Abstract

Highly efficient exciton-exciton annihilation process unique to one-dimensional systems is utilized for super-resolution imaging of air-suspended carbon nanotubes. Through the comparison of fluorescence signals in linear and sublinear regimes at different excitation powers, we extract the efficiency of the annihilation processes using conventional confocal microscopy. Spatial images of the annihilation rate of the excitons have resolution beyond the diffraction limit. We investigate excitation power dependence of the annihilation processes by experiment and Monte Carlo simulation, and the resolution improvement of the annihilation images can be quantitatively explained by the superlinearity of the annihilation process. We have also developed another method in which the cubic dependence of the annihilation rate on exciton density is utilized to achieve further sharpening of single nanotube images.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Intense terahertz pulse induced exciton generation in carbon nanotubes

Shinichi Watanabe, Nobutsugu Minami, and Ryo Shimano
Opt. Express 19(2) 1528-1538 (2011)

Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples

Peter W. Winter, Andrew G. York, Damian Dalle Nogare, Maria Ingaramo, Ryan Christensen, Ajay Chitnis, George H. Patterson, and Hari Shroff
Optica 1(3) 181-191 (2014)

Super-resolution fluorescence blinking imaging using modified Fourier ptychography

Jingjing Wu, Bin Yu, Saiwen Zhang, Siwei Li, Xuehua Wang, Danni Chen, and Junle Qu
Opt. Express 26(3) 2740-2748 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Ogawa and T. Takagahara, “Optical absorption and sommerfeld factors of one-dimensional semiconductors: An exact treatment of excitonic effects,” Phys. Rev. B 44, 8138–8156 (1991).
    [Crossref]
  2. T. Ando, “Excitons in carbon nanotubes,” J. Phys. Soc. Jpn. 66, 1066 (1997).
    [Crossref]
  3. F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “The optical resonances in carbon nanotubes arise from excitons,” Science 308, 838–841 (2005).
    [Crossref] [PubMed]
  4. F. Wang, G. Dukovic, E. Knoesel, L. E. Brus, and T. F. Heinz, “Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes,” Phys. Rev. B 70, 241403 (2004).
    [Crossref]
  5. Y.-Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming, “Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: Evidence for exciton-exciton annihilation,” Phys. Rev. Lett. 94, 157402 (2005).
    [Crossref] [PubMed]
  6. Y.-F. Xiao, T. Q. Nhan, M. W. B. Wilson, and J. M. Fraser, “Saturation of the photoluminescence at few-exciton levels in a single-walled carbon nanotube under ultrafast excitation,” Phys. Rev. Lett. 104, 017401 (2010).
    [Crossref] [PubMed]
  7. Y. Murakami and J. Kono, “Existence of an upper limit on the density of excitons in carbon nanotubes by diffusion-limited exciton-exciton annihilation: Experiment and theory,” Phys. Rev. B 80, 035432 (2009).
    [Crossref]
  8. S. Moritsubo, T. Murai, T. Shimada, Y. Murakami, S. Chiashi, S. Maruyama, and Y. K. Kato, “Exciton diffusion in air-suspended single-walled carbon nanotubes,” Phys. Rev. Lett. 104, 247402 (2010).
    [Crossref] [PubMed]
  9. K. Yoshikawa, K. Matsuda, and Y. Kanemitsu, “Exciton transport in suspended single carbon nanotubes studied by photoluminescence imaging spectroscopy,” J. Phys. Chem. C 114, 4353–4356 (2010).
    [Crossref]
  10. J. Xie, T. Inaba, R. Sugiyama, and Y. Homma, “Intrinsic diffusion length of excitons in long single-walled carbon nanotubes from photoluminescence spectra,” Phys. Rev. B 85, 085434 (2012).
    [Crossref]
  11. A. Ishii, M. Yoshida, and Y. K. Kato, “Exciton diffusion, end quenching, and exciton-exciton annihilation in individual air-suspended carbon nanotubes,” Phys. Rev. B 91, 125427 (2015).
    [Crossref]
  12. S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photon. 10, 727–732 (2016).
    [Crossref]
  13. X. Ma, O. Roslyak, J. G. Duque, X. Pang, S. K. Doorn, A. Piryatinski, D. H. Dunlap, and H. Htoon, “Influences of exciton diffusion and exciton-exciton annihilation on photon emission statistics of carbon nanotubes,” Phys. Rev. Lett. 115, 017401 (2015).
    [Crossref] [PubMed]
  14. A. Ishii, T. Uda, and Y. K. Kato, “Room-temperature single-photon emission from micrometer-long air-suspended carbon nanotubes,” Phys. Rev. Appl. 8, 054039 (2017).
    [Crossref]
  15. G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18, 1841–1846 (2012).
    [Crossref] [PubMed]
  16. Y. Yomogida, T. Tanaka, M. Zhang, M. Yudasaka, X. Wei, and H. Kataura, “Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging,” Nat. Commun. 7, 12056 (2016).
    [Crossref] [PubMed]
  17. S. Aota, N. Akizuki, S. Mouri, K. Matsuda, and Y. Miyauchi, “Upconversion photoluminescence imaging and spectroscopy of individual single-walled carbon nanotubes,” Appl. Phys. Express 9, 045103 (2016).
    [Crossref]
  18. N. Danné, A. G. Godin, Z. Gao, J. A. Varela, L. Groc, B. Lounis, and L. Cognet, “Comparative analysis of photoluminescence and upconversion emission from individual carbon nanotubes for bioimaging applications,” ACS Photonics 5, 359–364 (2017).
    [Crossref]
  19. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
    [Crossref] [PubMed]
  20. L. Cognet, D. A. Tsyboulski, and R. B. Weisman, “Subdiffraction far-field imaging of luminescent single-walled carbon nanotubes,” Nano Lett. 8, 749–753 (2008).
    [Crossref] [PubMed]
  21. S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
    [Crossref]
  22. N. Danné, M. Kim, A. G. Godin, H. Kwon, Z. Gao, X. Wu, N. F. Hartmann, S. K. Doorn, B. Lounis, Y. Wang, and L. Cognet, “Ultrashort carbon nanotubes that fluoresce brightly in the near-infrared,” ACS Nano 12, 6059–6065 (2018).
    [Crossref] [PubMed]
  23. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [Crossref] [PubMed]
  24. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [Crossref] [PubMed]
  25. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy—a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19, 1599–1609 (2002).
    [Crossref]
  26. K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
    [Crossref]
  27. A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts’,” Nat. Methods 10, 737–740 (2013).
    [Crossref] [PubMed]
  28. Y. Zhang, P. D. Nallathamby, G. D. Vigil, A. A. Khan, D. E. Mason, J. D. Boerckel, R. K. Roeder, and S. S. Howard, “Super-resolution fluorescence microscopy by stepwise optical saturation,” Biomed. Opt. Express 9, 1613–1629 (2018).
    [Crossref] [PubMed]
  29. S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, and M. Kohno, “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol,” Chem. Phys. Lett. 360, 229–234 (2002).
    [Crossref]
  30. M. Jiang, Y. Kumamoto, A. Ishii, M. Yoshida, T. Shimada, and Y. K. Kato, “Gate-controlled generation of optical pulse trains using individual carbon nanotubes,” Nat. Commun. 6, 6335 (2015).
    [Crossref] [PubMed]
  31. T. Uda, M. Yoshida, A. Ishii, and Y. K. Kato, “Electric-field induced activation of dark excitonic states in carbon nanotubes,” Nano Lett. 16, 2278–2282 (2016).
    [Crossref] [PubMed]
  32. N. Higashide, M. Yoshida, T. Uda, A. Ishii, and Y. K. Kato, “Cold exciton electroluminescence from air-suspended carbon nanotube split-gate devices,” Appl. Phys. Lett. 110, 191101 (2017).
    [Crossref]
  33. C. Georgi, N. Hartmann, T. Gokus, A. A. Green, M. C. Hersam, and A. Hartschuh, “Photoinduced luminescence blinking and bleaching in individual single-walled carbon nanotubes,” Chem. Phys. Chem. 9, 1460–1464 (2008).
    [Crossref] [PubMed]
  34. S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, and K. Matsuda, “Nonlinear photoluminescence in atomically thin layered WSe 2 arising from diffusion-assisted exciton-exciton annihilation,” Phys. Rev. B 90, 155449 (2014).
    [Crossref]

