Abstract

We propose a method to realize near-perfect absorption of light by using lossy photonic crystals with a broadband and omnidirectional impedance matching property. Different from traditional impedance matching methods that require surface decorations, here we show that the effective impedance of bulk photonic crystals can be designed to be omnidirectionally matched with free space in a broad spectrum. By adding some loss into the system, omnidirectional and broadband absorption can be realized with near 100% efficiency. Based on this principle, photonic crystals composed of a large variety of dielectric materials can become near-perfect absorbers at a broad spectrum range. For example, we have demonstrated a multi-layer photonic crystal composed of titanium dioxide and silicon, which exhibits significant absorption efficiency in the optical spectrum of wavelength between 440nm and 640nm. Our work paves a road towards configurable broadband and omnidirectional near-perfect absorption using bulk photonic crystals without surface decoration, which could be useful in many applications including micro-bolometers, solar cells, selective thermal emitters and structure color.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mid-IR near-perfect absorption with a SiC photonic crystal with angle-controlled polarization selectivity

G. C. R. Devarapu and S. Foteinopoulou
Opt. Express 20(12) 13040-13054 (2012)

Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure

Zhengqi Liu, Peng Zhan, Jing Chen, Chaojun Tang, Zhendong Yan, Zhuo Chen, and Zhenlin Wang
Opt. Express 21(3) 3021-3030 (2013)

Illusion optics via one-dimensional ultratransparent photonic crystals with shifted spatial dispersions

Zhongqi Yao, Jie Luo, and Yun Lai
Opt. Express 25(25) 30931-30938 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. A. Munk, Frequency Selective Surfaces. (Wiley, 2000).
  2. E. F. Knott, J. F. Schaeffer, and M. T. Tuley, Radar Cross Section. (Artech House, 1993).
  3. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [Crossref] [PubMed]
  4. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  5. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [Crossref] [PubMed]
  6. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47(11), 2075–2084 (1999).
    [Crossref]
  7. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  8. N. Engheta, “Thin absorbing screens using metamaterial surfaces,” Antennas and Propagation Society International Symposium, 2002. IEEE 2, 392–395 (2002).
    [Crossref]
  9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  10. B. Wang, T. Koschny, and C. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 033108 (2009).
    [Crossref]
  11. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498 (2010).
    [Crossref]
  12. D. Y. Shchegolkov, A. K. Azad, J. F. O. Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B Condens. Matter Mater. Phys. 82(20), 205117 (2010).
    [Crossref]
  13. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  14. S. Longhi, “PT-symmetric laser absorber,” Phys. Rev. A 82, 031801(R) (2010).
    [Crossref]
  15. Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Phys. Rev. Lett. 106(9), 093902 (2011).
    [Crossref] [PubMed]
  16. Y. Jin, S. Xiao, N. A. Mortensen, and S. He, “Arbitrarily thin metamaterial structure for perfect absorption and giant magnification,” Opt. Express 19(12), 11114–11119 (2011).
    [Crossref] [PubMed]
  17. J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. Cumming, “Polarization insensitive terahertz metamaterial absorber,” Opt. Lett. 36(8), 1524–1526 (2011).
    [Crossref] [PubMed]
  18. S. Bhattacharyya, S. Ghosh, and K. Vaibhav Srivastava, “Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
    [Crossref]
  19. S. Bhattacharyya and K. Vaibhav Srivastava, “Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator,” J. Appl. Phys. 115(6), 064508 (2014).
    [Crossref]
  20. H. Li, L. H. Yuan, B. Zhou, X. Shen, Q. Cheng, and T. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
    [Crossref]
  21. J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
    [Crossref] [PubMed]
  22. M. Li, H. Yang, X. Hou, Y. Tian, and D. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagnetics Res. 108, 37–49 (2010).
    [Crossref]
  23. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
    [Crossref] [PubMed]
  24. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
    [Crossref] [PubMed]
  25. S. Xiao, Q. He, X. Huang, S. Tang, and L. Zhou, “Enhancement of light-matter interactions in slow-wave metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 85(8), 085125 (2012).
    [Crossref]
  26. J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, and Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
    [Crossref]
  27. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref] [PubMed]
  28. X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
    [Crossref]
  29. S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165103 (2012).
    [Crossref]
  30. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref] [PubMed]
  31. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37(11), 2133–2135 (2012).
    [Crossref] [PubMed]
  32. D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
    [Crossref] [PubMed]
  33. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
    [Crossref] [PubMed]
  34. J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
    [Crossref]
  35. S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2014).
    [Crossref] [PubMed]
  36. T. Wang, J. Luo, L. Gao, P. Xu, and Y. Lai, “Equivalent perfect magnetic conductor based on epsilon-near-zero media,” Appl. Phys. Lett. 104(21), 211904 (2015).
    [Crossref]
  37. S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev.  91, 220301 (2015).
  38. R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure,” Appl. Phys. Lett. 105(18), 181102 (2014).
    [Crossref]
  39. F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
    [Crossref]
  40. Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
    [Crossref]
  41. P. Bai, K. Ding, G. Wang, J. Luo, Z. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A (Coll. Park) 94(6), 063841 (2016).
    [Crossref]
  42. X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
    [Crossref] [PubMed]
  43. L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and A. J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
    [Crossref]
  44. P. Kuang, A. Deinega, M. L. Hsieh, S. John, and S. Y. Lin, “Light trapping and near-unity solar absorption in a three-dimensional photonic-crystal,” Opt. Lett. 38(20), 4200–4203 (2013).
    [Crossref] [PubMed]
  45. S. Foster and S. John, “Light-trapping design for thin-film silicon-perovskite tandem solar cells,” J. Appl. Phys. 120(10), 103103 (2016).
    [Crossref]
  46. P. Kuang, S. Eyderman, M. L. Hsieh, A. Post, S. John, and S. Y. Lin, “Achieving an accurate surface profile of a photonic crystal for near-unity solar absorption in a super thin-film architecture,” ACS Nano 10(6), 6116–6124 (2016).
    [Crossref] [PubMed]
  47. J. Luo, B. Liu, Z. H. Hang, and Y. Lai, “Coherent perfect absorption via photonic doping of zero-index media,” Laser Photonics Rev. 12(8), 1800001 (2018).
    [Crossref]
  48. J. Luo, J. Li, and Y. Lai, “Electromagnetic impurity-immunity induced by parity-time symmetry,” Phys. Rev. X 8(3), 031035 (2018).
    [Crossref]
  49. M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
    [Crossref]
  50. F. L. Teixeira and W. C. Chew, “Differential forms, metrics, and the reflectionless absorption of electromagnetic waves,” J. Electromagnet. Wave. 13(5), 665–686 (1999).
    [Crossref]
  51. F. L. Teixeira, “On aspects of the physical realizability of perfectly matched absorbers for electromagnetic waves,” Radio Sci. 38(2), 8014 (2003).
    [Crossref]
  52. R. W. Ziolkowski, “Time-derivative Lorentz materials and their utilization as electromagnetic absorbers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7696–7703 (1997).
    [Crossref]
  53. A. Pastuszczak, M. Stolarek, T. J. Antosiewicz, and R. Kotyński, “Multilayer metamaterial absorbers inspired by perfectly matched layers,” Opt. Quantum Electron. 47(1), 89–97 (2015).
    [Crossref]
  54. E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
    [Crossref]
  55. Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
    [Crossref]
  56. C. Sheng, H. Liu, Y. Wang, S. N. Zhu, and D. A. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7(11), 902–906 (2013).
    [Crossref]
  57. S. A. R. Horsley, M. Artoni, and G. C. La Rocca, “Spatial Kramers-Kronig relations and the reflection of waves,” Nat. Photonics 9(7), 436–439 (2015).
    [Crossref]
  58. W. Jiang, Y. Ma, J. Yuan, G. Yin, W. Wu, and S. He, “Deformable broadband metamaterial absorbers engineered with an analytical spatial Kramers-Kronig permittivity profile,” Laser Photonics Rev. 11(1), 1600253 (2017).
    [Crossref]
  59. D. Ye, C. Cao, T. Zhou, J. Huangfu, G. Zheng, and L. Ran, “Observation of reflectionless absorption due to spatial Kramers-Kronig profile,” Nat. Commun. 8(1), 51 (2017).
    [Crossref] [PubMed]
  60. K. Sainath and F. L. Teixeira, “Perfectly reflectionless omnidirectional absorbers and electromagnetic horizons,” J. Opt. Soc. Am. B 32(8), 1645–1650 (2015).
    [Crossref]
  61. J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
    [Crossref] [PubMed]
  62. Z. Yao, J. Luo, and Y. Lai, “Photonic crystals with broadband, wide-angle, and polarization-insensitive transparency,” Opt. Lett. 41(21), 5106–5109 (2016).
    [Crossref] [PubMed]
  63. Z. Yao, J. Luo, and Y. Lai, “Illusion optics via one-dimensional ultratransparent photonic crystals with shifted spatial dispersions,” Opt. Express 25(25), 30931–30938 (2017).
    [Crossref] [PubMed]
  64. C. Liu, J. Luo, and Y. Lai, “Acoustic metamaterials with broadband and wide-angle impedance matching,” Phys. Rev. Mater. 2(4), 045201 (2018).
    [Crossref]
  65. F. J. Lawrence, C. M. de Sterke, L. C. Botten, R. C. McPhedran, and K. B. Dossou, “Modeling photonic crystal interfaces and stacks: impedance-based approaches,” Adv. Opt. Photonics 5(4), 385 (2013).
    [Crossref]
  66. D. E. Aspnes, “Spectroscopic analysis of the interface between Si and its thermally grown oxide,” J. Electrochem. Soc. 127(6), 1359 (1980).
    [Crossref]
  67. E. D. Palik, Handbook of Optical Constants of Solids. (Academic, 1985).
  68. R. W. Peng, X. Q. Huang, F. Qiu, M. Wang, A. Hu, S. S. Jiang, and M. Mazzer, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80(17), 3063–3065 (2002).
    [Crossref]
  69. G. Subramania, A. J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
    [Crossref]

