Abstract

Real-time terrain rendering with high-resolution has been a hot spot in computer graphics for many years, which is widely used in electronic maps. However, the traditional two-dimensional display cannot provide the occlusion relationship between buildings, which restricts the observers’ judgment of spatial accuracy. With three projectors, compound lenticular lens array and holographic functional screen, a dynamic three-dimensional (3D) light-field display with 90° viewing angle is demonstrated. Three projectors provide views for the right 30 degrees, center 30 degrees and left 30 degrees, respectively. The holographic functional screen recomposes the light distribution, and the compound lenticular lens array is optimized to balance the aberrations and improve the display quality. In our experiment, the 3D light-field image with 96 perspectives provides the right geometric occlusion and smooth parallax in the viewing range. By rendering 3D images and synchronizing projectors, the dynamic light field display is obtained.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Interactive floating full-parallax digital three-dimensional light-field display based on wavefront recomposing

Xinzhu Sang, Xin Gao, Xunbo Yu, Shujun Xing, Yuanhang Li, and Yongle Wu
Opt. Express 26(7) 8883-8889 (2018)

162-inch 3D light field display based on aspheric lens array and holographic functional screen

Shenwu Yang, Xinzhu Sang, Xunbo Yu, Xin Gao, Li Liu, Boyang Liu, and Le Yang
Opt. Express 26(25) 33013-33021 (2018)

Time-multiplexed multi-view three-dimensional display with projector array and steering screen

Xinxing Xia, Xiangyu Zhang, Lei Zhang, Phil Surman, and Yuanjin Zheng
Opt. Express 26(12) 15528-15538 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y.-C. Chang, L.-C. Tang, and C.-Y. Yin, “Efficient simulation of intensity profile of light through subpixel-matched lenticular lens array for two- and four-view auto-stereoscopic liquid-crystal display,” Appl. Opt. 52(1), A356–A359 (2013).
    [Crossref] [PubMed]
  2. G. J. Lv, Q. H. Wang, W. X. Zhao, and J. Wang, “3D display based on parallax barrier with multiview zones,” Appl. Opt. 53(7), 1339–1342 (2014).
    [Crossref] [PubMed]
  3. N. Okaichi, M. Miura, J. Arai, M. Kawakita, and T. Mishina, “Integral 3D display using multiple LCD panels and multi-image combining optical system,” Opt. Express 25(3), 2805–2817 (2017).
    [Crossref] [PubMed]
  4. S. Xing, X. Sang, X. Yu, C. Duo, B. Pang, X. Gao, S. Yang, Y. Guan, B. Yan, J. Yuan, and K. Wang, “High-efficient computer-generated integral imaging based on the backward ray-tracing technique and optical reconstruction,” Opt. Express 25(1), 330–338 (2017).
    [Crossref] [PubMed]
  5. Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
    [Crossref] [PubMed]
  6. J. Y. Son, C. H. Lee, O. O. Chernyshov, B. R. Lee, and S. K. Kim, “A floating type holographic display,” Opt. Express 21(17), 20441–20451 (2013).
    [Crossref] [PubMed]
  7. X. Liu and H. Li, “The progress of light field 3-D displays,” Inf. Disp. 30(6), 6–14 (2014).
    [Crossref]
  8. G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays,” ACM Trans. Graph. 31(4), 1–11 (2012).
    [Crossref]
  9. W. Song, Q. Zhu, Y. Liu, and Y. Wang, “Volumetric display based on multiple mini-projectors and a rotating screen,” Opt. Eng. 54(1), 013103 (2015).
    [Crossref]
  10. D. Chen, X. Sang, X. Yu, X. Zeng, S. Xie, and N. Guo, “Performance improvement of compressive light field display with the viewing-position-dependent weight distribution,” Opt. Express 24(26), 29781–29793 (2016).
    [Crossref] [PubMed]
  11. X. Sang, F. C. Fan, C. C. Jiang, S. Choi, W. Dou, C. Yu, and D. Xu, “Demonstration of a large-size real-time full-color three-dimensional display,” Opt. Lett. 34(24), 3803–3805 (2009).
    [Crossref] [PubMed]
  12. X. Sang, F. Fan, S. Choi, C. Jiang, C. Yu, B. Yan, and W. Dou, “Three-dimensional display based on the holographic functional screen,” Opt. Eng. 50(9), 091303 (2011).
    [Crossref]
  13. K. Evangelidis, T. Papadopoulos, K. Papatheodorou, P. Mastorokostas, and C. Hilas, “3D geospatial visualizations: Animation and motion effects on spatial objects,” Comput. Geosci. 111, 200–212 (2018).
    [Crossref]
  14. R. Zhai, K. Lu, W. Pan, and S. Dai, “GPU-based real-time terrain rendering: Design and implementation,” Neurocomputing 171, 1–8 (2016).
    [Crossref]
  15. G. Kang, Y. Sim, and J. Han, “Terrain rendering with unlimited detail and resolution,” Graph. Models 97, 64–79 (2018).
    [Crossref]
  16. X. Sang, X. Gao, X. Yu, S. Xing, Y. Li, and Y. Wu, “Interactive floating full-parallax digital three-dimensional light-field display based on wavefront recomposing,” Opt. Express 26(7), 8883–8889 (2018).
    [Crossref] [PubMed]
  17. S. Yang, X. Sang, X. Yu, X. Gao, L. Liu, B. Liu, and L. Yang, “162-inch 3D light field display based on aspheric lens array and holographic functional screen,” Opt. Express 26(25), 33013–33021 (2018).
    [Crossref] [PubMed]
  18. X. Yu, X. Sang, D. Chen, P. Wang, X. Gao, T. Zhao, B. Yan, C. Yu, D. Xu, and W. Dou, “Autostereoscopic three-dimensional display with high dense views and the narrow structure pitch,” Chin. Opt. Lett. 12(6), 060008 (2014).
    [Crossref]
  19. S. Xing, X. Sang, X. Yu, C. Duo, B. Pang, X. Gao, S. Yang, Y. Guan, B. Yan, J. Yuan, and K. Wang, “High-efficient computer-generated integral imaging based on the backward ray-tracing technique and optical reconstruction,” Opt. Express 25(1), 330–338 (2017).
    [Crossref] [PubMed]