2018 (2)

N. Danné, M. Kim, A. G. Godin, H. Kwon, Z. Gao, X. Wu, N. F. Hartmann, S. K. Doorn, B. Lounis, Y. Wang, and L. Cognet, “Ultrashort carbon nanotubes that fluoresce brightly in the near-infrared,” ACS Nano 12, 6059–6065 (2018).
[Crossref] [PubMed]

Y. Zhang, P. D. Nallathamby, G. D. Vigil, A. A. Khan, D. E. Mason, J. D. Boerckel, R. K. Roeder, and S. S. Howard, “Super-resolution fluorescence microscopy by stepwise optical saturation,” Biomed. Opt. Express 9, 1613–1629 (2018).
[Crossref] [PubMed]

2017 (3)

N. Danné, A. G. Godin, Z. Gao, J. A. Varela, L. Groc, B. Lounis, and L. Cognet, “Comparative analysis of photoluminescence and upconversion emission from individual carbon nanotubes for bioimaging applications,” ACS Photonics 5, 359–364 (2017).
[Crossref]

N. Higashide, M. Yoshida, T. Uda, A. Ishii, and Y. K. Kato, “Cold exciton electroluminescence from air-suspended carbon nanotube split-gate devices,” Appl. Phys. Lett. 110, 191101 (2017).
[Crossref]

A. Ishii, T. Uda, and Y. K. Kato, “Room-temperature single-photon emission from micrometer-long air-suspended carbon nanotubes,” Phys. Rev. Appl. 8, 054039 (2017).
[Crossref]

2016 (4)

Y. Yomogida, T. Tanaka, M. Zhang, M. Yudasaka, X. Wei, and H. Kataura, “Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging,” Nat. Commun. 7, 12056 (2016).
[Crossref] [PubMed]

S. Aota, N. Akizuki, S. Mouri, K. Matsuda, and Y. Miyauchi, “Upconversion photoluminescence imaging and spectroscopy of individual single-walled carbon nanotubes,” Appl. Phys. Express 9, 045103 (2016).
[Crossref]

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photon. 10, 727–732 (2016).
[Crossref]

T. Uda, M. Yoshida, A. Ishii, and Y. K. Kato, “Electric-field induced activation of dark excitonic states in carbon nanotubes,” Nano Lett. 16, 2278–2282 (2016).
[Crossref] [PubMed]

2015 (4)

M. Jiang, Y. Kumamoto, A. Ishii, M. Yoshida, T. Shimada, and Y. K. Kato, “Gate-controlled generation of optical pulse trains using individual carbon nanotubes,” Nat. Commun. 6, 6335 (2015).
[Crossref] [PubMed]

A. Ishii, M. Yoshida, and Y. K. Kato, “Exciton diffusion, end quenching, and exciton-exciton annihilation in individual air-suspended carbon nanotubes,” Phys. Rev. B 91, 125427 (2015).
[Crossref]

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

X. Ma, O. Roslyak, J. G. Duque, X. Pang, S. K. Doorn, A. Piryatinski, D. H. Dunlap, and H. Htoon, “Influences of exciton diffusion and exciton-exciton annihilation on photon emission statistics of carbon nanotubes,” Phys. Rev. Lett. 115, 017401 (2015).
[Crossref] [PubMed]

2014 (1)

S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, and K. Matsuda, “Nonlinear photoluminescence in atomically thin layered WSe 2 arising from diffusion-assisted exciton-exciton annihilation,” Phys. Rev. B 90, 155449 (2014).
[Crossref]

2013 (1)

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts’,” Nat. Methods 10, 737–740 (2013).
[Crossref] [PubMed]

2012 (2)

J. Xie, T. Inaba, R. Sugiyama, and Y. Homma, “Intrinsic diffusion length of excitons in long single-walled carbon nanotubes from photoluminescence spectra,” Phys. Rev. B 85, 085434 (2012).
[Crossref]

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18, 1841–1846 (2012).
[Crossref] [PubMed]

2010 (3)

Y.-F. Xiao, T. Q. Nhan, M. W. B. Wilson, and J. M. Fraser, “Saturation of the photoluminescence at few-exciton levels in a single-walled carbon nanotube under ultrafast excitation,” Phys. Rev. Lett. 104, 017401 (2010).
[Crossref] [PubMed]

S. Moritsubo, T. Murai, T. Shimada, Y. Murakami, S. Chiashi, S. Maruyama, and Y. K. Kato, “Exciton diffusion in air-suspended single-walled carbon nanotubes,” Phys. Rev. Lett. 104, 247402 (2010).
[Crossref] [PubMed]

K. Yoshikawa, K. Matsuda, and Y. Kanemitsu, “Exciton transport in suspended single carbon nanotubes studied by photoluminescence imaging spectroscopy,” J. Phys. Chem. C 114, 4353–4356 (2010).
[Crossref]

2009 (1)

Y. Murakami and J. Kono, “Existence of an upper limit on the density of excitons in carbon nanotubes by diffusion-limited exciton-exciton annihilation: Experiment and theory,” Phys. Rev. B 80, 035432 (2009).
[Crossref]

2008 (2)

C. Georgi, N. Hartmann, T. Gokus, A. A. Green, M. C. Hersam, and A. Hartschuh, “Photoinduced luminescence blinking and bleaching in individual single-walled carbon nanotubes,” Chem. Phys. Chem. 9, 1460–1464 (2008).
[Crossref] [PubMed]

L. Cognet, D. A. Tsyboulski, and R. B. Weisman, “Subdiffraction far-field imaging of luminescent single-walled carbon nanotubes,” Nano Lett. 8, 749–753 (2008).
[Crossref] [PubMed]

2007 (1)

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[Crossref]

2006 (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref] [PubMed]

2005 (2)

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “The optical resonances in carbon nanotubes arise from excitons,” Science 308, 838–841 (2005).
[Crossref] [PubMed]

Y.-Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming, “Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: Evidence for exciton-exciton annihilation,” Phys. Rev. Lett. 94, 157402 (2005).
[Crossref] [PubMed]

2004 (1)

F. Wang, G. Dukovic, E. Knoesel, L. E. Brus, and T. F. Heinz, “Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes,” Phys. Rev. B 70, 241403 (2004).
[Crossref]

2002 (2)

S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, and M. Kohno, “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol,” Chem. Phys. Lett. 360, 229–234 (2002).
[Crossref]

R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy—a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19, 1599–1609 (2002).
[Crossref]

1997 (1)

T. Ando, “Excitons in carbon nanotubes,” J. Phys. Soc. Jpn. 66, 1066 (1997).
[Crossref]

1994 (1)

1991 (1)

T. Ogawa and T. Takagahara, “Optical absorption and sommerfeld factors of one-dimensional semiconductors: An exact treatment of excitonic effects,” Phys. Rev. B 44, 8138–8156 (1991).
[Crossref]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Akizuki, N.

S. Aota, N. Akizuki, S. Mouri, K. Matsuda, and Y. Miyauchi, “Upconversion photoluminescence imaging and spectroscopy of individual single-walled carbon nanotubes,” Appl. Phys. Express 9, 045103 (2016).
[Crossref]

Ando, T.