2018 (3)

J. Luo, B. Liu, Z. H. Hang, and Y. Lai, “Coherent perfect absorption via photonic doping of zero-index media,” Laser Photonics Rev. 12(8), 1800001 (2018).
[Crossref]

J. Luo, J. Li, and Y. Lai, “Electromagnetic impurity-immunity induced by parity-time symmetry,” Phys. Rev. X 8(3), 031035 (2018).
[Crossref]

C. Liu, J. Luo, and Y. Lai, “Acoustic metamaterials with broadband and wide-angle impedance matching,” Phys. Rev. Mater. 2(4), 045201 (2018).
[Crossref]

2017 (3)

Z. Yao, J. Luo, and Y. Lai, “Illusion optics via one-dimensional ultratransparent photonic crystals with shifted spatial dispersions,” Opt. Express 25(25), 30931–30938 (2017).
[Crossref] [PubMed]

W. Jiang, Y. Ma, J. Yuan, G. Yin, W. Wu, and S. He, “Deformable broadband metamaterial absorbers engineered with an analytical spatial Kramers-Kronig permittivity profile,” Laser Photonics Rev. 11(1), 1600253 (2017).
[Crossref]

D. Ye, C. Cao, T. Zhou, J. Huangfu, G. Zheng, and L. Ran, “Observation of reflectionless absorption due to spatial Kramers-Kronig profile,” Nat. Commun. 8(1), 51 (2017).
[Crossref] [PubMed]

2016 (7)

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

Z. Yao, J. Luo, and Y. Lai, “Photonic crystals with broadband, wide-angle, and polarization-insensitive transparency,” Opt. Lett. 41(21), 5106–5109 (2016).
[Crossref] [PubMed]

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
[Crossref]

P. Bai, K. Ding, G. Wang, J. Luo, Z. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A (Coll. Park) 94(6), 063841 (2016).
[Crossref]

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and A. J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

S. Foster and S. John, “Light-trapping design for thin-film silicon-perovskite tandem solar cells,” J. Appl. Phys. 120(10), 103103 (2016).
[Crossref]

P. Kuang, S. Eyderman, M. L. Hsieh, A. Post, S. John, and S. Y. Lin, “Achieving an accurate surface profile of a photonic crystal for near-unity solar absorption in a super thin-film architecture,” ACS Nano 10(6), 6116–6124 (2016).
[Crossref] [PubMed]

2015 (7)

A. Pastuszczak, M. Stolarek, T. J. Antosiewicz, and R. Kotyński, “Multilayer metamaterial absorbers inspired by perfectly matched layers,” Opt. Quantum Electron. 47(1), 89–97 (2015).
[Crossref]

K. Sainath and F. L. Teixeira, “Perfectly reflectionless omnidirectional absorbers and electromagnetic horizons,” J. Opt. Soc. Am. B 32(8), 1645–1650 (2015).
[Crossref]

S. A. R. Horsley, M. Artoni, and G. C. La Rocca, “Spatial Kramers-Kronig relations and the reflection of waves,” Nat. Photonics 9(7), 436–439 (2015).
[Crossref]

T. Wang, J. Luo, L. Gao, P. Xu, and Y. Lai, “Equivalent perfect magnetic conductor based on epsilon-near-zero media,” Appl. Phys. Lett. 104(21), 211904 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev.  91, 220301 (2015).

