Abstract

Herein, we demonstrate a real-time, three-dimensional (3D) video-reconstruction system using electro-holography in real-world scenes with deep depth. We calculated computer-generated holograms using 3D information obtained through an RGB-D camera. We successfully reconstructed a 3D video (in real time) of a person moving in real-world space and confirmed that the proposed system operates at ~14 frames per second. In addition, we successfully reconstructed a full-color 3D video of the person. Furthermore, we varied the number of persons moving in the real-world space and evaluated the proposed system’s performance by varying the distance between the RGB-D camera and the person(s).

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes

M.-W. Kwon, S.-C. Kim, S.-E. Yoon, Y.-S. Ho, and E.-S. Kim
Opt. Express 23(3) 2101-2120 (2015)

Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4K IP images to 8K holograms

Yasuyuki Ichihashi, Ryutaro Oi, Takanori Senoh, Kenji Yamamoto, and Taiichiro Kurita
Opt. Express 20(19) 21645-21655 (2012)

Real-time phase-only color holographic video display system using LED illumination

Fahri Yaraş, Hoonjong Kang, and Levent Onural
Appl. Opt. 48(34) H48-H53 (2009)

References

  • View by:
  • |
  • |
  • |

  1. P. V. Johnson, J. A. Parnell, J. Kim, C. D. Saunter, G. D. Love, and M. S. Banks, “Dynamic lens and monovision 3D displays to improve viewer comfort,” Opt. Express 24(11), 11808–11827 (2016).
    [Crossref] [PubMed]
  2. S. Lee, J. Park, J. Heo, B. Kang, D. Kang, H. Hwang, J. Lee, Y. Choi, K. Choi, and D. Nam, “Autostereoscopic 3D display using directional subpixel rendering,” Opt. Express 26(16), 20233 (2018).
    [Crossref] [PubMed]
  3. G. Lippmann, “Epreuves reversibles. Photographies integrals,” C. R. Acad. Sci. 146, 446–451 (1908).
  4. T. Naemura, T. Yoshida, and H. Harashima, “3-D computer graphics based on integral photography,” Opt. Express 8(4), 255–262 (2001).
    [Crossref] [PubMed]
  5. R. Yang, X. Huang, S. Li, and C. Jaynes, “Toward the light field display: autostereoscopic rendering via a cluster of projectors,” IEEE Trans. Vis. Comput. Graph. 14(1), 84–96 (2008).
    [Crossref] [PubMed]
  6. X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
    [Crossref]
  7. Z. Zhang, C. P. Chen, Y. Li, B. Yu, L. Zhou, and Y. Wu, “Angular multiplexing of holographic display using tunable multi-stage gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 657(1), 102–106 (2017).
    [Crossref]
  8. P. S. Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
    [Crossref]
  9. N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, “Computer generated holography using a graphics processing unit,” Opt. Express 14(2), 603–608 (2006).
    [Crossref] [PubMed]
  10. T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt. 45(17), 4026–4036 (2006).
    [Crossref] [PubMed]
  11. Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
    [Crossref]
  12. Y. Zhao, K. C. Kwon, M. U. Erdenebat, M. S. Islam, S. H. Jeon, and N. Kim, “Quality enhancement and GPU acceleration for a full-color holographic system using a relocated point cloud gridding method,” Appl. Opt. 57(15), 4253–4262 (2018).
    [Crossref] [PubMed]
  13. E. Y. Chang, J. Choi, S. Lee, S. Kwon, J. Yoo, M. Park, and J. Kim, “360-degree color hologram generation for real 3D objects,” Appl. Opt. 57(1), A91–A100 (2018).
    [Crossref] [PubMed]
  14. H. Kang, C. Ahn, S. Lee, and S. Lee, “Computer-generated 3D holograms of depth-annotated images,” Proc. SPIE 5742, 234–241 (2005).
    [Crossref]
  15. K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63 (2009).
    [Crossref] [PubMed]
  16. R. H. Y. Chen and T. D. Wilkinson, “Computer generated hologram from point cloud using graphics processor,” Appl. Opt. 48(36), 6841–6850 (2009).
    [Crossref] [PubMed]
  17. T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34(20), 3133–3135 (2009).
    [Crossref] [PubMed]
  18. Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “HORN-6 special-purpose clustered computing system for electroholography,” Opt. Express 17(16), 13895–13903 (2009).
    [Crossref] [PubMed]
  19. K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19(10), 9086–9101 (2011).
    [Crossref] [PubMed]
  20. Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display,” Appl. Opt. 52(1), A290–A299 (2013).
    [Crossref] [PubMed]
  21. T. Shimobaba and T. Ito, “Fast generation of computer-generated holograms using wavelet shrinkage,” Opt. Express 25(1), 77–87 (2017).
    [Crossref] [PubMed]
  22. Y. Zhao, Y. Piao, S. Park, K. Lee, and N. Kim, “Fast calculation method for full-color computer-generated hologram of real objects captured by depth camera,” Electronic Imaging 2018(4), 250–251 (2018).
  23. S. Yamada, T. Kakue, T. Shimobaba, and T. Ito, “Interactive holographic display based on finger gestures,” Sci. Rep. 8(1), 2010 (2018).
    [Crossref] [PubMed]
  24. S. Igarashi, T. Nakamura, K. Matsushima, and M. Yamaguchi, “Efficient tiled calculation of over-10-gigapixel holograms using ray-wavefront conversion,” Opt. Express 26(8), 10773–10786 (2018).
    [Crossref] [PubMed]
  25. Y. Zhao, C. Shi, K. Kwon, Y. Piao, M. Piao, and N. Kim, “Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding,” Opt. Commun. 411, 166–169 (2018).
    [Crossref]
  26. T. Kakue, Y. Wagatsuma, S. Yamada, T. Nishitsuji, Y. Endo, Y. Nagahama, R. Hirayama, T. Shimobaba, and T. Ito, “Review of real-time reconstruction techniques for aerial-projection holographic displays,” Opt. Eng. 57(06), 1 (2018).
    [Crossref]
  27. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16(16), 12372–12386 (2008).
    [Crossref] [PubMed]
  28. M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. Express 17(23), 20840–20846 (2009).
    [Crossref] [PubMed]
  29. K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, “3D objects enlargement technique using an optical system and multiple SLMs for electronic holography,” Opt. Express 20(19), 21137–21144 (2012).
    [Crossref] [PubMed]
  30. G. Xue, J. Liu, X. Li, J. Jia, Z. Zhang, B. Hu, and Y. Wang, “Multiplexing encoding method for full-color dynamic 3D holographic display,” Opt. Express 22(15), 18473–18482 (2014).
    [Crossref] [PubMed]
  31. Y. Ichihashi, R. Oi, T. Senoh, K. Yamamoto, and T. Kurita, “Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4K IP images to 8K holograms,” Opt. Express 20(19), 21645–21655 (2012).
    [Crossref] [PubMed]
  32. M. Yamaguchi, “Light-field and holographic three-dimensional displays [Invited],” J. Opt. Soc. Am. A 33(12), 2348–2364 (2016).
    [Crossref] [PubMed]
  33. K. Wakunami, H. Yamashita, and M. Yamaguchi, “Occlusion culling for computer generated hologram based on ray-wavefront conversion,” Opt. Express 21(19), 21811–21822 (2013).
    [Crossref] [PubMed]
  34. M. Heikklä and M. Pietikäinen, “A texture-based method for modeling the background and detecting moving objects,” IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006).
    [Crossref] [PubMed]
  35. Microsoft Corporation, https://www.microsoft.com .
  36. H. Sarbolandi, D. Lefloch, and A. Kolb, “Kinect range sensing: structured-light versus time-of-flight kinect,” Comput. Vis. Image Underst. 139, 1–20 (2015).
    [Crossref]
  37. Point Cloud Library, http://www.pointclouds.org/ .
  38. Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
    [Crossref] [PubMed]
  39. T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nature Electron. 1(4), 254–259 (2018).
    [Crossref]
  40. Y. Yamamoto, H. Nakayama, N. Takada, T. Nishitsuji, T. Sugie, T. Kakue, T. Shimobaba, and T. Ito, “Large-scale electroholography by HORN-8 from a point-cloud model with 400,000 points,” Opt. Express 26(26), 34259–34265 (2018).
    [Crossref] [PubMed]
  41. H. Nakayama, N. Takada, Y. Ichihashi, S. Awazu, T. Shimobaba, N. Masuda, and T. Ito, “Real-time color electroholography using multiple graphics processing units and multiple high-definition liquid-crystal display panels,” Appl. Opt. 49(31), 5993–5996 (2010).
    [Crossref]
  42. H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
    [Crossref] [PubMed]
  43. Visual Studio, https://visualstudio.microsoft.com .
  44. CUDA, https://developer.nvidia.com/cuda-zone .
  45. OpenGl, https://www.opengl.org/ .
  46. S. Hasegawa, H. Yanagihara, Y. Yamamoto, T. Kakue, T. Shimobaba, and T. Ito, “Electroholography of real scenes by RGB-D camera and the downsampling method,” OSA Continuum 2(5), 1629–1638 (2019).
    [Crossref]
  47. S. C. Kim and E. S. Kim, “Fast one-step calculation of holographic videos of three-dimensional scenes by combined use of baseline and depth-compensating principal fringe patterns,” Opt. Express 22(19), 22513–22527 (2014).
    [Crossref] [PubMed]