T. Ando, “Excitons in carbon nanotubes,” J. Phys. Soc. Jpn. 66, 1066 (1997).
[Crossref]

Aota, S.

S. Aota, N. Akizuki, S. Mouri, K. Matsuda, and Y. Miyauchi, “Upconversion photoluminescence imaging and spectroscopy of individual single-walled carbon nanotubes,” Appl. Phys. Express 9, 045103 (2016).
[Crossref]

Bachilo, S. M.

Y.-Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming, “Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: Evidence for exciton-exciton annihilation,” Phys. Rev. Lett. 94, 157402 (2005).
[Crossref] [PubMed]

Bates, M.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref] [PubMed]

Bewersdorf, J.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

Boerckel, J. D.

Booth, M. J.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

Brus, L. E.

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “The optical resonances in carbon nanotubes arise from excitons,” Science 308, 838–841 (2005).
[Crossref] [PubMed]

F. Wang, G. Dukovic, E. Knoesel, L. E. Brus, and T. F. Heinz, “Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes,” Phys. Rev. B 70, 241403 (2004).
[Crossref]

Castello, M.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

Chiashi, S.

S. Moritsubo, T. Murai, T. Shimada, Y. Murakami, S. Chiashi, S. Maruyama, and Y. K. Kato, “Exciton diffusion in air-suspended single-walled carbon nanotubes,” Phys. Rev. Lett. 104, 247402 (2010).
[Crossref] [PubMed]

S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, and M. Kohno, “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol,” Chem. Phys. Lett. 360, 229–234 (2002).
[Crossref]

Chmyrov, A.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts’,” Nat. Methods 10, 737–740 (2013).
[Crossref] [PubMed]

Cognet, L.

N. Danné, M. Kim, A. G. Godin, H. Kwon, Z. Gao, X. Wu, N. F. Hartmann, S. K. Doorn, B. Lounis, Y. Wang, and L. Cognet, “Ultrashort carbon nanotubes that fluoresce brightly in the near-infrared,” ACS Nano 12, 6059–6065 (2018).
[Crossref] [PubMed]

N. Danné, A. G. Godin, Z. Gao, J. A. Varela, L. Groc, B. Lounis, and L. Cognet, “Comparative analysis of photoluminescence and upconversion emission from individual carbon nanotubes for bioimaging applications,” ACS Photonics 5, 359–364 (2017).
[Crossref]

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

L. Cognet, D. A. Tsyboulski, and R. B. Weisman, “Subdiffraction far-field imaging of luminescent single-walled carbon nanotubes,” Nano Lett. 8, 749–753 (2008).
[Crossref] [PubMed]

Cooke, J. P.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18, 1841–1846 (2012).
[Crossref] [PubMed]

Cordes, T.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

Cremer, C.

d’Este, E.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts’,” Nat. Methods 10, 737–740 (2013).
[Crossref] [PubMed]

Dai, H.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18, 1841–1846 (2012).
[Crossref] [PubMed]

Danné, N.

N. Danné, M. Kim, A. G. Godin, H. Kwon, Z. Gao, X. Wu, N. F. Hartmann, S. K. Doorn, B. Lounis, Y. Wang, and L. Cognet, “Ultrashort carbon nanotubes that fluoresce brightly in the near-infrared,” ACS Nano 12, 6059–6065 (2018).
[Crossref] [PubMed]

N. Danné, A. G. Godin, Z. Gao, J. A. Varela, L. Groc, B. Lounis, and L. Cognet, “Comparative analysis of photoluminescence and upconversion emission from individual carbon nanotubes for bioimaging applications,” ACS Photonics 5, 359–364 (2017).
[Crossref]

Davis, S. J.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Dexheimer, S. L.

Y.-Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming, “Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: Evidence for exciton-exciton annihilation,” Phys. Rev. Lett. 94, 157402 (2005).
[Crossref] [PubMed]

Diaspro, A.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

Doorn, S. K.

N. Danné, M. Kim, A. G. Godin, H. Kwon, Z. Gao, X. Wu, N. F. Hartmann, S. K. Doorn, B. Lounis, Y. Wang, and L. Cognet, “Ultrashort carbon nanotubes that fluoresce brightly in the near-infrared,” ACS Nano 12, 6059–6065 (2018).
[Crossref] [PubMed]

X. Ma, O. Roslyak, J. G. Duque, X. Pang, S. K. Doorn, A. Piryatinski, D. H. Dunlap, and H. Htoon, “Influences of exciton diffusion and exciton-exciton annihilation on photon emission statistics of carbon nanotubes,” Phys. Rev. Lett. 115, 017401 (2015).
[Crossref] [PubMed]

Dukovic, G.

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “The optical resonances in carbon nanotubes arise from excitons,” Science 308, 838–841 (2005).
[Crossref] [PubMed]

F. Wang, G. Dukovic, E. Knoesel, L. E. Brus, and T. F. Heinz, “Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes,” Phys. Rev. B 70, 241403 (2004).
[Crossref]

Dunlap, D. H.

X. Ma, O. Roslyak, J. G. Duque, X. Pang, S. K. Doorn, A. Piryatinski, D. H. Dunlap, and H. Htoon, “Influences of exciton diffusion and exciton-exciton annihilation on photon emission statistics of carbon nanotubes,” Phys. Rev. Lett. 115, 017401 (2015).
[Crossref] [PubMed]

Duque, J. G.

X. Ma, O. Roslyak, J. G. Duque, X. Pang, S. K. Doorn, A. Piryatinski, D. H. Dunlap, and H. Htoon, “Influences of exciton diffusion and exciton-exciton annihilation on photon emission statistics of carbon nanotubes,” Phys. Rev. Lett. 115, 017401 (2015).
[Crossref] [PubMed]

Eda, G.

S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, and K. Matsuda, “Nonlinear photoluminescence in atomically thin layered WSe 2 arising from diffusion-assisted exciton-exciton annihilation,” Phys. Rev. B 90, 155449 (2014).
[Crossref]

Eggeling, C.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts’,” Nat. Methods 10, 737–740 (2013).
[Crossref] [PubMed]

Ewers, H.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

Ferrari, S.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photon. 10, 727–732 (2016).
[Crossref]

Fleming, G. R.

Y.-Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming, “Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: Evidence for exciton-exciton annihilation,” Phys. Rev. Lett. 94, 157402 (2005).
[Crossref] [PubMed]

Fraser, J. M.

Y.-F. Xiao, T. Q. Nhan, M. W. B. Wilson, and J. M. Fraser, “Saturation of the photoluminescence at few-exciton levels in a single-walled carbon nanotube under ultrafast excitation,” Phys. Rev. Lett. 104, 017401 (2010).
[Crossref] [PubMed]

Fujita, K.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[Crossref]

Gao, Z.

N. Danné, M. Kim, A. G. Godin, H. Kwon, Z. Gao, X. Wu, N. F. Hartmann, S. K. Doorn, B. Lounis, Y. Wang, and L. Cognet, “Ultrashort carbon nanotubes that fluoresce brightly in the near-infrared,” ACS Nano 12, 6059–6065 (2018).
[Crossref] [PubMed]

N. Danné, A. G. Godin, Z. Gao, J. A. Varela, L. Groc, B. Lounis, and L. Cognet, “Comparative analysis of photoluminescence and upconversion emission from individual carbon nanotubes for bioimaging applications,” ACS Photonics 5, 359–364 (2017).
[Crossref]

Georgi, C.

C. Georgi, N. Hartmann, T. Gokus, A. A. Green, M. C. Hersam, and A. Hartschuh, “Photoinduced luminescence blinking and bleaching in individual single-walled carbon nanotubes,” Chem. Phys. Chem. 9, 1460–1464 (2008).
[Crossref] [PubMed]

Godin, A. G.