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

2014 (4)

R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure,” Appl. Phys. Lett. 105(18), 181102 (2014).
[Crossref]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2014).
[Crossref] [PubMed]

S. Bhattacharyya and K. Vaibhav Srivastava, “Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator,” J. Appl. Phys. 115(6), 064508 (2014).
[Crossref]

2013 (8)

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

S. Bhattacharyya, S. Ghosh, and K. Vaibhav Srivastava, “Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
[Crossref]

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

F. J. Lawrence, C. M. de Sterke, L. C. Botten, R. C. McPhedran, and K. B. Dossou, “Modeling photonic crystal interfaces and stacks: impedance-based approaches,” Adv. Opt. Photonics 5(4), 385 (2013).
[Crossref]

C. Sheng, H. Liu, Y. Wang, S. N. Zhu, and D. A. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7(11), 902–906 (2013).
[Crossref]

P. Kuang, A. Deinega, M. L. Hsieh, S. John, and S. Y. Lin, “Light trapping and near-unity solar absorption in a three-dimensional photonic-crystal,” Opt. Lett. 38(20), 4200–4203 (2013).
[Crossref] [PubMed]

X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref] [PubMed]

2012 (7)

G. Subramania, A. J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

S. Xiao, Q. He, X. Huang, S. Tang, and L. Zhou, “Enhancement of light-matter interactions in slow-wave metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 85(8), 085125 (2012).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165103 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37(11), 2133–2135 (2012).
[Crossref] [PubMed]

2011 (7)

2010 (5)

M. Li, H. Yang, X. Hou, Y. Tian, and D. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagnetics Res. 108, 37–49 (2010).
[Crossref]

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498 (2010).
[Crossref]

D. Y. Shchegolkov, A. K. Azad, J. F. O. Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B Condens. Matter Mater. Phys. 82(20), 205117 (2010).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

2009 (2)

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
[Crossref]

B. Wang, T. Koschny, and C. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 033108 (2009).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2003 (1)

F. L. Teixeira, “On aspects of the physical realizability of perfectly matched absorbers for electromagnetic waves,” Radio Sci. 38(2), 8014 (2003).
[Crossref]

2002 (1)

R. W. Peng, X. Q. Huang, F. Qiu, M. Wang, A. Hu, S. S. Jiang, and M. Mazzer, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80(17), 3063–3065 (2002).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

1999 (2)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

F. L. Teixeira and W. C. Chew, “Differential forms, metrics, and the reflectionless absorption of electromagnetic waves,” J. Electromagnet. Wave. 13(5), 665–686 (1999).
[Crossref]

1997 (1)

R. W. Ziolkowski, “Time-derivative Lorentz materials and their utilization as electromagnetic absorbers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7696–7703 (1997).
[Crossref]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

1987 (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

1980 (1)

D. E. Aspnes, “Spectroscopic analysis of the interface between Si and its thermally grown oxide,” J. Electrochem. Soc. 127(6), 1359 (1980).
[Crossref]

Antosiewicz, T. J.

A. Pastuszczak, M. Stolarek, T. J. Antosiewicz, and R. Kotyński, “Multilayer metamaterial absorbers inspired by perfectly matched layers,” Opt. Quantum Electron. 47(1), 89–97 (2015).
[Crossref]

Anwar, S.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev.  91, 220301 (2015).

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2014).
[Crossref] [PubMed]

Artoni, M.

S. A. R. Horsley, M. Artoni, and G. C. La Rocca, “Spatial Kramers-Kronig relations and the reflection of waves,” Nat. Photonics 9(7), 436–439 (2015).
[Crossref]

Aspnes, D. E.

D. E. Aspnes, “Spectroscopic analysis of the interface between Si and its thermally grown oxide,” J. Electrochem. Soc. 127(6), 1359 (1980).
[Crossref]

Azad, A. K.

D. Y. Shchegolkov, A. K. Azad, J. F. O. Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B Condens. Matter Mater. Phys. 82(20), 205117 (2010).
[Crossref]

Bai, P.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A (Coll. Park) 94(6), 063841 (2016).
[Crossref]

Bai, W.

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, and Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[Crossref]

Bhattacharyya, S.

S. Bhattacharyya and K. Vaibhav Srivastava, “Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator,” J. Appl. Phys. 115(6), 064508 (2014).
[Crossref]

S. Bhattacharyya, S. Ghosh, and K. Vaibhav Srivastava, “Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
[Crossref]

Blanchard, R.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

Botten, L. C.

F. J. Lawrence, C. M. de Sterke, L. C. Botten, R. C. McPhedran, and K. B. Dossou, “Modeling photonic crystal interfaces and stacks: impedance-based approaches,” Adv. Opt. Photonics 5(4), 385 (2013).
[Crossref]

Cai, B. G.

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Cai, L.

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, and Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[Crossref]

Cai, W.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and A. J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Cao, C.

D. Ye, C. Cao, T. Zhou, J. Huangfu, G. Zheng, and L. Ran, “Observation of reflectionless absorption due to spatial Kramers-Kronig profile,” Nat. Commun. 8(1), 51 (2017).
[Crossref] [PubMed]

Cao, Y.

R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure,” Appl. Phys. Lett. 105(18), 181102 (2014).
[Crossref]

Capasso, F.

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

Chan, C. T.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A (Coll. Park) 94(6), 063841 (2016).
[Crossref]

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

Chen, L.

R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure,” Appl. Phys. Lett. 105(18), 181102 (2014).
[Crossref]

Chen, L. Y.

Chen, X.

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, and Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[Crossref]

Cheng, Q.

H. Li, L. H. Yuan, B. Zhou, X. Shen, Q. Cheng, and T. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Chew, W. C.

F. L. Teixeira and W. C. Chew, “Differential forms, metrics, and the reflectionless absorption of electromagnetic waves,” J. Electromagnet. Wave. 13(5), 665–686 (1999).
[Crossref]

Choi, E. H.

Chong, Y. D.

Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Phys. Rev. Lett. 106(9), 093902 (2011).
[Crossref] [PubMed]

Cui, T.

H. Li, L. H. Yuan, B. Zhou, X. Shen, Q. Cheng, and T. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

Cui, T. J.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Cumming, D. R.

Cumming, D. R. S.

de Sterke, C. M.

F. J. Lawrence, C. M. de Sterke, L. C. Botten, R. C. McPhedran, and K. B. Dossou, “Modeling photonic crystal interfaces and stacks: impedance-based approaches,” Adv. Opt. Photonics 5(4), 385 (2013).
[Crossref]

Deinega, A.

Ding, F.

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

Ding, K.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A (Coll. Park) 94(6), 063841 (2016).
[Crossref]

Ding, W.

R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure,” Appl. Phys. Lett. 105(18), 181102 (2014).
[Crossref]

Dossou, K. B.

F. J. Lawrence, C. M. de Sterke, L. C. Botten, R. C. McPhedran, and K. B. Dossou, “Modeling photonic crystal interfaces and stacks: impedance-based approaches,” Adv. Opt. Photonics 5(4), 385 (2013).
[Crossref]

Engheta, N.

N. Engheta, “Thin absorbing screens using metamaterial surfaces,” Antennas and Propagation Society International Symposium, 2002. IEEE 2, 392–395 (2002).
[Crossref]

Eyderman, S.

P. Kuang, S. Eyderman, M. L. Hsieh, A. Post, S. John, and S. Y. Lin, “Achieving an accurate surface profile of a photonic crystal for near-unity solar absorption in a super thin-film architecture,” ACS Nano 10(6), 6116–6124 (2016).
[Crossref] [PubMed]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Feng, Q.

Feng, R.