2019 (1)

2018 (11)

E. Y. Chang, J. Choi, S. Lee, S. Kwon, J. Yoo, M. Park, and J. Kim, “360-degree color hologram generation for real 3D objects,” Appl. Opt. 57(1), A91–A100 (2018).
[Crossref] [PubMed]

S. Igarashi, T. Nakamura, K. Matsushima, and M. Yamaguchi, “Efficient tiled calculation of over-10-gigapixel holograms using ray-wavefront conversion,” Opt. Express 26(8), 10773–10786 (2018).
[Crossref] [PubMed]

Y. Zhao, K. C. Kwon, M. U. Erdenebat, M. S. Islam, S. H. Jeon, and N. Kim, “Quality enhancement and GPU acceleration for a full-color holographic system using a relocated point cloud gridding method,” Appl. Opt. 57(15), 4253–4262 (2018).
[Crossref] [PubMed]

S. Lee, J. Park, J. Heo, B. Kang, D. Kang, H. Hwang, J. Lee, Y. Choi, K. Choi, and D. Nam, “Autostereoscopic 3D display using directional subpixel rendering,” Opt. Express 26(16), 20233 (2018).
[Crossref] [PubMed]

Y. Yamamoto, H. Nakayama, N. Takada, T. Nishitsuji, T. Sugie, T. Kakue, T. Shimobaba, and T. Ito, “Large-scale electroholography by HORN-8 from a point-cloud model with 400,000 points,” Opt. Express 26(26), 34259–34265 (2018).
[Crossref] [PubMed]

Y. Zhao, Y. Piao, S. Park, K. Lee, and N. Kim, “Fast calculation method for full-color computer-generated hologram of real objects captured by depth camera,” Electronic Imaging 2018(4), 250–251 (2018).