N. Danné, M. Kim, A. G. Godin, H. Kwon, Z. Gao, X. Wu, N. F. Hartmann, S. K. Doorn, B. Lounis, Y. Wang, and L. Cognet, “Ultrashort carbon nanotubes that fluoresce brightly in the near-infrared,” ACS Nano 12, 6059–6065 (2018).
[Crossref] [PubMed]

N. Danné, A. G. Godin, Z. Gao, J. A. Varela, L. Groc, B. Lounis, and L. Cognet, “Comparative analysis of photoluminescence and upconversion emission from individual carbon nanotubes for bioimaging applications,” ACS Photonics 5, 359–364 (2017).
[Crossref]

Gokus, T.

C. Georgi, N. Hartmann, T. Gokus, A. A. Green, M. C. Hersam, and A. Hartschuh, “Photoinduced luminescence blinking and bleaching in individual single-walled carbon nanotubes,” Chem. Phys. Chem. 9, 1460–1464 (2008).
[Crossref] [PubMed]

Gol’tsman, G.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photon. 10, 727–732 (2016).
[Crossref]

Green, A. A.

C. Georgi, N. Hartmann, T. Gokus, A. A. Green, M. C. Hersam, and A. Hartschuh, “Photoinduced luminescence blinking and bleaching in individual single-walled carbon nanotubes,” Chem. Phys. Chem. 9, 1460–1464 (2008).
[Crossref] [PubMed]

Groc, L.

N. Danné, A. G. Godin, Z. Gao, J. A. Varela, L. Groc, B. Lounis, and L. Cognet, “Comparative analysis of photoluminescence and upconversion emission from individual carbon nanotubes for bioimaging applications,” ACS Photonics 5, 359–364 (2017).
[Crossref]

Grotjohann, T.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts’,” Nat. Methods 10, 737–740 (2013).
[Crossref] [PubMed]

Hartmann, N.

C. Georgi, N. Hartmann, T. Gokus, A. A. Green, M. C. Hersam, and A. Hartschuh, “Photoinduced luminescence blinking and bleaching in individual single-walled carbon nanotubes,” Chem. Phys. Chem. 9, 1460–1464 (2008).
[Crossref] [PubMed]

Hartmann, N. F.

N. Danné, M. Kim, A. G. Godin, H. Kwon, Z. Gao, X. Wu, N. F. Hartmann, S. K. Doorn, B. Lounis, Y. Wang, and L. Cognet, “Ultrashort carbon nanotubes that fluoresce brightly in the near-infrared,” ACS Nano 12, 6059–6065 (2018).
[Crossref] [PubMed]

Hartschuh, A.

C. Georgi, N. Hartmann, T. Gokus, A. A. Green, M. C. Hersam, and A. Hartschuh, “Photoinduced luminescence blinking and bleaching in individual single-walled carbon nanotubes,” Chem. Phys. Chem. 9, 1460–1464 (2008).
[Crossref] [PubMed]

Heintzmann, R.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy—a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19, 1599–1609 (2002).
[Crossref]

Heinz, T. F.

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “The optical resonances in carbon nanotubes arise from excitons,” Science 308, 838–841 (2005).
[Crossref] [PubMed]

F. Wang, G. Dukovic, E. Knoesel, L. E. Brus, and T. F. Heinz, “Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes,” Phys. Rev. B 70, 241403 (2004).
[Crossref]

Hell, S. W.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts’,” Nat. Methods 10, 737–740 (2013).
[Crossref] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[Crossref] [PubMed]

Hennrich, F.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photon. 10, 727–732 (2016).
[Crossref]

Hersam, M. C.

C. Georgi, N. Hartmann, T. Gokus, A. A. Green, M. C. Hersam, and A. Hartschuh, “Photoinduced luminescence blinking and bleaching in individual single-walled carbon nanotubes,” Chem. Phys. Chem. 9, 1460–1464 (2008).
[Crossref] [PubMed]

Hess, H.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

Higashide, N.

N. Higashide, M. Yoshida, T. Uda, A. Ishii, and Y. K. Kato, “Cold exciton electroluminescence from air-suspended carbon nanotube split-gate devices,” Appl. Phys. Lett. 110, 191101 (2017).
[Crossref]

Homma, Y.

J. Xie, T. Inaba, R. Sugiyama, and Y. Homma, “Intrinsic diffusion length of excitons in long single-walled carbon nanotubes from photoluminescence spectra,” Phys. Rev. B 85, 085434 (2012).
[Crossref]

Hong, G.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18, 1841–1846 (2012).
[Crossref] [PubMed]

Honigmann, A.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

Howard, S. S.

Htoon, H.

X. Ma, O. Roslyak, J. G. Duque, X. Pang, S. K. Doorn, A. Piryatinski, D. H. Dunlap, and H. Htoon, “Influences of exciton diffusion and exciton-exciton annihilation on photon emission statistics of carbon nanotubes,” Phys. Rev. Lett. 115, 017401 (2015).
[Crossref] [PubMed]

Huang, N. F.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18, 1841–1846 (2012).
[Crossref] [PubMed]

Inaba, T.

J. Xie, T. Inaba, R. Sugiyama, and Y. Homma, “Intrinsic diffusion length of excitons in long single-walled carbon nanotubes from photoluminescence spectra,” Phys. Rev. B 85, 085434 (2012).
[Crossref]

Ishii, A.

A. Ishii, T. Uda, and Y. K. Kato, “Room-temperature single-photon emission from micrometer-long air-suspended carbon nanotubes,” Phys. Rev. Appl. 8, 054039 (2017).
[Crossref]

N. Higashide, M. Yoshida, T. Uda, A. Ishii, and Y. K. Kato, “Cold exciton electroluminescence from air-suspended carbon nanotube split-gate devices,” Appl. Phys. Lett. 110, 191101 (2017).
[Crossref]

T. Uda, M. Yoshida, A. Ishii, and Y. K. Kato, “Electric-field induced activation of dark excitonic states in carbon nanotubes,” Nano Lett. 16, 2278–2282 (2016).
[Crossref] [PubMed]

M. Jiang, Y. Kumamoto, A. Ishii, M. Yoshida, T. Shimada, and Y. K. Kato, “Gate-controlled generation of optical pulse trains using individual carbon nanotubes,” Nat. Commun. 6, 6335 (2015).
[Crossref] [PubMed]

A. Ishii, M. Yoshida, and Y. K. Kato, “Exciton diffusion, end quenching, and exciton-exciton annihilation in individual air-suspended carbon nanotubes,” Phys. Rev. B 91, 125427 (2015).
[Crossref]

Jakobs, S.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts’,” Nat. Methods 10, 737–740 (2013).
[Crossref] [PubMed]

Jiang, M.

M. Jiang, Y. Kumamoto, A. Ishii, M. Yoshida, T. Shimada, and Y. K. Kato, “Gate-controlled generation of optical pulse trains using individual carbon nanotubes,” Nat. Commun. 6, 6335 (2015).
[Crossref] [PubMed]

Jovin, T. M.

Kahl, O.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photon. 10, 727–732 (2016).
[Crossref]

Kanemitsu, Y.

K. Yoshikawa, K. Matsuda, and Y. Kanemitsu, “Exciton transport in suspended single carbon nanotubes studied by photoluminescence imaging spectroscopy,” J. Phys. Chem. C 114, 4353–4356 (2010).
[Crossref]

Kappes, M. M.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photon. 10, 727–732 (2016).
[Crossref]

Kataura, H.

Y. Yomogida, T. Tanaka, M. Zhang, M. Yudasaka, X. Wei, and H. Kataura, “Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging,” Nat. Commun. 7, 12056 (2016).
[Crossref] [PubMed]

Kato, Y. K.

