + 2 ( 1 η ) ε 2   ' ] 2 + 4 ( 1 η ) 2 ε 2   '' 2
| χ | 2 [ 3 ( ε 1 ε 3 ) + 2 ( 1 η ) ε 2   ' ] 2 + 4 ( 1 η ) 2 ε 2   '' 2 [ 3 ( ε 1 + 2 ε 3 ) + 2 ( 1 η ) ε 2   ' ] 2 + 4 ( 1 η ) 2 ε 2   '' 2
2 ( 1 η ) | ε 2   ' | = 3 ( ε 1 + 2 ε 3 ) ( 1 η ) = 3 ( ε 1 + 2 ε 3 ) 2 | ε 2   ' |   ,
Δ S = R 2 ε 1 + 2 ε 3 2 | ε 2   ' |   ,
σ a b s R = 4 π k 0 ε 3 R 2 3 3 ε 3 | ε 2   ' | ( ε 1 + 2 ε 3 ) ε 2   '' ,
σ s c a R = 8 3 π k 0 4 ε 3 2 R 2 6 ( 1 + 9 ε 3 2 ε 2   ' 2 ( ε 1 + 2 ε 3 ) 2 ε 2   '' 2 ) ,
β ε 1 + ε 3 Δ S | ε 2   ' | .
Δ S R ε 1 + ε 3 2 | ε 2   ' | .

Metrics