2018 (4)

G. Kang, Y. Sim, and J. Han, “Terrain rendering with unlimited detail and resolution,” Graph. Models 97, 64–79 (2018).
[Crossref]

X. Sang, X. Gao, X. Yu, S. Xing, Y. Li, and Y. Wu, “Interactive floating full-parallax digital three-dimensional light-field display based on wavefront recomposing,” Opt. Express 26(7), 8883–8889 (2018).
[Crossref] [PubMed]

S. Yang, X. Sang, X. Yu, X. Gao, L. Liu, B. Liu, and L. Yang, “162-inch 3D light field display based on aspheric lens array and holographic functional screen,” Opt. Express 26(25), 33013–33021 (2018).
[Crossref] [PubMed]

K. Evangelidis, T. Papadopoulos, K. Papatheodorou, P. Mastorokostas, and C. Hilas, “3D geospatial visualizations: Animation and motion effects on spatial objects,” Comput. Geosci. 111, 200–212 (2018).
[Crossref]

2017 (3)

2016 (2)

2015 (2)

W. Song, Q. Zhu, Y. Liu, and Y. Wang, “Volumetric display based on multiple mini-projectors and a rotating screen,” Opt. Eng. 54(1), 013103 (2015).
[Crossref]

Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (2)

2012 (1)

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

2011 (1)

X. Sang, F. Fan, S. Choi, C. Jiang, C. Yu, B. Yan, and W. Dou, “Three-dimensional display based on the holographic functional screen,” Opt. Eng. 50(9), 091303 (2011).
[Crossref]

2009 (1)

Arai, J.

Cao, L.

Chang, Y.-C.

Chen, D.

Chernyshov, O. O.