A. Ishii, T. Uda, and Y. K. Kato, “Room-temperature single-photon emission from micrometer-long air-suspended carbon nanotubes,” Phys. Rev. Appl. 8, 054039 (2017).
[Crossref]

N. Higashide, M. Yoshida, T. Uda, A. Ishii, and Y. K. Kato, “Cold exciton electroluminescence from air-suspended carbon nanotube split-gate devices,” Appl. Phys. Lett. 110, 191101 (2017).
[Crossref]

T. Uda, M. Yoshida, A. Ishii, and Y. K. Kato, “Electric-field induced activation of dark excitonic states in carbon nanotubes,” Nano Lett. 16, 2278–2282 (2016).
[Crossref] [PubMed]

M. Jiang, Y. Kumamoto, A. Ishii, M. Yoshida, T. Shimada, and Y. K. Kato, “Gate-controlled generation of optical pulse trains using individual carbon nanotubes,” Nat. Commun. 6, 6335 (2015).
[Crossref] [PubMed]

A. Ishii, M. Yoshida, and Y. K. Kato, “Exciton diffusion, end quenching, and exciton-exciton annihilation in individual air-suspended carbon nanotubes,” Phys. Rev. B 91, 125427 (2015).
[Crossref]

S. Moritsubo, T. Murai, T. Shimada, Y. Murakami, S. Chiashi, S. Maruyama, and Y. K. Kato, “Exciton diffusion in air-suspended single-walled carbon nanotubes,” Phys. Rev. Lett. 104, 247402 (2010).
[Crossref] [PubMed]

Kawano, S.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[Crossref]

Kawata, S.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[Crossref]

Keller, J.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts’,” Nat. Methods 10, 737–740 (2013).
[Crossref] [PubMed]

Khan, A. A.

Khasminskaya, S.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photon. 10, 727–732 (2016).
[Crossref]

Kim, M.

N. Danné, M. Kim, A. G. Godin, H. Kwon, Z. Gao, X. Wu, N. F. Hartmann, S. K. Doorn, B. Lounis, Y. Wang, and L. Cognet, “Ultrashort carbon nanotubes that fluoresce brightly in the near-infrared,” ACS Nano 12, 6059–6065 (2018).
[Crossref] [PubMed]

Klenerman, D.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

Knoesel, E.

F. Wang, G. Dukovic, E. Knoesel, L. E. Brus, and T. F. Heinz, “Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes,” Phys. Rev. B 70, 241403 (2004).
[Crossref]

Kobayashi, M.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[Crossref]

Kohno, M.

S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, and M. Kohno, “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol,” Chem. Phys. Lett. 360, 229–234 (2002).
[Crossref]

Kojima, R.

S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, and M. Kohno, “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol,” Chem. Phys. Lett. 360, 229–234 (2002).
[Crossref]

Kono, J.

Y. Murakami and J. Kono, “Existence of an upper limit on the density of excitons in carbon nanotubes by diffusion-limited exciton-exciton annihilation: Experiment and theory,” Phys. Rev. B 80, 035432 (2009).
[Crossref]

Korneev, A.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photon. 10, 727–732 (2016).
[Crossref]

Kovalyuk, V.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photon. 10, 727–732 (2016).
[Crossref]

Krupke, R.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photon. 10, 727–732 (2016).
[Crossref]

Kumamoto, Y.

M. Jiang, Y. Kumamoto, A. Ishii, M. Yoshida, T. Shimada, and Y. K. Kato, “Gate-controlled generation of optical pulse trains using individual carbon nanotubes,” Nat. Commun. 6, 6335 (2015).
[Crossref] [PubMed]

Kwon, H.

N. Danné, M. Kim, A. G. Godin, H. Kwon, Z. Gao, X. Wu, N. F. Hartmann, S. K. Doorn, B. Lounis, Y. Wang, and L. Cognet, “Ultrashort carbon nanotubes that fluoresce brightly in the near-infrared,” ACS Nano 12, 6059–6065 (2018).
[Crossref] [PubMed]

Lee, J. C.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18, 1841–1846 (2012).
[Crossref] [PubMed]

Lounis, B.

N. Danné, M. Kim, A. G. Godin, H. Kwon, Z. Gao, X. Wu, N. F. Hartmann, S. K. Doorn, B. Lounis, Y. Wang, and L. Cognet, “Ultrashort carbon nanotubes that fluoresce brightly in the near-infrared,” ACS Nano 12, 6059–6065 (2018).
[Crossref] [PubMed]

N. Danné, A. G. Godin, Z. Gao, J. A. Varela, L. Groc, B. Lounis, and L. Cognet, “Comparative analysis of photoluminescence and upconversion emission from individual carbon nanotubes for bioimaging applications,” ACS Photonics 5, 359–364 (2017).
[Crossref]

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

Ma, X.

X. Ma, O. Roslyak, J. G. Duque, X. Pang, S. K. Doorn, A. Piryatinski, D. H. Dunlap, and H. Htoon, “Influences of exciton diffusion and exciton-exciton annihilation on photon emission statistics of carbon nanotubes,” Phys. Rev. Lett. 115, 017401 (2015).
[Crossref] [PubMed]

Ma, Y.-Z.

Y.-Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming, “Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: Evidence for exciton-exciton annihilation,” Phys. Rev. Lett. 94, 157402 (2005).
[Crossref] [PubMed]

Maruyama, S.

S. Moritsubo, T. Murai, T. Shimada, Y. Murakami, S. Chiashi, S. Maruyama, and Y. K. Kato, “Exciton diffusion in air-suspended single-walled carbon nanotubes,” Phys. Rev. Lett. 104, 247402 (2010).
[Crossref] [PubMed]

S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, and M. Kohno, “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol,” Chem. Phys. Lett. 360, 229–234 (2002).
[Crossref]

Mason, D. E.

Matsuda, K.

S. Aota, N. Akizuki, S. Mouri, K. Matsuda, and Y. Miyauchi, “Upconversion photoluminescence imaging and spectroscopy of individual single-walled carbon nanotubes,” Appl. Phys. Express 9, 045103 (2016).
[Crossref]

S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, and K. Matsuda, “Nonlinear photoluminescence in atomically thin layered WSe 2 arising from diffusion-assisted exciton-exciton annihilation,” Phys. Rev. B 90, 155449 (2014).
[Crossref]

K. Yoshikawa, K. Matsuda, and Y. Kanemitsu, “Exciton transport in suspended single carbon nanotubes studied by photoluminescence imaging spectroscopy,” J. Phys. Chem. C 114, 4353–4356 (2010).
[Crossref]

Miyauchi, Y.

S. Aota, N. Akizuki, S. Mouri, K. Matsuda, and Y. Miyauchi, “Upconversion photoluminescence imaging and spectroscopy of individual single-walled carbon nanotubes,” Appl. Phys. Express 9, 045103 (2016).
[Crossref]

S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, and K. Matsuda, “Nonlinear photoluminescence in atomically thin layered WSe 2 arising from diffusion-assisted exciton-exciton annihilation,” Phys. Rev. B 90, 155449 (2014).
[Crossref]

S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, and M. Kohno, “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol,” Chem. Phys. Lett. 360, 229–234 (2002).
[Crossref]

Moritsubo, S.

S. Moritsubo, T. Murai, T. Shimada, Y. Murakami, S. Chiashi, S. Maruyama, and Y. K. Kato, “Exciton diffusion in air-suspended single-walled carbon nanotubes,” Phys. Rev. Lett. 104, 247402 (2010).
[Crossref] [PubMed]

Mouri, S.

S. Aota, N. Akizuki, S. Mouri, K. Matsuda, and Y. Miyauchi, “Upconversion photoluminescence imaging and spectroscopy of individual single-walled carbon nanotubes,” Appl. Phys. Express 9, 045103 (2016).
[Crossref]

S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, and K. Matsuda, “Nonlinear photoluminescence in atomically thin layered WSe 2 arising from diffusion-assisted exciton-exciton annihilation,” Phys. Rev. B 90, 155449 (2014).
[Crossref]

Murai, T.