S. Yamada, T. Kakue, T. Shimobaba, and T. Ito, “Interactive holographic display based on finger gestures,” Sci. Rep. 8(1), 2010 (2018).
[Crossref] [PubMed]

Y. Zhao, C. Shi, K. Kwon, Y. Piao, M. Piao, and N. Kim, “Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding,” Opt. Commun. 411, 166–169 (2018).
[Crossref]

T. Kakue, Y. Wagatsuma, S. Yamada, T. Nishitsuji, Y. Endo, Y. Nagahama, R. Hirayama, T. Shimobaba, and T. Ito, “Review of real-time reconstruction techniques for aerial-projection holographic displays,” Opt. Eng. 57(06), 1 (2018).
[Crossref]

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nature Electron. 1(4), 254–259 (2018).
[Crossref]

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref] [PubMed]

2017 (2)

Z. Zhang, C. P. Chen, Y. Li, B. Yu, L. Zhou, and Y. Wu, “Angular multiplexing of holographic display using tunable multi-stage gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 657(1), 102–106 (2017).
[Crossref]

T. Shimobaba and T. Ito, “Fast generation of computer-generated holograms using wavelet shrinkage,” Opt. Express 25(1), 77–87 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (3)

Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
[Crossref] [PubMed]

H. Sarbolandi, D. Lefloch, and A. Kolb, “Kinect range sensing: structured-light versus time-of-flight kinect,” Comput. Vis. Image Underst. 139, 1–20 (2015).
[Crossref]

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

2014 (2)

2013 (2)

2012 (2)

2011 (1)

2010 (1)

2009 (5)

2008 (2)

J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16(16), 12372–12386 (2008).
[Crossref] [PubMed]

R. Yang, X. Huang, S. Li, and C. Jaynes, “Toward the light field display: autostereoscopic rendering via a cluster of projectors,” IEEE Trans. Vis. Comput. Graph. 14(1), 84–96 (2008).
[Crossref] [PubMed]

2006 (3)

2005 (1)

H. Kang, C. Ahn, S. Lee, and S. Lee, “Computer-generated 3D holograms of depth-annotated images,” Proc. SPIE 5742, 234–241 (2005).
[Crossref]

2001 (1)

1990 (1)

P. S. Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
[Crossref]

1908 (1)

G. Lippmann, “Epreuves reversibles. Photographies integrals,” C. R. Acad. Sci. 146, 446–451 (1908).

Ahn, C.

H. Kang, C. Ahn, S. Lee, and S. Lee, “Computer-generated 3D holograms of depth-annotated images,” Proc. SPIE 5742, 234–241 (2005).
[Crossref]

Akamatsu, T.

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nature Electron. 1(4), 254–259 (2018).
[Crossref]

Arai, D.

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

Awazu, S.

Banks, M. S.

Benton, S. A.

P. S. Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
[Crossref]

Cao, L.

Chang, E. Y.

Chen, C. P.

Z. Zhang, C. P. Chen, Y. Li, B. Yu, L. Zhou, and Y. Wu, “Angular multiplexing of holographic display using tunable multi-stage gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 657(1), 102–106 (2017).
[Crossref]

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

Chen, R. H. Y.

Choi, J.

Choi, K.

Choi, Y.

Ducin, I.

Endo, Y.

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nature Electron. 1(4), 254–259 (2018).
[Crossref]

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref] [PubMed]

T. Kakue, Y. Wagatsuma, S. Yamada, T. Nishitsuji, Y. Endo, Y. Nagahama, R. Hirayama, T. Shimobaba, and T. Ito, “Review of real-time reconstruction techniques for aerial-projection holographic displays,” Opt. Eng. 57(06), 1 (2018).
[Crossref]

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

Erdenebat, M. U.

Fajst, A.

Hahn, J.

Harashima, H.

Hasegawa, S.

He, G.

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

Heikklä, M.

M. Heikklä and M. Pietikäinen, “A texture-based method for modeling the background and detecting moving objects,” IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006).
[Crossref] [PubMed]

Heo, J.

Hilaire, P. S.

P. S. Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
[Crossref]

Hirayama, R.

T. Kakue, Y. Wagatsuma, S. Yamada, T. Nishitsuji, Y. Endo, Y. Nagahama, R. Hirayama, T. Shimobaba, and T. Ito, “Review of real-time reconstruction techniques for aerial-projection holographic displays,” Opt. Eng. 57(06), 1 (2018).
[Crossref]

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nature Electron. 1(4), 254–259 (2018).
[Crossref]

Hu, B.

Huang, X.

R. Yang, X. Huang, S. Li, and C. Jaynes, “Toward the light field display: autostereoscopic rendering via a cluster of projectors,” IEEE Trans. Vis. Comput. Graph. 14(1), 84–96 (2008).
[Crossref] [PubMed]

Hwang, H.

Ichihashi, Y.

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nature Electron. 1(4), 254–259 (2018).
[Crossref]

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref] [PubMed]

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, “3D objects enlargement technique using an optical system and multiple SLMs for electronic holography,” Opt. Express 20(19), 21137–21144 (2012).
[Crossref] [PubMed]

Y. Ichihashi, R. Oi, T. Senoh, K. Yamamoto, and T. Kurita, “Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4K IP images to 8K holograms,” Opt. Express 20(19), 21645–21655 (2012).
[Crossref] [PubMed]

H. Nakayama, N. Takada, Y. Ichihashi, S. Awazu, T. Shimobaba, N. Masuda, and T. Ito, “Real-time color electroholography using multiple graphics processing units and multiple high-definition liquid-crystal display panels,” Appl. Opt. 49(31), 5993–5996 (2010).
[Crossref]

Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “HORN-6 special-purpose clustered computing system for electroholography,” Opt. Express 17(16), 13895–13903 (2009).
[Crossref] [PubMed]

Igarashi, S.

Islam, M. S.

Ito, T.