Choi, S.

X. Sang, F. Fan, S. Choi, C. Jiang, C. Yu, B. Yan, and W. Dou, “Three-dimensional display based on the holographic functional screen,” Opt. Eng. 50(9), 091303 (2011).
[Crossref]

X. Sang, F. C. Fan, C. C. Jiang, S. Choi, W. Dou, C. Yu, and D. Xu, “Demonstration of a large-size real-time full-color three-dimensional display,” Opt. Lett. 34(24), 3803–3805 (2009).
[Crossref] [PubMed]

Dai, S.

R. Zhai, K. Lu, W. Pan, and S. Dai, “GPU-based real-time terrain rendering: Design and implementation,” Neurocomputing 171, 1–8 (2016).
[Crossref]

Dou, W.

Duo, C.

Evangelidis, K.

K. Evangelidis, T. Papadopoulos, K. Papatheodorou, P. Mastorokostas, and C. Hilas, “3D geospatial visualizations: Animation and motion effects on spatial objects,” Comput. Geosci. 111, 200–212 (2018).
[Crossref]

Fan, F.

X. Sang, F. Fan, S. Choi, C. Jiang, C. Yu, B. Yan, and W. Dou, “Three-dimensional display based on the holographic functional screen,” Opt. Eng. 50(9), 091303 (2011).
[Crossref]

Fan, F. C.

Gao, X.

Guan, Y.

Guo, N.

Han, J.

G. Kang, Y. Sim, and J. Han, “Terrain rendering with unlimited detail and resolution,” Graph. Models 97, 64–79 (2018).
[Crossref]

Hilas, C.

K. Evangelidis, T. Papadopoulos, K. Papatheodorou, P. Mastorokostas, and C. Hilas, “3D geospatial visualizations: Animation and motion effects on spatial objects,” Comput. Geosci. 111, 200–212 (2018).
[Crossref]

Hirsch, M.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

Jiang, C.

X. Sang, F. Fan, S. Choi, C. Jiang, C. Yu, B. Yan, and W. Dou, “Three-dimensional display based on the holographic functional screen,” Opt. Eng. 50(9), 091303 (2011).
[Crossref]

Jiang, C. C.

Jin, G.

Kang, G.

G. Kang, Y. Sim, and J. Han, “Terrain rendering with unlimited detail and resolution,” Graph. Models 97, 64–79 (2018).
[Crossref]

Kawakita, M.

Kim, S. K.

Kong, D.

Lanman, D.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

Lee, B. R.

Lee, C. H.

Li, H.

X. Liu and H. Li, “The progress of light field 3-D displays,” Inf. Disp. 30(6), 6–14 (2014).
[Crossref]

Li, Y.

Liu, B.

Liu, L.

Liu, X.

X. Liu and H. Li, “The progress of light field 3-D displays,” Inf. Disp. 30(6), 6–14 (2014).
[Crossref]

Liu, Y.

W. Song, Q. Zhu, Y. Liu, and Y. Wang, “Volumetric display based on multiple mini-projectors and a rotating screen,” Opt. Eng. 54(1), 013103 (2015).
[Crossref]

Lu, K.

R. Zhai, K. Lu, W. Pan, and S. Dai, “GPU-based real-time terrain rendering: Design and implementation,” Neurocomputing 171, 1–8 (2016).
[Crossref]

Lv, G. J.

Mastorokostas, P.

K. Evangelidis, T. Papadopoulos, K. Papatheodorou, P. Mastorokostas, and C. Hilas, “3D geospatial visualizations: Animation and motion effects on spatial objects,” Comput. Geosci. 111, 200–212 (2018).
[Crossref]

Mishina, T.

Miura, M.

Okaichi, N.

Pan, W.

R. Zhai, K. Lu, W. Pan, and S. Dai, “GPU-based real-time terrain rendering: Design and implementation,” Neurocomputing 171, 1–8 (2016).
[Crossref]

Pang, B.

Papadopoulos, T.