S. Moritsubo, T. Murai, T. Shimada, Y. Murakami, S. Chiashi, S. Maruyama, and Y. K. Kato, “Exciton diffusion in air-suspended single-walled carbon nanotubes,” Phys. Rev. Lett. 104, 247402 (2010).
[Crossref] [PubMed]

Murakami, Y.

S. Moritsubo, T. Murai, T. Shimada, Y. Murakami, S. Chiashi, S. Maruyama, and Y. K. Kato, “Exciton diffusion in air-suspended single-walled carbon nanotubes,” Phys. Rev. Lett. 104, 247402 (2010).
[Crossref] [PubMed]

Y. Murakami and J. Kono, “Existence of an upper limit on the density of excitons in carbon nanotubes by diffusion-limited exciton-exciton annihilation: Experiment and theory,” Phys. Rev. B 80, 035432 (2009).
[Crossref]

Nallathamby, P. D.

Nhan, T. Q.

Y.-F. Xiao, T. Q. Nhan, M. W. B. Wilson, and J. M. Fraser, “Saturation of the photoluminescence at few-exciton levels in a single-walled carbon nanotube under ultrafast excitation,” Phys. Rev. Lett. 104, 017401 (2010).
[Crossref] [PubMed]

Ogawa, T.

T. Ogawa and T. Takagahara, “Optical absorption and sommerfeld factors of one-dimensional semiconductors: An exact treatment of excitonic effects,” Phys. Rev. B 44, 8138–8156 (1991).
[Crossref]

Pang, X.

X. Ma, O. Roslyak, J. G. Duque, X. Pang, S. K. Doorn, A. Piryatinski, D. H. Dunlap, and H. Htoon, “Influences of exciton diffusion and exciton-exciton annihilation on photon emission statistics of carbon nanotubes,” Phys. Rev. Lett. 115, 017401 (2015).
[Crossref] [PubMed]

Pernice, W. H. P.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photon. 10, 727–732 (2016).
[Crossref]

Piryatinski, A.

X. Ma, O. Roslyak, J. G. Duque, X. Pang, S. K. Doorn, A. Piryatinski, D. H. Dunlap, and H. Htoon, “Influences of exciton diffusion and exciton-exciton annihilation on photon emission statistics of carbon nanotubes,” Phys. Rev. Lett. 115, 017401 (2015).
[Crossref] [PubMed]

Pyatkov, F.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photon. 10, 727–732 (2016).
[Crossref]

Raaz, U.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18, 1841–1846 (2012).
[Crossref] [PubMed]

Rath, P.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photon. 10, 727–732 (2016).
[Crossref]

Ratz, M.

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts’,” Nat. Methods 10, 737–740 (2013).
[Crossref] [PubMed]

Robinson, J. T.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18, 1841–1846 (2012).
[Crossref] [PubMed]

Rockstuhl, C.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photon. 10, 727–732 (2016).
[Crossref]

Roeder, R. K.

Roslyak, O.

X. Ma, O. Roslyak, J. G. Duque, X. Pang, S. K. Doorn, A. Piryatinski, D. H. Dunlap, and H. Htoon, “Influences of exciton diffusion and exciton-exciton annihilation on photon emission statistics of carbon nanotubes,” Phys. Rev. Lett. 115, 017401 (2015).
[Crossref] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref] [PubMed]

Sahl, S. J.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

Shimada, T.

M. Jiang, Y. Kumamoto, A. Ishii, M. Yoshida, T. Shimada, and Y. K. Kato, “Gate-controlled generation of optical pulse trains using individual carbon nanotubes,” Nat. Commun. 6, 6335 (2015).
[Crossref] [PubMed]

S. Moritsubo, T. Murai, T. Shimada, Y. Murakami, S. Chiashi, S. Maruyama, and Y. K. Kato, “Exciton diffusion in air-suspended single-walled carbon nanotubes,” Phys. Rev. Lett. 104, 247402 (2010).
[Crossref] [PubMed]

Shtengel, G.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

Slowik, K.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photon. 10, 727–732 (2016).
[Crossref]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Sugiyama, R.

J. Xie, T. Inaba, R. Sugiyama, and Y. Homma, “Intrinsic diffusion length of excitons in long single-walled carbon nanotubes from photoluminescence spectra,” Phys. Rev. B 85, 085434 (2012).
[Crossref]

Takagahara, T.

T. Ogawa and T. Takagahara, “Optical absorption and sommerfeld factors of one-dimensional semiconductors: An exact treatment of excitonic effects,” Phys. Rev. B 44, 8138–8156 (1991).
[Crossref]

Tanaka, T.

Y. Yomogida, T. Tanaka, M. Zhang, M. Yudasaka, X. Wei, and H. Kataura, “Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging,” Nat. Commun. 7, 12056 (2016).
[Crossref] [PubMed]

Testa, I.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

Tinnefeld, P.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

Toh, M.

S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, and K. Matsuda, “Nonlinear photoluminescence in atomically thin layered WSe 2 arising from diffusion-assisted exciton-exciton annihilation,” Phys. Rev. B 90, 155449 (2014).
[Crossref]

Tsyboulski, D. A.

L. Cognet, D. A. Tsyboulski, and R. B. Weisman, “Subdiffraction far-field imaging of luminescent single-walled carbon nanotubes,” Nano Lett. 8, 749–753 (2008).
[Crossref] [PubMed]

Uda, T.

A. Ishii, T. Uda, and Y. K. Kato, “Room-temperature single-photon emission from micrometer-long air-suspended carbon nanotubes,” Phys. Rev. Appl. 8, 054039 (2017).
[Crossref]

N. Higashide, M. Yoshida, T. Uda, A. Ishii, and Y. K. Kato, “Cold exciton electroluminescence from air-suspended carbon nanotube split-gate devices,” Appl. Phys. Lett. 110, 191101 (2017).
[Crossref]

T. Uda, M. Yoshida, A. Ishii, and Y. K. Kato, “Electric-field induced activation of dark excitonic states in carbon nanotubes,” Nano Lett. 16, 2278–2282 (2016).
[Crossref] [PubMed]

Valkunas, L.

Y.-Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming, “Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: Evidence for exciton-exciton annihilation,” Phys. Rev. Lett. 94, 157402 (2005).
[Crossref] [PubMed]

Varela, J. A.

N. Danné, A. G. Godin, Z. Gao, J. A. Varela, L. Groc, B. Lounis, and L. Cognet, “Comparative analysis of photoluminescence and upconversion emission from individual carbon nanotubes for bioimaging applications,” ACS Photonics 5, 359–364 (2017).
[Crossref]

Vetter, A.

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photon. 10, 727–732 (2016).
[Crossref]

Vicidomini, G.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

Vigil, G. D.

Wang, F.

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “The optical resonances in carbon nanotubes arise from excitons,” Science 308, 838–841 (2005).
[Crossref] [PubMed]

F. Wang, G. Dukovic, E. Knoesel, L. E. Brus, and T. F. Heinz, “Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes,” Phys. Rev. B 70, 241403 (2004).
[Crossref]

Wang, Y.

N. Danné, M. Kim, A. G. Godin, H. Kwon, Z. Gao, X. Wu, N. F. Hartmann, S. K. Doorn, B. Lounis, Y. Wang, and L. Cognet, “Ultrashort carbon nanotubes that fluoresce brightly in the near-infrared,” ACS Nano 12, 6059–6065 (2018).
[Crossref] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Wei, X.

Y. Yomogida, T. Tanaka, M. Zhang, M. Yudasaka, X. Wei, and H. Kataura, “Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging,” Nat. Commun. 7, 12056 (2016).
[Crossref] [PubMed]

Weisman, R. B.