S. Hasegawa, H. Yanagihara, Y. Yamamoto, T. Kakue, T. Shimobaba, and T. Ito, “Electroholography of real scenes by RGB-D camera and the downsampling method,” OSA Continuum 2(5), 1629–1638 (2019).
[Crossref]

Y. Yamamoto, H. Nakayama, N. Takada, T. Nishitsuji, T. Sugie, T. Kakue, T. Shimobaba, and T. Ito, “Large-scale electroholography by HORN-8 from a point-cloud model with 400,000 points,” Opt. Express 26(26), 34259–34265 (2018).
[Crossref] [PubMed]

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref] [PubMed]

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nature Electron. 1(4), 254–259 (2018).
[Crossref]

T. Kakue, Y. Wagatsuma, S. Yamada, T. Nishitsuji, Y. Endo, Y. Nagahama, R. Hirayama, T. Shimobaba, and T. Ito, “Review of real-time reconstruction techniques for aerial-projection holographic displays,” Opt. Eng. 57(06), 1 (2018).
[Crossref]

S. Yamada, T. Kakue, T. Shimobaba, and T. Ito, “Interactive holographic display based on finger gestures,” Sci. Rep. 8(1), 2010 (2018).
[Crossref] [PubMed]

T. Shimobaba and T. Ito, “Fast generation of computer-generated holograms using wavelet shrinkage,” Opt. Express 25(1), 77–87 (2017).
[Crossref] [PubMed]

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

H. Nakayama, N. Takada, Y. Ichihashi, S. Awazu, T. Shimobaba, N. Masuda, and T. Ito, “Real-time color electroholography using multiple graphics processing units and multiple high-definition liquid-crystal display panels,” Appl. Opt. 49(31), 5993–5996 (2010).
[Crossref]

T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34(20), 3133–3135 (2009).
[Crossref] [PubMed]

Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “HORN-6 special-purpose clustered computing system for electroholography,” Opt. Express 17(16), 13895–13903 (2009).
[Crossref] [PubMed]

N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, “Computer generated holography using a graphics processing unit,” Opt. Express 14(2), 603–608 (2006).
[Crossref] [PubMed]

Jaynes, C.

R. Yang, X. Huang, S. Li, and C. Jaynes, “Toward the light field display: autostereoscopic rendering via a cluster of projectors,” IEEE Trans. Vis. Comput. Graph. 14(1), 84–96 (2008).
[Crossref] [PubMed]

Jeon, S. H.

Jepsen, M. L.

P. S. Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
[Crossref]

Jia, J.

Jiang, X.

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

Jin, G.

Johnson, P. V.

Kakue, T.

S. Hasegawa, H. Yanagihara, Y. Yamamoto, T. Kakue, T. Shimobaba, and T. Ito, “Electroholography of real scenes by RGB-D camera and the downsampling method,” OSA Continuum 2(5), 1629–1638 (2019).
[Crossref]

Y. Yamamoto, H. Nakayama, N. Takada, T. Nishitsuji, T. Sugie, T. Kakue, T. Shimobaba, and T. Ito, “Large-scale electroholography by HORN-8 from a point-cloud model with 400,000 points,” Opt. Express 26(26), 34259–34265 (2018).
[Crossref] [PubMed]

S. Yamada, T. Kakue, T. Shimobaba, and T. Ito, “Interactive holographic display based on finger gestures,” Sci. Rep. 8(1), 2010 (2018).
[Crossref] [PubMed]

T. Kakue, Y. Wagatsuma, S. Yamada, T. Nishitsuji, Y. Endo, Y. Nagahama, R. Hirayama, T. Shimobaba, and T. Ito, “Review of real-time reconstruction techniques for aerial-projection holographic displays,” Opt. Eng. 57(06), 1 (2018).
[Crossref]

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nature Electron. 1(4), 254–259 (2018).
[Crossref]

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref] [PubMed]

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

Kang, B.

Kang, D.

Kang, H.

H. Kang, C. Ahn, S. Lee, and S. Lee, “Computer-generated 3D holograms of depth-annotated images,” Proc. SPIE 5742, 234–241 (2005).
[Crossref]

Kim, E. S.

Kim, H.

Kim, J.

Kim, N.

Y. Zhao, K. C. Kwon, M. U. Erdenebat, M. S. Islam, S. H. Jeon, and N. Kim, “Quality enhancement and GPU acceleration for a full-color holographic system using a relocated point cloud gridding method,” Appl. Opt. 57(15), 4253–4262 (2018).
[Crossref] [PubMed]

Y. Zhao, Y. Piao, S. Park, K. Lee, and N. Kim, “Fast calculation method for full-color computer-generated hologram of real objects captured by depth camera,” Electronic Imaging 2018(4), 250–251 (2018).

Y. Zhao, C. Shi, K. Kwon, Y. Piao, M. Piao, and N. Kim, “Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding,” Opt. Commun. 411, 166–169 (2018).
[Crossref]

Kim, S. C.

Kolb, A.

H. Sarbolandi, D. Lefloch, and A. Kolb, “Kinect range sensing: structured-light versus time-of-flight kinect,” Comput. Vis. Image Underst. 139, 1–20 (2015).
[Crossref]

Kollin, J.

P. S. Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
[Crossref]

Kolodziejczyk, A.

Kong, D.

Kurita, T.

Kwon, K.

Y. Zhao, C. Shi, K. Kwon, Y. Piao, M. Piao, and N. Kim, “Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding,” Opt. Commun. 411, 166–169 (2018).
[Crossref]

Kwon, K. C.

Kwon, S.

Lee, B.

Lee, J.

Lee, K.

Y. Zhao, Y. Piao, S. Park, K. Lee, and N. Kim, “Fast calculation method for full-color computer-generated hologram of real objects captured by depth camera,” Electronic Imaging 2018(4), 250–251 (2018).

Lee, S.

Lefloch, D.

H. Sarbolandi, D. Lefloch, and A. Kolb, “Kinect range sensing: structured-light versus time-of-flight kinect,” Comput. Vis. Image Underst. 139, 1–20 (2015).
[Crossref]

Li, S.

R. Yang, X. Huang, S. Li, and C. Jaynes, “Toward the light field display: autostereoscopic rendering via a cluster of projectors,” IEEE Trans. Vis. Comput. Graph. 14(1), 84–96 (2008).
[Crossref] [PubMed]

Li, X.

Li, Y.