R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure,” Appl. Phys. Lett. 105(18), 181102 (2014).
[Crossref]

Feng, S.

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165103 (2012).
[Crossref]

Fischer, A. J.

G. Subramania, A. J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

Foster, S.

S. Foster and S. John, “Light-trapping design for thin-film silicon-perovskite tandem solar cells,” J. Appl. Phys. 120(10), 103103 (2016).
[Crossref]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Gan, Q.

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, and Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[Crossref]

Gao, L.

T. Wang, J. Luo, L. Gao, P. Xu, and Y. Lai, “Equivalent perfect magnetic conductor based on epsilon-near-zero media,” Appl. Phys. Lett. 104(21), 211904 (2015).
[Crossref]

García de Abajo, F. J.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Ge, L.

Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Phys. Rev. Lett. 106(9), 093902 (2011).
[Crossref] [PubMed]

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

Genov, D. A.

C. Sheng, H. Liu, Y. Wang, S. N. Zhu, and D. A. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7(11), 902–906 (2013).
[Crossref]

Ghosh, S.

S. Bhattacharyya, S. Ghosh, and K. Vaibhav Srivastava, “Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
[Crossref]

Grant, J.

Gu, J.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Halterman, K.

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165103 (2012).
[Crossref]

Han, J.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Hang, Z. H.

J. Luo, B. Liu, Z. H. Hang, and Y. Lai, “Coherent perfect absorption via photonic doping of zero-index media,” Laser Photonics Rev. 12(8), 1800001 (2018).
[Crossref]

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev.  91, 220301 (2015).

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2014).
[Crossref] [PubMed]

Hara, J. F. O.

D. Y. Shchegolkov, A. K. Azad, J. F. O. Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B Condens. Matter Mater. Phys. 82(20), 205117 (2010).
[Crossref]

He, Q.

S. Xiao, Q. He, X. Huang, S. Tang, and L. Zhou, “Enhancement of light-matter interactions in slow-wave metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 85(8), 085125 (2012).
[Crossref]

He, S.

W. Jiang, Y. Ma, J. Yuan, G. Yin, W. Wu, and S. He, “Deformable broadband metamaterial absorbers engineered with an analytical spatial Kramers-Kronig permittivity profile,” Laser Photonics Rev. 11(1), 1600253 (2017).
[Crossref]

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Y. Jin, S. Xiao, N. A. Mortensen, and S. He, “Arbitrarily thin metamaterial structure for perfect absorption and giant magnification,” Opt. Express 19(12), 11114–11119 (2011).
[Crossref] [PubMed]

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498 (2010).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Horsley, S. A. R.

S. A. R. Horsley, M. Artoni, and G. C. La Rocca, “Spatial Kramers-Kronig relations and the reflection of waves,” Nat. Photonics 9(7), 436–439 (2015).
[Crossref]

Hou, B.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev.  91, 220301 (2015).

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2014).
[Crossref] [PubMed]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
[Crossref]

Hou, D.

M. Li, H. Yang, X. Hou, Y. Tian, and D. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagnetics Res. 108, 37–49 (2010).
[Crossref]

Hou, X.

M. Li, H. Yang, X. Hou, Y. Tian, and D. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagnetics Res. 108, 37–49 (2010).
[Crossref]

Hsieh, M. L.

P. Kuang, S. Eyderman, M. L. Hsieh, A. Post, S. John, and S. Y. Lin, “Achieving an accurate surface profile of a photonic crystal for near-unity solar absorption in a super thin-film architecture,” ACS Nano 10(6), 6116–6124 (2016).
[Crossref] [PubMed]

P. Kuang, A. Deinega, M. L. Hsieh, S. John, and S. Y. Lin, “Light trapping and near-unity solar absorption in a three-dimensional photonic-crystal,” Opt. Lett. 38(20), 4200–4203 (2013).
[Crossref] [PubMed]

Hu, A.

R. W. Peng, X. Q. Huang, F. Qiu, M. Wang, A. Hu, S. S. Jiang, and M. Mazzer, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80(17), 3063–3065 (2002).
[Crossref]

Hu, C.

Hu, Y. H.

X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref] [PubMed]

Huang, X.

S. Xiao, Q. He, X. Huang, S. Tang, and L. Zhou, “Enhancement of light-matter interactions in slow-wave metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 85(8), 085125 (2012).
[Crossref]

Huang, X. Q.

R. W. Peng, X. Q. Huang, F. Qiu, M. Wang, A. Hu, S. S. Jiang, and M. Mazzer, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80(17), 3063–3065 (2002).
[Crossref]

Huangfu, J.

D. Ye, C. Cao, T. Zhou, J. Huangfu, G. Zheng, and L. Ran, “Observation of reflectionless absorption due to spatial Kramers-Kronig profile,” Nat. Commun. 8(1), 51 (2017).
[Crossref] [PubMed]

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Jang, W. H.

Jiang, S. C.

X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref] [PubMed]

Jiang, S. S.

R. W. Peng, X. Q. Huang, F. Qiu, M. Wang, A. Hu, S. S. Jiang, and M. Mazzer, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80(17), 3063–3065 (2002).
[Crossref]

Jiang, W.

W. Jiang, Y. Ma, J. Yuan, G. Yin, W. Wu, and S. He, “Deformable broadband metamaterial absorbers engineered with an analytical spatial Kramers-Kronig permittivity profile,” Laser Photonics Rev. 11(1), 1600253 (2017).
[Crossref]

Jiang, W. X.

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Jin, Y.

John, S.

P. Kuang, S. Eyderman, M. L. Hsieh, A. Post, S. John, and S. Y. Lin, “Achieving an accurate surface profile of a photonic crystal for near-unity solar absorption in a super thin-film architecture,” ACS Nano 10(6), 6116–6124 (2016).
[Crossref] [PubMed]

S. Foster and S. John, “Light-trapping design for thin-film silicon-perovskite tandem solar cells,” J. Appl. Phys. 120(10), 103103 (2016).
[Crossref]

P. Kuang, A. Deinega, M. L. Hsieh, S. John, and S. Y. Lin, “Light trapping and near-unity solar absorption in a three-dimensional photonic-crystal,” Opt. Lett. 38(20), 4200–4203 (2013).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Kats, M. A.

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

Khalid, A.

Kildishev, A. V.

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
[Crossref]

Kim, K. W.

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Koschny, T.

B. Wang, T. Koschny, and C. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 033108 (2009).
[Crossref]

Kotynski, R.

A. Pastuszczak, M. Stolarek, T. J. Antosiewicz, and R. Kotyński, “Multilayer metamaterial absorbers inspired by perfectly matched layers,” Opt. Quantum Electron. 47(1), 89–97 (2015).
[Crossref]

Kuang, P.

P. Kuang, S. Eyderman, M. L. Hsieh, A. Post, S. John, and S. Y. Lin, “Achieving an accurate surface profile of a photonic crystal for near-unity solar absorption in a super thin-film architecture,” ACS Nano 10(6), 6116–6124 (2016).
[Crossref] [PubMed]

P. Kuang, A. Deinega, M. L. Hsieh, S. John, and S. Y. Lin, “Light trapping and near-unity solar absorption in a three-dimensional photonic-crystal,” Opt. Lett. 38(20), 4200–4203 (2013).
[Crossref] [PubMed]

La Rocca, G. C.