L. Cognet, D. A. Tsyboulski, and R. B. Weisman, “Subdiffraction far-field imaging of luminescent single-walled carbon nanotubes,” Nano Lett. 8, 749–753 (2008).
[Crossref] [PubMed]

Wichmann, J.

Willig, K. I.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

Wilson, M. W. B.

Y.-F. Xiao, T. Q. Nhan, M. W. B. Wilson, and J. M. Fraser, “Saturation of the photoluminescence at few-exciton levels in a single-walled carbon nanotube under ultrafast excitation,” Phys. Rev. Lett. 104, 017401 (2010).
[Crossref] [PubMed]

Wu, X.

N. Danné, M. Kim, A. G. Godin, H. Kwon, Z. Gao, X. Wu, N. F. Hartmann, S. K. Doorn, B. Lounis, Y. Wang, and L. Cognet, “Ultrashort carbon nanotubes that fluoresce brightly in the near-infrared,” ACS Nano 12, 6059–6065 (2018).
[Crossref] [PubMed]

Xiao, Y.-F.

Y.-F. Xiao, T. Q. Nhan, M. W. B. Wilson, and J. M. Fraser, “Saturation of the photoluminescence at few-exciton levels in a single-walled carbon nanotube under ultrafast excitation,” Phys. Rev. Lett. 104, 017401 (2010).
[Crossref] [PubMed]

Xie, J.

J. Xie, T. Inaba, R. Sugiyama, and Y. Homma, “Intrinsic diffusion length of excitons in long single-walled carbon nanotubes from photoluminescence spectra,” Phys. Rev. B 85, 085434 (2012).
[Crossref]

Xie, L.

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18, 1841–1846 (2012).
[Crossref] [PubMed]

Yamanaka, M.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[Crossref]

Yomogida, Y.

Y. Yomogida, T. Tanaka, M. Zhang, M. Yudasaka, X. Wei, and H. Kataura, “Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging,” Nat. Commun. 7, 12056 (2016).
[Crossref] [PubMed]

Yoshida, M.

N. Higashide, M. Yoshida, T. Uda, A. Ishii, and Y. K. Kato, “Cold exciton electroluminescence from air-suspended carbon nanotube split-gate devices,” Appl. Phys. Lett. 110, 191101 (2017).
[Crossref]

T. Uda, M. Yoshida, A. Ishii, and Y. K. Kato, “Electric-field induced activation of dark excitonic states in carbon nanotubes,” Nano Lett. 16, 2278–2282 (2016).
[Crossref] [PubMed]

M. Jiang, Y. Kumamoto, A. Ishii, M. Yoshida, T. Shimada, and Y. K. Kato, “Gate-controlled generation of optical pulse trains using individual carbon nanotubes,” Nat. Commun. 6, 6335 (2015).
[Crossref] [PubMed]

A. Ishii, M. Yoshida, and Y. K. Kato, “Exciton diffusion, end quenching, and exciton-exciton annihilation in individual air-suspended carbon nanotubes,” Phys. Rev. B 91, 125427 (2015).
[Crossref]

Yoshikawa, K.

K. Yoshikawa, K. Matsuda, and Y. Kanemitsu, “Exciton transport in suspended single carbon nanotubes studied by photoluminescence imaging spectroscopy,” J. Phys. Chem. C 114, 4353–4356 (2010).
[Crossref]

Yudasaka, M.

Y. Yomogida, T. Tanaka, M. Zhang, M. Yudasaka, X. Wei, and H. Kataura, “Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging,” Nat. Commun. 7, 12056 (2016).
[Crossref] [PubMed]

Zhang, M.

Y. Yomogida, T. Tanaka, M. Zhang, M. Yudasaka, X. Wei, and H. Kataura, “Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging,” Nat. Commun. 7, 12056 (2016).
[Crossref] [PubMed]

Zhang, Y.

Zhao, W.

S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, and K. Matsuda, “Nonlinear photoluminescence in atomically thin layered WSe 2 arising from diffusion-assisted exciton-exciton annihilation,” Phys. Rev. B 90, 155449 (2014).
[Crossref]

Zhuang, X.

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref] [PubMed]

ACS Nano (1)

N. Danné, M. Kim, A. G. Godin, H. Kwon, Z. Gao, X. Wu, N. F. Hartmann, S. K. Doorn, B. Lounis, Y. Wang, and L. Cognet, “Ultrashort carbon nanotubes that fluoresce brightly in the near-infrared,” ACS Nano 12, 6059–6065 (2018).
[Crossref] [PubMed]

ACS Photonics (1)

N. Danné, A. G. Godin, Z. Gao, J. A. Varela, L. Groc, B. Lounis, and L. Cognet, “Comparative analysis of photoluminescence and upconversion emission from individual carbon nanotubes for bioimaging applications,” ACS Photonics 5, 359–364 (2017).
[Crossref]

Appl. Phys. Express (1)

S. Aota, N. Akizuki, S. Mouri, K. Matsuda, and Y. Miyauchi, “Upconversion photoluminescence imaging and spectroscopy of individual single-walled carbon nanotubes,” Appl. Phys. Express 9, 045103 (2016).
[Crossref]

Appl. Phys. Lett. (1)

N. Higashide, M. Yoshida, T. Uda, A. Ishii, and Y. K. Kato, “Cold exciton electroluminescence from air-suspended carbon nanotube split-gate devices,” Appl. Phys. Lett. 110, 191101 (2017).
[Crossref]

Biomed. Opt. Express (1)

Chem. Phys. Chem. (1)

C. Georgi, N. Hartmann, T. Gokus, A. A. Green, M. C. Hersam, and A. Hartschuh, “Photoinduced luminescence blinking and bleaching in individual single-walled carbon nanotubes,” Chem. Phys. Chem. 9, 1460–1464 (2008).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, and M. Kohno, “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol,” Chem. Phys. Lett. 360, 229–234 (2002).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (1)

K. Yoshikawa, K. Matsuda, and Y. Kanemitsu, “Exciton transport in suspended single carbon nanotubes studied by photoluminescence imaging spectroscopy,” J. Phys. Chem. C 114, 4353–4356 (2010).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G. Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers, S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T. Cordes, “The 2015 super-resolution microscopy roadmap,” J. Phys. D: Appl. Phys. 48, 443001 (2015).
[Crossref]

J. Phys. Soc. Jpn. (1)

T. Ando, “Excitons in carbon nanotubes,” J. Phys. Soc. Jpn. 66, 1066 (1997).
[Crossref]

Nano Lett. (2)

L. Cognet, D. A. Tsyboulski, and R. B. Weisman, “Subdiffraction far-field imaging of luminescent single-walled carbon nanotubes,” Nano Lett. 8, 749–753 (2008).
[Crossref] [PubMed]

T. Uda, M. Yoshida, A. Ishii, and Y. K. Kato, “Electric-field induced activation of dark excitonic states in carbon nanotubes,” Nano Lett. 16, 2278–2282 (2016).
[Crossref] [PubMed]

Nat. Commun. (2)

M. Jiang, Y. Kumamoto, A. Ishii, M. Yoshida, T. Shimada, and Y. K. Kato, “Gate-controlled generation of optical pulse trains using individual carbon nanotubes,” Nat. Commun. 6, 6335 (2015).
[Crossref] [PubMed]

Y. Yomogida, T. Tanaka, M. Zhang, M. Yudasaka, X. Wei, and H. Kataura, “Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging,” Nat. Commun. 7, 12056 (2016).
[Crossref] [PubMed]

Nat. Med. (1)

G. Hong, J. C. Lee, J. T. Robinson, U. Raaz, L. Xie, N. F. Huang, J. P. Cooke, and H. Dai, “Multifunctional in vivo vascular imaging using near-infrared II fluorescence,” Nat. Med. 18, 1841–1846 (2012).
[Crossref] [PubMed]