Z. Zhang, C. P. Chen, Y. Li, B. Yu, L. Zhou, and Y. Wu, “Angular multiplexing of holographic display using tunable multi-stage gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 657(1), 102–106 (2017).
[Crossref]

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

Lim, Y.

Lippmann, G.

G. Lippmann, “Epreuves reversibles. Photographies integrals,” C. R. Acad. Sci. 146, 446–451 (1908).

Liu, J.

Liu, S.

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

Love, G. D.

Lu, J.

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

Lucente, M.

P. S. Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
[Crossref]

Makowski, M.

Masuda, N.

Matsushima, K.

Mishina, T.

Naemura, T.

Nagahama, Y.

T. Kakue, Y. Wagatsuma, S. Yamada, T. Nishitsuji, Y. Endo, Y. Nagahama, R. Hirayama, T. Shimobaba, and T. Ito, “Review of real-time reconstruction techniques for aerial-projection holographic displays,” Opt. Eng. 57(06), 1 (2018).
[Crossref]

Nakahara, S.

Nakamura, T.

Nakayama, H.

Y. Yamamoto, H. Nakayama, N. Takada, T. Nishitsuji, T. Sugie, T. Kakue, T. Shimobaba, and T. Ito, “Large-scale electroholography by HORN-8 from a point-cloud model with 400,000 points,” Opt. Express 26(26), 34259–34265 (2018).
[Crossref] [PubMed]

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref] [PubMed]

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nature Electron. 1(4), 254–259 (2018).
[Crossref]

H. Nakayama, N. Takada, Y. Ichihashi, S. Awazu, T. Shimobaba, N. Masuda, and T. Ito, “Real-time color electroholography using multiple graphics processing units and multiple high-definition liquid-crystal display panels,” Appl. Opt. 49(31), 5993–5996 (2010).
[Crossref]

Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “HORN-6 special-purpose clustered computing system for electroholography,” Opt. Express 17(16), 13895–13903 (2009).
[Crossref] [PubMed]

Nam, D.

Nishitsuji, T.

Y. Yamamoto, H. Nakayama, N. Takada, T. Nishitsuji, T. Sugie, T. Kakue, T. Shimobaba, and T. Ito, “Large-scale electroholography by HORN-8 from a point-cloud model with 400,000 points,” Opt. Express 26(26), 34259–34265 (2018).
[Crossref] [PubMed]

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nature Electron. 1(4), 254–259 (2018).
[Crossref]

T. Kakue, Y. Wagatsuma, S. Yamada, T. Nishitsuji, Y. Endo, Y. Nagahama, R. Hirayama, T. Shimobaba, and T. Ito, “Review of real-time reconstruction techniques for aerial-projection holographic displays,” Opt. Eng. 57(06), 1 (2018).
[Crossref]

Oi, R.

Oikawa, M.

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nature Electron. 1(4), 254–259 (2018).
[Crossref]

Okano, F.

Okui, M.

Pan, Y.

Park, G.

Park, J.

Park, M.

Park, S.

Y. Zhao, Y. Piao, S. Park, K. Lee, and N. Kim, “Fast calculation method for full-color computer-generated hologram of real objects captured by depth camera,” Electronic Imaging 2018(4), 250–251 (2018).

Parnell, J. A.

Piao, M.

Y. Zhao, C. Shi, K. Kwon, Y. Piao, M. Piao, and N. Kim, “Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding,” Opt. Commun. 411, 166–169 (2018).
[Crossref]

Piao, Y.

Y. Zhao, C. Shi, K. Kwon, Y. Piao, M. Piao, and N. Kim, “Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding,” Opt. Commun. 411, 166–169 (2018).
[Crossref]

Y. Zhao, Y. Piao, S. Park, K. Lee, and N. Kim, “Fast calculation method for full-color computer-generated hologram of real objects captured by depth camera,” Electronic Imaging 2018(4), 250–251 (2018).

Pietikäinen, M.

M. Heikklä and M. Pietikäinen, “A texture-based method for modeling the background and detecting moving objects,” IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006).
[Crossref] [PubMed]

Rong, N.

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

Sarbolandi, H.

H. Sarbolandi, D. Lefloch, and A. Kolb, “Kinect range sensing: structured-light versus time-of-flight kinect,” Comput. Vis. Image Underst. 139, 1–20 (2015).
[Crossref]

Sato, H.

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref] [PubMed]

Saunter, C. D.

Senoh, T.

Shi, C.

Y. Zhao, C. Shi, K. Kwon, Y. Piao, M. Piao, and N. Kim, “Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding,” Opt. Commun. 411, 166–169 (2018).
[Crossref]

Shimobaba, T.

S. Hasegawa, H. Yanagihara, Y. Yamamoto, T. Kakue, T. Shimobaba, and T. Ito, “Electroholography of real scenes by RGB-D camera and the downsampling method,” OSA Continuum 2(5), 1629–1638 (2019).
[Crossref]

Y. Yamamoto, H. Nakayama, N. Takada, T. Nishitsuji, T. Sugie, T. Kakue, T. Shimobaba, and T. Ito, “Large-scale electroholography by HORN-8 from a point-cloud model with 400,000 points,” Opt. Express 26(26), 34259–34265 (2018).
[Crossref] [PubMed]

S. Yamada, T. Kakue, T. Shimobaba, and T. Ito, “Interactive holographic display based on finger gestures,” Sci. Rep. 8(1), 2010 (2018).
[Crossref] [PubMed]

T. Kakue, Y. Wagatsuma, S. Yamada, T. Nishitsuji, Y. Endo, Y. Nagahama, R. Hirayama, T. Shimobaba, and T. Ito, “Review of real-time reconstruction techniques for aerial-projection holographic displays,” Opt. Eng. 57(06), 1 (2018).
[Crossref]

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nature Electron. 1(4), 254–259 (2018).
[Crossref]

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref] [PubMed]

T. Shimobaba and T. Ito, “Fast generation of computer-generated holograms using wavelet shrinkage,” Opt. Express 25(1), 77–87 (2017).
[Crossref] [PubMed]

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

H. Nakayama, N. Takada, Y. Ichihashi, S. Awazu, T. Shimobaba, N. Masuda, and T. Ito, “Real-time color electroholography using multiple graphics processing units and multiple high-definition liquid-crystal display panels,” Appl. Opt. 49(31), 5993–5996 (2010).
[Crossref]

Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “HORN-6 special-purpose clustered computing system for electroholography,” Opt. Express 17(16), 13895–13903 (2009).
[Crossref] [PubMed]

T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34(20), 3133–3135 (2009).
[Crossref] [PubMed]

Shiraki, A.