S. A. R. Horsley, M. Artoni, and G. C. La Rocca, “Spatial Kramers-Kronig relations and the reflection of waves,” Nat. Photonics 9(7), 436–439 (2015).
[Crossref]

Lai, Y.

J. Luo, B. Liu, Z. H. Hang, and Y. Lai, “Coherent perfect absorption via photonic doping of zero-index media,” Laser Photonics Rev. 12(8), 1800001 (2018).
[Crossref]

J. Luo, J. Li, and Y. Lai, “Electromagnetic impurity-immunity induced by parity-time symmetry,” Phys. Rev. X 8(3), 031035 (2018).
[Crossref]

C. Liu, J. Luo, and Y. Lai, “Acoustic metamaterials with broadband and wide-angle impedance matching,” Phys. Rev. Mater. 2(4), 045201 (2018).
[Crossref]

Z. Yao, J. Luo, and Y. Lai, “Illusion optics via one-dimensional ultratransparent photonic crystals with shifted spatial dispersions,” Opt. Express 25(25), 30931–30938 (2017).
[Crossref] [PubMed]

Z. Yao, J. Luo, and Y. Lai, “Photonic crystals with broadband, wide-angle, and polarization-insensitive transparency,” Opt. Lett. 41(21), 5106–5109 (2016).
[Crossref] [PubMed]

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

P. Bai, K. Ding, G. Wang, J. Luo, Z. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A (Coll. Park) 94(6), 063841 (2016).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev.  91, 220301 (2015).

T. Wang, J. Luo, L. Gao, P. Xu, and Y. Lai, “Equivalent perfect magnetic conductor based on epsilon-near-zero media,” Appl. Phys. Lett. 104(21), 211904 (2015).
[Crossref]

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2014).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lawrence, F. J.

F. J. Lawrence, C. M. de Sterke, L. C. Botten, R. C. McPhedran, and K. B. Dossou, “Modeling photonic crystal interfaces and stacks: impedance-based approaches,” Adv. Opt. Photonics 5(4), 385 (2013).
[Crossref]

Lee, Y.

Li, H.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

H. Li, L. H. Yuan, B. Zhou, X. Shen, Q. Cheng, and T. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

Li, J.

J. Luo, J. Li, and Y. Lai, “Electromagnetic impurity-immunity induced by parity-time symmetry,” Phys. Rev. X 8(3), 031035 (2018).
[Crossref]

Li, M.

M. Li, H. Yang, X. Hou, Y. Tian, and D. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagnetics Res. 108, 37–49 (2010).
[Crossref]

Li, S.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev.  91, 220301 (2015).

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev.  91, 220301 (2015).

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2014).
[Crossref] [PubMed]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2014).
[Crossref] [PubMed]

Lin, S. Y.

P. Kuang, S. Eyderman, M. L. Hsieh, A. Post, S. John, and S. Y. Lin, “Achieving an accurate surface profile of a photonic crystal for near-unity solar absorption in a super thin-film architecture,” ACS Nano 10(6), 6116–6124 (2016).
[Crossref] [PubMed]

P. Kuang, A. Deinega, M. L. Hsieh, S. John, and S. Y. Lin, “Light trapping and near-unity solar absorption in a three-dimensional photonic-crystal,” Opt. Lett. 38(20), 4200–4203 (2013).
[Crossref] [PubMed]

Liu, B.

J. Luo, B. Liu, Z. H. Hang, and Y. Lai, “Coherent perfect absorption via photonic doping of zero-index media,” Laser Photonics Rev. 12(8), 1800001 (2018).
[Crossref]

Liu, C.

C. Liu, J. Luo, and Y. Lai, “Acoustic metamaterials with broadband and wide-angle impedance matching,” Phys. Rev. Mater. 2(4), 045201 (2018).
[Crossref]

Liu, H.

C. Sheng, H. Liu, Y. Wang, S. N. Zhu, and D. A. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7(11), 902–906 (2013).
[Crossref]

Liu, L.

R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure,” Appl. Phys. Lett. 105(18), 181102 (2014).
[Crossref]

Liu, X.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Lok, L. B.

Lu, W.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev.  91, 220301 (2015).

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2014).
[Crossref] [PubMed]

Luk, T. S.

G. Subramania, A. J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

Luo, J.

C. Liu, J. Luo, and Y. Lai, “Acoustic metamaterials with broadband and wide-angle impedance matching,” Phys. Rev. Mater. 2(4), 045201 (2018).
[Crossref]

J. Luo, J. Li, and Y. Lai, “Electromagnetic impurity-immunity induced by parity-time symmetry,” Phys. Rev. X 8(3), 031035 (2018).
[Crossref]

J. Luo, B. Liu, Z. H. Hang, and Y. Lai, “Coherent perfect absorption via photonic doping of zero-index media,” Laser Photonics Rev. 12(8), 1800001 (2018).
[Crossref]

Z. Yao, J. Luo, and Y. Lai, “Illusion optics via one-dimensional ultratransparent photonic crystals with shifted spatial dispersions,” Opt. Express 25(25), 30931–30938 (2017).
[Crossref] [PubMed]

Z. Yao, J. Luo, and Y. Lai, “Photonic crystals with broadband, wide-angle, and polarization-insensitive transparency,” Opt. Lett. 41(21), 5106–5109 (2016).
[Crossref] [PubMed]

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

P. Bai, K. Ding, G. Wang, J. Luo, Z. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A (Coll. Park) 94(6), 063841 (2016).
[Crossref]

T. Wang, J. Luo, L. Gao, P. Xu, and Y. Lai, “Equivalent perfect magnetic conductor based on epsilon-near-zero media,” Appl. Phys. Lett. 104(21), 211904 (2015).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev.  91, 220301 (2015).

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
[Crossref]

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2014).
[Crossref] [PubMed]

Luo, X.

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Ma, H. F.

Ma, Y.

Mazzer, M.

R. W. Peng, X. Q. Huang, F. Qiu, M. Wang, A. Hu, S. S. Jiang, and M. Mazzer, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80(17), 3063–3065 (2002).
[Crossref]

McPhedran, R. C.

F. J. Lawrence, C. M. de Sterke, L. C. Botten, R. C. McPhedran, and K. B. Dossou, “Modeling photonic crystal interfaces and stacks: impedance-based approaches,” Adv. Opt. Photonics 5(4), 385 (2013).
[Crossref]

Mo, L.

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Mortensen, N. A.

Narimanov, E. E.

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
[Crossref]

Padilla, W. J.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Park, J. W.

Pastuszczak, A.

A. Pastuszczak, M. Stolarek, T. J. Antosiewicz, and R. Kotyński, “Multilayer metamaterial absorbers inspired by perfectly matched layers,” Opt. Quantum Electron. 47(1), 89–97 (2015).
[Crossref]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Peng, R. W.