K. Evangelidis, T. Papadopoulos, K. Papatheodorou, P. Mastorokostas, and C. Hilas, “3D geospatial visualizations: Animation and motion effects on spatial objects,” Comput. Geosci. 111, 200–212 (2018).
[Crossref]

Papatheodorou, K.

K. Evangelidis, T. Papadopoulos, K. Papatheodorou, P. Mastorokostas, and C. Hilas, “3D geospatial visualizations: Animation and motion effects on spatial objects,” Comput. Geosci. 111, 200–212 (2018).
[Crossref]

Raskar, R.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

Sang, X.

X. Sang, X. Gao, X. Yu, S. Xing, Y. Li, and Y. Wu, “Interactive floating full-parallax digital three-dimensional light-field display based on wavefront recomposing,” Opt. Express 26(7), 8883–8889 (2018).
[Crossref] [PubMed]

S. Yang, X. Sang, X. Yu, X. Gao, L. Liu, B. Liu, and L. Yang, “162-inch 3D light field display based on aspheric lens array and holographic functional screen,” Opt. Express 26(25), 33013–33021 (2018).
[Crossref] [PubMed]

S. Xing, X. Sang, X. Yu, C. Duo, B. Pang, X. Gao, S. Yang, Y. Guan, B. Yan, J. Yuan, and K. Wang, “High-efficient computer-generated integral imaging based on the backward ray-tracing technique and optical reconstruction,” Opt. Express 25(1), 330–338 (2017).
[Crossref] [PubMed]

S. Xing, X. Sang, X. Yu, C. Duo, B. Pang, X. Gao, S. Yang, Y. Guan, B. Yan, J. Yuan, and K. Wang, “High-efficient computer-generated integral imaging based on the backward ray-tracing technique and optical reconstruction,” Opt. Express 25(1), 330–338 (2017).
[Crossref] [PubMed]

D. Chen, X. Sang, X. Yu, X. Zeng, S. Xie, and N. Guo, “Performance improvement of compressive light field display with the viewing-position-dependent weight distribution,” Opt. Express 24(26), 29781–29793 (2016).
[Crossref] [PubMed]

X. Yu, X. Sang, D. Chen, P. Wang, X. Gao, T. Zhao, B. Yan, C. Yu, D. Xu, and W. Dou, “Autostereoscopic three-dimensional display with high dense views and the narrow structure pitch,” Chin. Opt. Lett. 12(6), 060008 (2014).
[Crossref]

X. Sang, F. Fan, S. Choi, C. Jiang, C. Yu, B. Yan, and W. Dou, “Three-dimensional display based on the holographic functional screen,” Opt. Eng. 50(9), 091303 (2011).
[Crossref]

X. Sang, F. C. Fan, C. C. Jiang, S. Choi, W. Dou, C. Yu, and D. Xu, “Demonstration of a large-size real-time full-color three-dimensional display,” Opt. Lett. 34(24), 3803–3805 (2009).
[Crossref] [PubMed]

Sim, Y.

G. Kang, Y. Sim, and J. Han, “Terrain rendering with unlimited detail and resolution,” Graph. Models 97, 64–79 (2018).
[Crossref]

Son, J. Y.

Song, W.

W. Song, Q. Zhu, Y. Liu, and Y. Wang, “Volumetric display based on multiple mini-projectors and a rotating screen,” Opt. Eng. 54(1), 013103 (2015).
[Crossref]

Tang, L.-C.

Wang, J.

Wang, K.

Wang, P.

Wang, Q. H.

Wang, Y.

W. Song, Q. Zhu, Y. Liu, and Y. Wang, “Volumetric display based on multiple mini-projectors and a rotating screen,” Opt. Eng. 54(1), 013103 (2015).
[Crossref]

Wetzstein, G.

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

Wu, Y.

Xie, S.

Xing, S.

Xu, D.

Yan, B.

Yang, L.

Yang, S.

Yin, C.-Y.

Yu, C.

Yu, X.