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nature Electron. 1(4), 254–259 (2018).
[Crossref]

Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “HORN-6 special-purpose clustered computing system for electroholography,” Opt. Express 17(16), 13895–13903 (2009).
[Crossref] [PubMed]

N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, “Computer generated holography using a graphics processing unit,” Opt. Express 14(2), 603–608 (2006).
[Crossref] [PubMed]

Siemion, A.

Su, Y.

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

Sugie, T.

Suszek, J.

Sypek, M.

Takada, N.

Tanaka, T.

Underkoffler, J.

P. S. Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
[Crossref]

Wagatsuma, Y.

T. Kakue, Y. Wagatsuma, S. Yamada, T. Nishitsuji, Y. Endo, Y. Nagahama, R. Hirayama, T. Shimobaba, and T. Ito, “Review of real-time reconstruction techniques for aerial-projection holographic displays,” Opt. Eng. 57(06), 1 (2018).
[Crossref]

Wakunami, K.

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref] [PubMed]

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

K. Wakunami, H. Yamashita, and M. Yamaguchi, “Occlusion culling for computer generated hologram based on ray-wavefront conversion,” Opt. Express 21(19), 21811–21822 (2013).
[Crossref] [PubMed]

K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19(10), 9086–9101 (2011).
[Crossref] [PubMed]

Wang, Y.

Wilkinson, T. D.

Wu, Y.

Z. Zhang, C. P. Chen, Y. Li, B. Yu, L. Zhou, and Y. Wu, “Angular multiplexing of holographic display using tunable multi-stage gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 657(1), 102–106 (2017).
[Crossref]

Xue, G.

Yamada, S.

T. Kakue, Y. Wagatsuma, S. Yamada, T. Nishitsuji, Y. Endo, Y. Nagahama, R. Hirayama, T. Shimobaba, and T. Ito, “Review of real-time reconstruction techniques for aerial-projection holographic displays,” Opt. Eng. 57(06), 1 (2018).
[Crossref]

S. Yamada, T. Kakue, T. Shimobaba, and T. Ito, “Interactive holographic display based on finger gestures,” Sci. Rep. 8(1), 2010 (2018).
[Crossref] [PubMed]

Yamaguchi, M.

Yamamoto, K.

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref] [PubMed]

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, “3D objects enlargement technique using an optical system and multiple SLMs for electronic holography,” Opt. Express 20(19), 21137–21144 (2012).
[Crossref] [PubMed]

Y. Ichihashi, R. Oi, T. Senoh, K. Yamamoto, and T. Kurita, “Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4K IP images to 8K holograms,” Opt. Express 20(19), 21645–21655 (2012).
[Crossref] [PubMed]

Yamamoto, Y.

Yamashita, H.

Yanagihara, H.

Yang, R.

R. Yang, X. Huang, S. Li, and C. Jaynes, “Toward the light field display: autostereoscopic rendering via a cluster of projectors,” IEEE Trans. Vis. Comput. Graph. 14(1), 84–96 (2008).
[Crossref] [PubMed]

Yoo, J.

Yoshida, T.

Yoshikawa, H.

P. S. Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
[Crossref]

Yu, B.

Z. Zhang, C. P. Chen, Y. Li, B. Yu, L. Zhou, and Y. Wu, “Angular multiplexing of holographic display using tunable multi-stage gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 657(1), 102–106 (2017).
[Crossref]

Zhang, H.

Zhang, Z.

Z. Zhang, C. P. Chen, Y. Li, B. Yu, L. Zhou, and Y. Wu, “Angular multiplexing of holographic display using tunable multi-stage gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 657(1), 102–106 (2017).
[Crossref]

G. Xue, J. Liu, X. Li, J. Jia, Z. Zhang, B. Hu, and Y. Wang, “Multiplexing encoding method for full-color dynamic 3D holographic display,” Opt. Express 22(15), 18473–18482 (2014).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, K. C. Kwon, M. U. Erdenebat, M. S. Islam, S. H. Jeon, and N. Kim, “Quality enhancement and GPU acceleration for a full-color holographic system using a relocated point cloud gridding method,” Appl. Opt. 57(15), 4253–4262 (2018).
[Crossref] [PubMed]

Y. Zhao, C. Shi, K. Kwon, Y. Piao, M. Piao, and N. Kim, “Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding,” Opt. Commun. 411, 166–169 (2018).
[Crossref]

Y. Zhao, Y. Piao, S. Park, K. Lee, and N. Kim, “Fast calculation method for full-color computer-generated hologram of real objects captured by depth camera,” Electronic Imaging 2018(4), 250–251 (2018).

Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
[Crossref] [PubMed]

Zhou, L.

Z. Zhang, C. P. Chen, Y. Li, B. Yu, L. Zhou, and Y. Wu, “Angular multiplexing of holographic display using tunable multi-stage gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 657(1), 102–106 (2017).
[Crossref]

Zhou, P.

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

Appl. Opt. (7)

C. R. Acad. Sci. (1)

G. Lippmann, “Epreuves reversibles. Photographies integrals,” C. R. Acad. Sci. 146, 446–451 (1908).

Comput. Vis. Image Underst. (1)

H. Sarbolandi, D. Lefloch, and A. Kolb, “Kinect range sensing: structured-light versus time-of-flight kinect,” Comput. Vis. Image Underst. 139, 1–20 (2015).
[Crossref]

Electronic Imaging (1)

Y. Zhao, Y. Piao, S. Park, K. Lee, and N. Kim, “Fast calculation method for full-color computer-generated hologram of real objects captured by depth camera,” Electronic Imaging 2018(4), 250–251 (2018).