X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref] [PubMed]

R. W. Peng, X. Q. Huang, F. Qiu, M. Wang, A. Hu, S. S. Jiang, and M. Mazzer, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80(17), 3063–3065 (2002).
[Crossref]

Post, A.

P. Kuang, S. Eyderman, M. L. Hsieh, A. Post, S. John, and S. Y. Lin, “Achieving an accurate surface profile of a photonic crystal for near-unity solar absorption in a super thin-film architecture,” ACS Nano 10(6), 6116–6124 (2016).
[Crossref] [PubMed]

Pu, M.

Qiu, F.

R. W. Peng, X. Q. Huang, F. Qiu, M. Wang, A. Hu, S. S. Jiang, and M. Mazzer, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80(17), 3063–3065 (2002).
[Crossref]

Qiu, J.

R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure,” Appl. Phys. Lett. 105(18), 181102 (2014).
[Crossref]

Ra’di, Y.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Ran, L.

D. Ye, C. Cao, T. Zhou, J. Huangfu, G. Zheng, and L. Ran, “Observation of reflectionless absorption due to spatial Kramers-Kronig profile,” Nat. Commun. 8(1), 51 (2017).
[Crossref] [PubMed]

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Rhee, J. Y.

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

Saha, S.

Sainath, K.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shchegolkov, D. Y.

D. Y. Shchegolkov, A. K. Azad, J. F. O. Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B Condens. Matter Mater. Phys. 82(20), 205117 (2010).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shen, M.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev.  91, 220301 (2015).

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2014).
[Crossref] [PubMed]

Shen, X.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

H. Li, L. H. Yuan, B. Zhou, X. Shen, Q. Cheng, and T. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref] [PubMed]

Sheng, C.

C. Sheng, H. Liu, Y. Wang, S. N. Zhu, and D. A. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7(11), 902–906 (2013).
[Crossref]

Simakov, E. I.

D. Y. Shchegolkov, A. K. Azad, J. F. O. Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B Condens. Matter Mater. Phys. 82(20), 205117 (2010).
[Crossref]

Simovski, C. R.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Song, G.

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, and Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[Crossref]

Soukoulis, C.

B. Wang, T. Koschny, and C. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 033108 (2009).
[Crossref]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Stolarek, M.

A. Pastuszczak, M. Stolarek, T. J. Antosiewicz, and R. Kotyński, “Multilayer metamaterial absorbers inspired by perfectly matched layers,” Opt. Quantum Electron. 47(1), 89–97 (2015).
[Crossref]

Stone, A. D.

Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Phys. Rev. Lett. 106(9), 093902 (2011).
[Crossref] [PubMed]

Subramania, G.

G. Subramania, A. J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

Tan, Y.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and A. J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Tang, S.

S. Xiao, Q. He, X. Huang, S. Tang, and L. Zhou, “Enhancement of light-matter interactions in slow-wave metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 85(8), 085125 (2012).
[Crossref]

Teixeira, F. L.

K. Sainath and F. L. Teixeira, “Perfectly reflectionless omnidirectional absorbers and electromagnetic horizons,” J. Opt. Soc. Am. B 32(8), 1645–1650 (2015).
[Crossref]

F. L. Teixeira, “On aspects of the physical realizability of perfectly matched absorbers for electromagnetic waves,” Radio Sci. 38(2), 8014 (2003).
[Crossref]

F. L. Teixeira and W. C. Chew, “Differential forms, metrics, and the reflectionless absorption of electromagnetic waves,” J. Electromagnet. Wave. 13(5), 665–686 (1999).
[Crossref]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Tian, Y.

M. Li, H. Yang, X. Hou, Y. Tian, and D. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagnetics Res. 108, 37–49 (2010).
[Crossref]

Tretyakov, S. A.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Tuong, P. V.

Vaibhav Srivastava, K.

S. Bhattacharyya and K. Vaibhav Srivastava, “Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator,” J. Appl. Phys. 115(6), 064508 (2014).
[Crossref]

S. Bhattacharyya, S. Ghosh, and K. Vaibhav Srivastava, “Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
[Crossref]

Wang, B.

B. Wang, T. Koschny, and C. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 033108 (2009).
[Crossref]

Wang, C.

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev.  91, 220301 (2015).

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2014).
[Crossref] [PubMed]

Wang, G.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A (Coll. Park) 94(6), 063841 (2016).
[Crossref]

Wang, J.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and A. J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Wang, M.

X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref] [PubMed]

R. W. Peng, X. Q. Huang, F. Qiu, M. Wang, A. Hu, S. S. Jiang, and M. Mazzer, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80(17), 3063–3065 (2002).
[Crossref]

Wang, T.

T. Wang, J. Luo, L. Gao, P. Xu, and Y. Lai, “Equivalent perfect magnetic conductor based on epsilon-near-zero media,” Appl. Phys. Lett. 104(21), 211904 (2015).
[Crossref]

Wang, Y.

C. Sheng, H. Liu, Y. Wang, S. N. Zhu, and D. A. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7(11), 902–906 (2013).
[Crossref]

Wang, Z.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Wu, W.

W. Jiang, Y. Ma, J. Yuan, G. Yin, W. Wu, and S. He, “Deformable broadband metamaterial absorbers engineered with an analytical spatial Kramers-Kronig permittivity profile,” Laser Photonics Rev. 11(1), 1600253 (2017).
[Crossref]

Wu, Y.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A (Coll. Park) 94(6), 063841 (2016).
[Crossref]

Xiao, S.

S. Xiao, Q. He, X. Huang, S. Tang, and L. Zhou, “Enhancement of light-matter interactions in slow-wave metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 85(8), 085125 (2012).
[Crossref]

Y. Jin, S. Xiao, N. A. Mortensen, and S. He, “Arbitrarily thin metamaterial structure for perfect absorption and giant magnification,” Opt. Express 19(12), 11114–11119 (2011).
[Crossref] [PubMed]

Xiong, X.

X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref] [PubMed]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Xu, K.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Xu, P.

T. Wang, J. Luo, L. Gao, P. Xu, and Y. Lai, “Equivalent perfect magnetic conductor based on epsilon-near-zero media,” Appl. Phys. Lett. 104(21), 211904 (2015).
[Crossref]

Xu, W.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and A. J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yang, H.

M. Li, H. Yang, X. Hou, Y. Tian, and D. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagnetics Res. 108, 37–49 (2010).
[Crossref]

Yang, Y.

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Yao, Z.

Ye, D.

D. Ye, C. Cao, T. Zhou, J. Huangfu, G. Zheng, and L. Ran, “Observation of reflectionless absorption due to spatial Kramers-Kronig profile,” Nat. Commun. 8(1), 51 (2017).
[Crossref] [PubMed]

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Ye, Y. Q.

Yin, G.

W. Jiang, Y. Ma, J. Yuan, G. Yin, W. Wu, and S. He, “Deformable broadband metamaterial absorbers engineered with an analytical spatial Kramers-Kronig permittivity profile,” Laser Photonics Rev. 11(1), 1600253 (2017).
[Crossref]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Yuan, J.