Nat. Methods (2)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[Crossref] [PubMed]

A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d’Este, S. Jakobs, C. Eggeling, and S. W. Hell, “Nanoscopy with more than 100,000 ’doughnuts’,” Nat. Methods 10, 737–740 (2013).
[Crossref] [PubMed]

Nat. Photon. (1)

S. Khasminskaya, F. Pyatkov, K. Słowik, S. Ferrari, O. Kahl, V. Kovalyuk, P. Rath, A. Vetter, F. Hennrich, M. M. Kappes, G. Gol’tsman, A. Korneev, C. Rockstuhl, R. Krupke, and W. H. P. Pernice, “Fully integrated quantum photonic circuit with an electrically driven light source,” Nat. Photon. 10, 727–732 (2016).
[Crossref]

Opt. Lett. (1)

Phys. Rev. Appl. (1)

A. Ishii, T. Uda, and Y. K. Kato, “Room-temperature single-photon emission from micrometer-long air-suspended carbon nanotubes,” Phys. Rev. Appl. 8, 054039 (2017).
[Crossref]

Phys. Rev. B (6)

T. Ogawa and T. Takagahara, “Optical absorption and sommerfeld factors of one-dimensional semiconductors: An exact treatment of excitonic effects,” Phys. Rev. B 44, 8138–8156 (1991).
[Crossref]

F. Wang, G. Dukovic, E. Knoesel, L. E. Brus, and T. F. Heinz, “Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes,” Phys. Rev. B 70, 241403 (2004).
[Crossref]

J. Xie, T. Inaba, R. Sugiyama, and Y. Homma, “Intrinsic diffusion length of excitons in long single-walled carbon nanotubes from photoluminescence spectra,” Phys. Rev. B 85, 085434 (2012).
[Crossref]

A. Ishii, M. Yoshida, and Y. K. Kato, “Exciton diffusion, end quenching, and exciton-exciton annihilation in individual air-suspended carbon nanotubes,” Phys. Rev. B 91, 125427 (2015).
[Crossref]

Y. Murakami and J. Kono, “Existence of an upper limit on the density of excitons in carbon nanotubes by diffusion-limited exciton-exciton annihilation: Experiment and theory,” Phys. Rev. B 80, 035432 (2009).
[Crossref]

S. Mouri, Y. Miyauchi, M. Toh, W. Zhao, G. Eda, and K. Matsuda, “Nonlinear photoluminescence in atomically thin layered WSe 2 arising from diffusion-assisted exciton-exciton annihilation,” Phys. Rev. B 90, 155449 (2014).
[Crossref]

Phys. Rev. Lett. (5)

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[Crossref]

S. Moritsubo, T. Murai, T. Shimada, Y. Murakami, S. Chiashi, S. Maruyama, and Y. K. Kato, “Exciton diffusion in air-suspended single-walled carbon nanotubes,” Phys. Rev. Lett. 104, 247402 (2010).
[Crossref] [PubMed]

Y.-Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo, and G. R. Fleming, “Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: Evidence for exciton-exciton annihilation,” Phys. Rev. Lett. 94, 157402 (2005).
[Crossref] [PubMed]

Y.-F. Xiao, T. Q. Nhan, M. W. B. Wilson, and J. M. Fraser, “Saturation of the photoluminescence at few-exciton levels in a single-walled carbon nanotube under ultrafast excitation,” Phys. Rev. Lett. 104, 017401 (2010).
[Crossref] [PubMed]

X. Ma, O. Roslyak, J. G. Duque, X. Pang, S. K. Doorn, A. Piryatinski, D. H. Dunlap, and H. Htoon, “Influences of exciton diffusion and exciton-exciton annihilation on photon emission statistics of carbon nanotubes,” Phys. Rev. Lett. 115, 017401 (2015).
[Crossref] [PubMed]

Science (2)

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, “The optical resonances in carbon nanotubes arise from excitons,” Science 308, 838–841 (2005).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) A schematic of an air-suspended nanotube sample. For optical imaging, the samples are scanned along trenches relative to the fixed laser beam. (b) A scanning electron micrograph of a typical nanotube. (c) A PL excitation map for a (11,3) nanotube. The excitation power is 0.1 μW. (d) A PL image of the nanotube measured in (c). Inset: Polarization dependence of IPL. Excitation power and wavelength used for imaging are 0.1 μW and 780 nm, respectively, and the image is extracted at an emission wavelength of 1175 nm with a spectral integration window of ∼50 nm. Scale bars in (b) and (d) are 500 nm.
Fig. 2
Fig. 2 (a) Excitation power dependence of PL intensity IPL with the laser focused at the center of the nanotube (black squares) and FWHM of PL intensity profiles along the trench direction (red circles). The nanotube is the same one as in Fig. 1(c) and 1(d). IPL is obtained by calculating the peak area of a Lorentzian fit to the emission spectrum. (b) PL intensity profiles scaled by excitation powers. Difference of the black and the blue lines is proportional to the EEA rate ΓEEA. (c) Normalized profiles of IPL for the two different excitation powers and the EEA rate obtained from the subtraction in (b).
Fig. 3
Fig. 3 (a) FWHM of 1D EEA profiles as a function of the EEA extraction power P1 and the reference power P2 used for the subtraction of IPL. The data are averaged for seven measurements repeated with the same condition. (b) FWHM of IPL and the extracted EEA rate profiles for a fixed power of P2 = 0.05 μW. Error bars represent the standard deviation. Solid and broken gray lines correspond to the laser beam FWHM and that multiplied by 1 / 2, respectively. (c) FWHM as a function of the EEA extraction and the reference generation rate from the Monte Carlo simulations. (d) FWHM of the intrinsic decay rate profiles and the EEA rate profiles from the simulations. (e) Excitation power dependence of the PL intensity and the extracted EEA component for the experiments and the simulations. (f) EEA rates as a function of IPL and N from the experiments and the simulations, respectively.
Fig. 4
Fig. 4 2D images of a (9,7) nanotube for (a) the PL intensity and (b) the extracted EEA rate. (c) 1D profiles from the PL (black) and EEA (red) images at the same position indicated by broken white lines. (d–i) Similar sets of 2D images and the 1D profiles for the two nanotubes with (d–f) a parallel and (g–i) a Y-shaped configuration. The excitation wavelengths are fixed at the E22 (784, 782, and 802 nm for (a–c), (d–f), and (g–i), respectively) of each nanotube, and all the images are extracted at the E11 wavelength (1284, 1290, and 1373 nm for (a–c), (d–f), and (g–i), respectively) with a spectral window of ∼50 nm. All the images are normalized by their maximum intensity so that the image resolution can be easily compared. Scale bars are 500 nm.
Fig. 5
Fig. 5 (a) Illustration for utilizing the nonlinearity of ΓEEA as a function of the exciton generation rate g or the exciton number N. While quadratic nonlinearity of ΓEEA at small g is used for Protocol I (used in Figs. 24), cubic nonlinearity of ΓEEA against N is used in Protocol II. (b) Schematics of the protocol to extract the cubic nonlinearity. (c) PL and (d) EEA images of the (11,3) nanotube with P0 = 0.2 μW and κ = 25. Excitation and extraction wavelengths are 781 and 1176 nm, respectively. Scale bars are 500 nm. (e) 1D intensity profiles of the nanotube shown in (c) and (d). (f) Intensity profiles of the nanotubes shown in Figs. 4(d)4(f). Excitation and extraction wavelengths are 780 and 1290 nm, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r / α 2 ln  2 r 2 ln  2 = 1 α ,
0 t p s ( t ) p a ( t ) d t 0 p s ( t ) p a ( t ) d t = 2 τ g τ + 1 2 τ ,
Γ EEA p ( 2 ) × π 2 τ = π N 2 4 τ .