IEEE Trans. Pattern Anal. Mach. Intell. (1)

M. Heikklä and M. Pietikäinen, “A texture-based method for modeling the background and detecting moving objects,” IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006).
[Crossref] [PubMed]

IEEE Trans. Vis. Comput. Graph. (1)

R. Yang, X. Huang, S. Li, and C. Jaynes, “Toward the light field display: autostereoscopic rendering via a cluster of projectors,” IEEE Trans. Vis. Comput. Graph. 14(1), 84–96 (2008).
[Crossref] [PubMed]

J. Disp. Technol. (1)

X. Li, C. P. Chen, Y. Li, P. Zhou, X. Jiang, N. Rong, S. Liu, G. He, J. Lu, and Y. Su, “High-efficiency video-rate holographic display using quantum dot doped liquid crystal,” J. Disp. Technol. 12(4), 362–367 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

Z. Zhang, C. P. Chen, Y. Li, B. Yu, L. Zhou, and Y. Wu, “Angular multiplexing of holographic display using tunable multi-stage gratings,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 657(1), 102–106 (2017).
[Crossref]

Nature Electron. (1)

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nature Electron. 1(4), 254–259 (2018).
[Crossref]

Opt. Commun. (2)

Y. Endo, K. Wakunami, T. Shimobaba, T. Kakue, D. Arai, Y. Ichihashi, K. Yamamoto, and T. Ito, “Computer-generated hologram calculation for real scenes using a commercial portable plenoptic camera,” Opt. Commun. 356, 468–471 (2015).
[Crossref]

Y. Zhao, C. Shi, K. Kwon, Y. Piao, M. Piao, and N. Kim, “Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding,” Opt. Commun. 411, 166–169 (2018).
[Crossref]

Opt. Eng. (1)

T. Kakue, Y. Wagatsuma, S. Yamada, T. Nishitsuji, Y. Endo, Y. Nagahama, R. Hirayama, T. Shimobaba, and T. Ito, “Review of real-time reconstruction techniques for aerial-projection holographic displays,” Opt. Eng. 57(06), 1 (2018).
[Crossref]

Opt. Express (17)

J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16(16), 12372–12386 (2008).
[Crossref] [PubMed]

M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. Express 17(23), 20840–20846 (2009).
[Crossref] [PubMed]

K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, “3D objects enlargement technique using an optical system and multiple SLMs for electronic holography,” Opt. Express 20(19), 21137–21144 (2012).
[Crossref] [PubMed]

G. Xue, J. Liu, X. Li, J. Jia, Z. Zhang, B. Hu, and Y. Wang, “Multiplexing encoding method for full-color dynamic 3D holographic display,” Opt. Express 22(15), 18473–18482 (2014).
[Crossref] [PubMed]

Y. Ichihashi, R. Oi, T. Senoh, K. Yamamoto, and T. Kurita, “Real-time capture and reconstruction system with multiple GPUs for a 3D live scene by a generation from 4K IP images to 8K holograms,” Opt. Express 20(19), 21645–21655 (2012).
[Crossref] [PubMed]

T. Shimobaba and T. Ito, “Fast generation of computer-generated holograms using wavelet shrinkage,” Opt. Express 25(1), 77–87 (2017).
[Crossref] [PubMed]

K. Wakunami, H. Yamashita, and M. Yamaguchi, “Occlusion culling for computer generated hologram based on ray-wavefront conversion,” Opt. Express 21(19), 21811–21822 (2013).
[Crossref] [PubMed]

N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, “Computer generated holography using a graphics processing unit,” Opt. Express 14(2), 603–608 (2006).
[Crossref] [PubMed]

S. Igarashi, T. Nakamura, K. Matsushima, and M. Yamaguchi, “Efficient tiled calculation of over-10-gigapixel holograms using ray-wavefront conversion,” Opt. Express 26(8), 10773–10786 (2018).
[Crossref] [PubMed]

Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “HORN-6 special-purpose clustered computing system for electroholography,” Opt. Express 17(16), 13895–13903 (2009).
[Crossref] [PubMed]

K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19(10), 9086–9101 (2011).
[Crossref] [PubMed]

T. Naemura, T. Yoshida, and H. Harashima, “3-D computer graphics based on integral photography,” Opt. Express 8(4), 255–262 (2001).
[Crossref] [PubMed]

P. V. Johnson, J. A. Parnell, J. Kim, C. D. Saunter, G. D. Love, and M. S. Banks, “Dynamic lens and monovision 3D displays to improve viewer comfort,” Opt. Express 24(11), 11808–11827 (2016).
[Crossref] [PubMed]

S. Lee, J. Park, J. Heo, B. Kang, D. Kang, H. Hwang, J. Lee, Y. Choi, K. Choi, and D. Nam, “Autostereoscopic 3D display using directional subpixel rendering,” Opt. Express 26(16), 20233 (2018).
[Crossref] [PubMed]

Y. Yamamoto, H. Nakayama, N. Takada, T. Nishitsuji, T. Sugie, T. Kakue, T. Shimobaba, and T. Ito, “Large-scale electroholography by HORN-8 from a point-cloud model with 400,000 points,” Opt. Express 26(26), 34259–34265 (2018).
[Crossref] [PubMed]

Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
[Crossref] [PubMed]

S. C. Kim and E. S. Kim, “Fast one-step calculation of holographic videos of three-dimensional scenes by combined use of baseline and depth-compensating principal fringe patterns,” Opt. Express 22(19), 22513–22527 (2014).
[Crossref] [PubMed]

Opt. Lett. (1)

OSA Continuum (1)

Proc. SPIE (2)

H. Kang, C. Ahn, S. Lee, and S. Lee, “Computer-generated 3D holograms of depth-annotated images,” Proc. SPIE 5742, 234–241 (2005).
[Crossref]

P. S. Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
[Crossref]

Sci. Rep. (2)

S. Yamada, T. Kakue, T. Shimobaba, and T. Ito, “Interactive holographic display based on finger gestures,” Sci. Rep. 8(1), 2010 (2018).
[Crossref] [PubMed]

H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Sci. Rep. 8(1), 1500 (2018).
[Crossref] [PubMed]

Other (5)

Visual Studio, https://visualstudio.microsoft.com .