W. Jiang, Y. Ma, J. Yuan, G. Yin, W. Wu, and S. He, “Deformable broadband metamaterial absorbers engineered with an analytical spatial Kramers-Kronig permittivity profile,” Laser Photonics Rev. 11(1), 1600253 (2017).
[Crossref]

Yuan, L. H.

H. Li, L. H. Yuan, B. Zhou, X. Shen, Q. Cheng, and T. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

Yuan, Y.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and A. J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Zang, Y.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Zhang, J.

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, and Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[Crossref]

Zhang, W.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Zhang, Z.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A (Coll. Park) 94(6), 063841 (2016).
[Crossref]

Zhao, J.

Zheng, G.

D. Ye, C. Cao, T. Zhou, J. Huangfu, G. Zheng, and L. Ran, “Observation of reflectionless absorption due to spatial Kramers-Kronig profile,” Nat. Commun. 8(1), 51 (2017).
[Crossref] [PubMed]

Zhou, B.

H. Li, L. H. Yuan, B. Zhou, X. Shen, Q. Cheng, and T. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

Zhou, L.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and A. J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

S. Xiao, Q. He, X. Huang, S. Tang, and L. Zhou, “Enhancement of light-matter interactions in slow-wave metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 85(8), 085125 (2012).
[Crossref]

Zhou, T.

D. Ye, C. Cao, T. Zhou, J. Huangfu, G. Zheng, and L. Ran, “Observation of reflectionless absorption due to spatial Kramers-Kronig profile,” Nat. Commun. 8(1), 51 (2017).
[Crossref] [PubMed]

Zhu, A. J.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and A. J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Zhu, J.

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

Zhu, S.

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and A. J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

Zhu, S. N.

C. Sheng, H. Liu, Y. Wang, S. N. Zhu, and D. A. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7(11), 902–906 (2013).
[Crossref]

Ziolkowski, R. W.

R. W. Ziolkowski, “Time-derivative Lorentz materials and their utilization as electromagnetic absorbers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7696–7703 (1997).
[Crossref]

ACS Nano (1)

P. Kuang, S. Eyderman, M. L. Hsieh, A. Post, S. John, and S. Y. Lin, “Achieving an accurate surface profile of a photonic crystal for near-unity solar absorption in a super thin-film architecture,” ACS Nano 10(6), 6116–6124 (2016).
[Crossref] [PubMed]

Adv. Mater. (1)

X. Xiong, S. C. Jiang, Y. H. Hu, R. W. Peng, and M. Wang, “Structured metal film as a perfect absorber,” Adv. Mater. 25(29), 3994–4000 (2013).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

F. J. Lawrence, C. M. de Sterke, L. C. Botten, R. C. McPhedran, and K. B. Dossou, “Modeling photonic crystal interfaces and stacks: impedance-based approaches,” Adv. Opt. Photonics 5(4), 385 (2013).
[Crossref]

Appl. Phys. Lett. (8)

R. W. Peng, X. Q. Huang, F. Qiu, M. Wang, A. Hu, S. S. Jiang, and M. Mazzer, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80(17), 3063–3065 (2002).
[Crossref]

G. Subramania, A. J. Fischer, and T. S. Luk, “Optical properties of metal-dielectric based epsilon near zero metamaterials,” Appl. Phys. Lett. 101(24), 241107 (2012).
[Crossref]

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
[Crossref]

J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, and Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011).
[Crossref]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

T. Wang, J. Luo, L. Gao, P. Xu, and Y. Lai, “Equivalent perfect magnetic conductor based on epsilon-near-zero media,” Appl. Phys. Lett. 104(21), 211904 (2015).
[Crossref]

R. Feng, J. Qiu, Y. Cao, L. Liu, W. Ding, and L. Chen, “Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure,” Appl. Phys. Lett. 105(18), 181102 (2014).
[Crossref]

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

IEEE T. Microw. Theory (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T. Microw. Theory 47(11), 2075–2084 (1999).
[Crossref]

J. Appl. Phys. (4)

S. Bhattacharyya, S. Ghosh, and K. Vaibhav Srivastava, “Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
[Crossref]

S. Bhattacharyya and K. Vaibhav Srivastava, “Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator,” J. Appl. Phys. 115(6), 064508 (2014).
[Crossref]

H. Li, L. H. Yuan, B. Zhou, X. Shen, Q. Cheng, and T. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110(1), 014909 (2011).
[Crossref]

S. Foster and S. John, “Light-trapping design for thin-film silicon-perovskite tandem solar cells,” J. Appl. Phys. 120(10), 103103 (2016).
[Crossref]

J. Electrochem. Soc. (1)

D. E. Aspnes, “Spectroscopic analysis of the interface between Si and its thermally grown oxide,” J. Electrochem. Soc. 127(6), 1359 (1980).
[Crossref]

J. Electromagnet. Wave. (1)

F. L. Teixeira and W. C. Chew, “Differential forms, metrics, and the reflectionless absorption of electromagnetic waves,” J. Electromagnet. Wave. 13(5), 665–686 (1999).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (3)

W. Jiang, Y. Ma, J. Yuan, G. Yin, W. Wu, and S. He, “Deformable broadband metamaterial absorbers engineered with an analytical spatial Kramers-Kronig permittivity profile,” Laser Photonics Rev. 11(1), 1600253 (2017).
[Crossref]

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
[Crossref]

J. Luo, B. Liu, Z. H. Hang, and Y. Lai, “Coherent perfect absorption via photonic doping of zero-index media,” Laser Photonics Rev. 12(8), 1800001 (2018).
[Crossref]

Nano Lett. (1)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

D. Ye, C. Cao, T. Zhou, J. Huangfu, G. Zheng, and L. Ran, “Observation of reflectionless absorption due to spatial Kramers-Kronig profile,” Nat. Commun. 8(1), 51 (2017).
[Crossref] [PubMed]

Nat. Mater. (1)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

Nat. Photonics (3)

L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, and A. J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nat. Photonics 10(6), 393–398 (2016).
[Crossref]

C. Sheng, H. Liu, Y. Wang, S. N. Zhu, and D. A. Genov, “Trapping light by mimicking gravitational lensing,” Nat. Photonics 7(11), 902–906 (2013).
[Crossref]

S. A. R. Horsley, M. Artoni, and G. C. La Rocca, “Spatial Kramers-Kronig relations and the reflection of waves,” Nat. Photonics 9(7), 436–439 (2015).
[Crossref]

New J. Phys. (1)

Q. Cheng, T. J. Cui, W. X. Jiang, and B. G. Cai, “An omnidirectional electromagnetic absorber made of metamaterials,” New J. Phys. 12(6), 063006 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Opt. Quantum Electron. (1)

A. Pastuszczak, M. Stolarek, T. J. Antosiewicz, and R. Kotyński, “Multilayer metamaterial absorbers inspired by perfectly matched layers,” Opt. Quantum Electron. 47(1), 89–97 (2015).
[Crossref]

Phys. Rev (1)

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation,” Phys. Rev.  91, 220301 (2015).