S. Yang, X. Sang, X. Yu, X. Gao, L. Liu, B. Liu, and L. Yang, “162-inch 3D light field display based on aspheric lens array and holographic functional screen,” Opt. Express 26(25), 33013–33021 (2018).
[Crossref] [PubMed]

X. Sang, X. Gao, X. Yu, S. Xing, Y. Li, and Y. Wu, “Interactive floating full-parallax digital three-dimensional light-field display based on wavefront recomposing,” Opt. Express 26(7), 8883–8889 (2018).
[Crossref] [PubMed]

S. Xing, X. Sang, X. Yu, C. Duo, B. Pang, X. Gao, S. Yang, Y. Guan, B. Yan, J. Yuan, and K. Wang, “High-efficient computer-generated integral imaging based on the backward ray-tracing technique and optical reconstruction,” Opt. Express 25(1), 330–338 (2017).
[Crossref] [PubMed]

S. Xing, X. Sang, X. Yu, C. Duo, B. Pang, X. Gao, S. Yang, Y. Guan, B. Yan, J. Yuan, and K. Wang, “High-efficient computer-generated integral imaging based on the backward ray-tracing technique and optical reconstruction,” Opt. Express 25(1), 330–338 (2017).
[Crossref] [PubMed]

D. Chen, X. Sang, X. Yu, X. Zeng, S. Xie, and N. Guo, “Performance improvement of compressive light field display with the viewing-position-dependent weight distribution,” Opt. Express 24(26), 29781–29793 (2016).
[Crossref] [PubMed]

X. Yu, X. Sang, D. Chen, P. Wang, X. Gao, T. Zhao, B. Yan, C. Yu, D. Xu, and W. Dou, “Autostereoscopic three-dimensional display with high dense views and the narrow structure pitch,” Chin. Opt. Lett. 12(6), 060008 (2014).
[Crossref]

Yuan, J.

Zeng, X.

Zhai, R.

R. Zhai, K. Lu, W. Pan, and S. Dai, “GPU-based real-time terrain rendering: Design and implementation,” Neurocomputing 171, 1–8 (2016).
[Crossref]

Zhang, H.

Zhao, T.

Zhao, W. X.

Zhao, Y.

Zhu, Q.

W. Song, Q. Zhu, Y. Liu, and Y. Wang, “Volumetric display based on multiple mini-projectors and a rotating screen,” Opt. Eng. 54(1), 013103 (2015).
[Crossref]

ACM Trans. Graph. (1)

G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays,” ACM Trans. Graph. 31(4), 1–11 (2012).
[Crossref]

Appl. Opt. (2)

Chin. Opt. Lett. (1)

Comput. Geosci. (1)

K. Evangelidis, T. Papadopoulos, K. Papatheodorou, P. Mastorokostas, and C. Hilas, “3D geospatial visualizations: Animation and motion effects on spatial objects,” Comput. Geosci. 111, 200–212 (2018).
[Crossref]

Graph. Models (1)

G. Kang, Y. Sim, and J. Han, “Terrain rendering with unlimited detail and resolution,” Graph. Models 97, 64–79 (2018).
[Crossref]

Inf. Disp. (1)

X. Liu and H. Li, “The progress of light field 3-D displays,” Inf. Disp. 30(6), 6–14 (2014).
[Crossref]

Neurocomputing (1)

R. Zhai, K. Lu, W. Pan, and S. Dai, “GPU-based real-time terrain rendering: Design and implementation,” Neurocomputing 171, 1–8 (2016).
[Crossref]

Opt. Eng. (2)

X. Sang, F. Fan, S. Choi, C. Jiang, C. Yu, B. Yan, and W. Dou, “Three-dimensional display based on the holographic functional screen,” Opt. Eng. 50(9), 091303 (2011).
[Crossref]

W. Song, Q. Zhu, Y. Liu, and Y. Wang, “Volumetric display based on multiple mini-projectors and a rotating screen,” Opt. Eng. 54(1), 013103 (2015).
[Crossref]

Opt. Express (8)