CUDA, https://developer.nvidia.com/cuda-zone .

OpenGl, https://www.opengl.org/ .

Microsoft Corporation, https://www.microsoft.com .

Point Cloud Library, http://www.pointclouds.org/ .

Supplementary Material (3)

NameDescription
» Visualization 1       Visualization 1
» Visualization 2       Visualization 2
» Visualization 3       Visualization 3

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Schematic diagram of the proposed system. Preprocessing is performed continuously from the input part to the output part.
Fig. 2
Fig. 2 Examples of a captured image using an RGB-D camera. (a) Color image acquired using a color camera. (b) Depth image acquired using a depth sensor. (c) Point cloud data generated from color and position information.
Fig. 3
Fig. 3 Point cloud data used for background subtraction. (a) Background, (b) 3D objects, and (c) Moving object obtained using background subtraction.
Fig. 4
Fig. 4 Pseudo code of the algorithm for background subtraction.
Fig. 5
Fig. 5 Schematic diagram for CGH calculation. CGH calculation can be performed by considering the recorded objects as point-light sources.
Fig. 6
Fig. 6 Pseudo code of the algorithm for CGH calculation.
Fig. 7
Fig. 7 Flowchart illustrating the procedure of the constructed system. Acquiring 3D information of background is performed in advance.
Fig. 8
Fig. 8 (a) Schematic of geometry for capturing a color and a depth images using an RGB-D camera. (b) Actual photographing situation.
Fig. 9
Fig. 9 Optical setup for reconstructing full-color 3D images using electro-holography. Herein, AP represents the aperture and CL represents the collimator lens. DM B1 , DM B2 , DM R1 , and DM R2 represent dichroic mirrors. F represents the field lens. H represents half mirror. L B , L G , and L R represent blue, green, and red lasers, respectively. M 1 , M 2 , M 3 , M 4 , and M 5 represent mirrors. OL represents the objective lens. RL 1 and RL 2 represent relay lenses. S B , S G , and S R represent SLMs for blue, green, and red reconstruction, respectively.
Fig. 10
Fig. 10 Display system used to demonstrate the behavior of the proposed system. The upper-left monitor displays the real scene captured at the input part. The bottom monitor displays the CGH generated at the calculation part. The upper-right monitor displays the 3D image reconstructed at the output part. Each image was captured by each digital video camera simultaneously (see Visualization 1).
Fig. 11
Fig. 11 Results at monochromatic reconstruction. (a), (d), (g), and (j) represent 3D objects of real scenes. (b), (e), (h), and (k) represent point cloud data after background subtraction and outlier removal. (c), (f), (i), and (l) represent the reconstructed 3D images (see Visualization 2).
Fig. 12
Fig. 12 (a) Reconstructed 3D images using background subtraction. (b) Reconstructed 3D images not using background subtraction. (c) Reconstructed 3D images using a voxel grid filter.
Fig. 13
Fig. 13 Results at full-color reconstruction. (a), (d), (g), and (j) represent 3D objects of real scenes. (b), (e), (h), and (k) represent point cloud data after background subtraction. (c), (f), (i), and (l) represent the reconstructed 3D images (see Visualization 3).
Fig. 14
Fig. 14 Schematic for evaluating the relationship. In P1, we made a person stand 2.5 m away from an RGB-D camera. In P2, we made a person stand 3.5 m away from an RGB-D camera. In P3, we made people stand 2.5 m and 3.5 m away from an RGB-D camera, respectively.
Fig. 15
Fig. 15 Reconstruction results under each condition. (a) Point cloud data after background subtraction and (b) reconstructed 3D image when a person was placed 2.5 m away from an RGB-D camera. (c) Point cloud data after background subtraction and (d) reconstructed 3D image when a person was placed 3.5 m away from an RGB-D camera. (e) Point cloud data after background subtraction and (f) reconstructed 3D image when people were placed 2.5 m and 3.5 m away from an RGB-D camera, respectively.

Tables (5)

Tables Icon

Table 1 Variables used for background subtraction.

Tables Icon

Table 2 Measurement time per frame for each process during monochromatic reconstruction.

Tables Icon

Table 3 Time taken to perform CGH calculation by using and by not using background subtraction.

Tables Icon

Table 4 Measurement time per frame for each process during full-color reconstruction.

Tables Icon

Table 5 Measurement time taken for CGH calculation under each condition.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

C diff n =[ B diff n G diff n R diff n ]=[ | B in n B b n | | G in n G b n | | R in n R b n | ],
P diff n =[ x diff n y diff n z diff n ]=[ | x in n x b n | | y in n y b n | | z in n z b n | ].
D n =[ x D n y D n z D n ]=[ | x diff n / x in n | | y diff n / y in n | | z diff n / z in n | ].
( B diff n > B T )( G diff n > G T )( R diff n > R T ) ( x D n > x T )( y D n > y T )( z D n > z T )
C out n ={ C in n ,ifthethresholdconditionsweresatisfied 0,else ,
P out n ={ P in n ,ifthethresholdconditionsweresatisfied 0,else .
U( x a , y a )= j=1 L A j exp[ i 2π λ ( x a x j ) 2 + ( y a y j ) 2 2 z j ] ,
ϕ( x a , y a )=arg[ U( x a , y a ) ].

Metrics