Phys. Rev. A (Coll. Park) (1)

P. Bai, K. Ding, G. Wang, J. Luo, Z. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A (Coll. Park) 94(6), 063841 (2016).
[Crossref]

Phys. Rev. Appl. (1)

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (5)

J. Luo, S. Li, B. Hou, and Y. Lai, “Unified theory for perfect absorption in ultrathin absorptive films with constant tangential electric or magnetic fields,” Phys. Rev. B Condens. Matter Mater. Phys. 90(16), 165128 (2014).
[Crossref]

S. Xiao, Q. He, X. Huang, S. Tang, and L. Zhou, “Enhancement of light-matter interactions in slow-wave metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 85(8), 085125 (2012).
[Crossref]

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 86(16), 165103 (2012).
[Crossref]

D. Y. Shchegolkov, A. K. Azad, J. F. O. Hara, and E. I. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B Condens. Matter Mater. Phys. 82(20), 205117 (2010).
[Crossref]

B. Wang, T. Koschny, and C. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 033108 (2009).
[Crossref]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

R. W. Ziolkowski, “Time-derivative Lorentz materials and their utilization as electromagnetic absorbers,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7696–7703 (1997).
[Crossref]

Phys. Rev. Lett. (9)

Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Phys. Rev. Lett. 106(9), 093902 (2011).
[Crossref] [PubMed]

J. Luo, Y. Yang, Z. Yao, W. Lu, B. Hou, Z. H. Hang, C. T. Chan, and Y. Lai, “Ultratransparent media and transformation optics with shifted spatial dispersions,” Phys. Rev. Lett. 117(22), 223901 (2016).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Phys. Rev. Mater. (1)

C. Liu, J. Luo, and Y. Lai, “Acoustic metamaterials with broadband and wide-angle impedance matching,” Phys. Rev. Mater. 2(4), 045201 (2018).
[Crossref]

Phys. Rev. X (1)

J. Luo, J. Li, and Y. Lai, “Electromagnetic impurity-immunity induced by parity-time symmetry,” Phys. Rev. X 8(3), 031035 (2018).
[Crossref]

Prog. Electromagnetics Res. (1)

M. Li, H. Yang, X. Hou, Y. Tian, and D. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagnetics Res. 108, 37–49 (2010).
[Crossref]

Radio Sci. (1)

F. L. Teixeira, “On aspects of the physical realizability of perfectly matched absorbers for electromagnetic waves,” Radio Sci. 38(2), 8014 (2003).
[Crossref]

Sci. Rep. (1)

S. Li, J. Luo, S. Anwar, S. Li, W. Lu, Z. H. Hang, Y. Lai, B. Hou, M. Shen, and C. Wang, “An equivalent realization of coherent perfect absorption under single beam illumination,” Sci. Rep. 4(1), 7369 (2014).
[Crossref] [PubMed]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Other (5)

N. Engheta, “Thin absorbing screens using metamaterial surfaces,” Antennas and Propagation Society International Symposium, 2002. IEEE 2, 392–395 (2002).
[Crossref]

B. A. Munk, Frequency Selective Surfaces. (Wiley, 2000).

E. F. Knott, J. F. Schaeffer, and M. T. Tuley, Radar Cross Section. (Artech House, 1993).

S. Longhi, “PT-symmetric laser absorber,” Phys. Rev. A 82, 031801(R) (2010).
[Crossref]

E. D. Palik, Handbook of Optical Constants of Solids. (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Illustration of an omnidirectional near-perfect absorber consisting of omnidirectional impedance-matched media with a small amount of material loss.
Fig. 2
Fig. 2 (a) Band structure of a dielectric multilayer. The green dashed, red solid and blue dotted lines denote the EFCs at the frequencies fa/c =0.44, fa/c =0.451 and fa/c =0.46, respectively. (b) The impedance difference between the multilayer and free space. [(c), (d)] Incident angle-dependent transmittance through the multilayer with 10 unit cells under the incidence of (c) TE- and (d) TM-polarized waves for the frequencies fa/c =0.44 (green dashed lines), fa/c =0.451 (red solid lines) and fa/c =0.46 (blue dotted lines). (e) Effective relative permittivity ε eff (red solid lines) and permeability μ eff (green dashed lines) of the multilayer structure under normal incidence, showing that ε eff μ eff in a broad frequency band.
Fig. 3
Fig. 3 [(a)-(d)] Absorptance as functions of the incident angle and unit cell number N when there exists loss in [(a), (b)] material A with (a) ε A '' / ε A ' =0.02 and (b) ε A '' / ε A ' =0.1, or [(c), (d)] material B with (c) ε B '' / ε B ' =0.02 and (d) ε B '' / ε B ' =0.1. [(e)-(f)] Absorptance with respect to (e) log( ε A '' / ε A ' ) and log( N ), and (f) log( ε B '' / ε B ' ) and log( N ) under normal incidence, showing a linear relationship for the same amount of absorption. The solid lines and dashed lines in (a)-(f) show the equal-absorptance contours at A=0.99 and A=0.9, respectively. The incident waves are of fa/c =0.451 with TE polarization.
Fig. 4
Fig. 4 (a) Incident-angle-dependent absorptance of the multilayer absorber (Red solid lines for the TE polarization, and green dashed lines for the TM polarization) and the lossy material B alone having the same thickness (blue dotted lines for the TE polarization). (b) The simulated distribution of electric fields when a TE-polarized point source is placed in front of the multilayer absorber. [(c), (d)] Incident-angle-dependent absorptance of the multilayer absorber when the thickness of (c) material A, (d) material B is varied for the TE polarization. The black solid, dashed, dotted and dash-dotted lines correspond to the cases with thickness decreased by 10%, decreased by 5%, increased by 5% and increased by 10%, respectively. The relevant parameters are fa/c =0.451, ε A =2, ε B =5+0.26i and N=50.
Fig. 5
Fig. 5 (a) The required thickness of the material B (solid lines with symbols) and the corresponding working frequency (dashed lines with symbols) to achieve the omnidirectional near-perfect absorption as the variation of the real part of ε B . The relative permittivity of material A is fixed as ε A =2. (b) Incident-angle-dependent absorptance of the mutilayer absorber with 50 unit cells for the TE polarization. The red solid lines and green dashed lines correspond to the cases with ε B =4.5+0.26i, d B =0.32a, fa/c =0.466 and ε B =6+0.26i, d B =0.375a, fa/c =0.423, respectively.
Fig. 6
Fig. 6 (a) Incident-angle-dependent absorptance of the multilayer absorber consisting of TiO2 and Si films (red solid lines for the TE polarization, and green dashed lines for the TM polarization), and the Si slab having the same thickness alone (blue dotted lines for the TE polarization). (b) The real part (solid lines) and imaginary part (dashed lines) of the Si. [(c), (d)] Absorptance of the (c) Si slab alone and (d) TiO2-Si-TiO2 multilayer absorber as functions of incident angle and working wavelength for the TE polarization. The black solid lines in (d) show the equal-absorptance contour at A=0.9.