D. Chen, X. Sang, X. Yu, X. Zeng, S. Xie, and N. Guo, “Performance improvement of compressive light field display with the viewing-position-dependent weight distribution,” Opt. Express 24(26), 29781–29793 (2016).
[Crossref] [PubMed]

N. Okaichi, M. Miura, J. Arai, M. Kawakita, and T. Mishina, “Integral 3D display using multiple LCD panels and multi-image combining optical system,” Opt. Express 25(3), 2805–2817 (2017).
[Crossref] [PubMed]

S. Xing, X. Sang, X. Yu, C. Duo, B. Pang, X. Gao, S. Yang, Y. Guan, B. Yan, J. Yuan, and K. Wang, “High-efficient computer-generated integral imaging based on the backward ray-tracing technique and optical reconstruction,” Opt. Express 25(1), 330–338 (2017).
[Crossref] [PubMed]

Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
[Crossref] [PubMed]

J. Y. Son, C. H. Lee, O. O. Chernyshov, B. R. Lee, and S. K. Kim, “A floating type holographic display,” Opt. Express 21(17), 20441–20451 (2013).
[Crossref] [PubMed]

X. Sang, X. Gao, X. Yu, S. Xing, Y. Li, and Y. Wu, “Interactive floating full-parallax digital three-dimensional light-field display based on wavefront recomposing,” Opt. Express 26(7), 8883–8889 (2018).
[Crossref] [PubMed]

S. Yang, X. Sang, X. Yu, X. Gao, L. Liu, B. Liu, and L. Yang, “162-inch 3D light field display based on aspheric lens array and holographic functional screen,” Opt. Express 26(25), 33013–33021 (2018).
[Crossref] [PubMed]

S. Xing, X. Sang, X. Yu, C. Duo, B. Pang, X. Gao, S. Yang, Y. Guan, B. Yan, J. Yuan, and K. Wang, “High-efficient computer-generated integral imaging based on the backward ray-tracing technique and optical reconstruction,” Opt. Express 25(1), 330–338 (2017).
[Crossref] [PubMed]

Opt. Lett. (1)

Supplementary Material (4)

NameDescription
» Visualization 1       3D light-field display of human heart and sternum
» Visualization 2       3D light-field display of static 3D image of urban terrain
» Visualization 3       Static 3D light-field image of the tabletop display system
» Visualization 4       Interactive dynamic 3D light-field display with the controlled aircraft and the urban terrain

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) The configuration of the proposed light-field display based on the compound lenticular lens array and multi-projectors. (b) The formation of the voxel from the lenses.
Fig. 2
Fig. 2 Schematic diagram of the holographic functional screen modulation distribution of the spatial angle.
Fig. 3
Fig. 3 (a) The designed structure parameters of the compound lenticular lens. (b) Spot diagram of Project A. (c) Spot diagram of Project A and Project C.
Fig. 4
Fig. 4 (a) Comparison of modulation transfer function for the compound lens and the single lens. (b) Grid distortion of the compound lenticular lens.
Fig. 5
Fig. 5 (a) The 3D image with the traditional lenticular lens array. (b) The 3D image with the optimized compound lenticular lens array.
Fig. 6
Fig. 6 Pixels’ arrangement of the coding images for the projectors.
Fig. 7
Fig. 7 (a) Coded images for the corresponding projectors. (b) 3D light-field display of human heart and sternum (see Visualization 1).
Fig. 8
Fig. 8 3D light-field display of static 3D image of urban terrain (see Visualization 2).
Fig. 9
Fig. 9 (a) Frontal view of the tabletop 3D light field display system. (b) Side view of the tabletop 3D light field display system. (c) 3D light-field display of static 3D image (see Visualization 3) and interactive dynamic 3D light-field display with the controlled aircraft and the urban terrain (see Visualization 4).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f= y tan(θ)
Ω ij = n=1 N ω An + n=1 N ω Bn + n=1 N ω Cn
z= c r 2 1+ 1( 1+k ) c 2 r 2 + α 2 r 2 + α 4 r 4 + α 6 r 6 +