Abstract

The reflection and refraction were theoretically investigated for a linearly-polarized wave incident upon the surface of a naturally hyperbolic material. We proposed that this material is uniaxial and possesses two hyperbolic-frequency bands (HB-I and HB-II), whose optical axis is arbitrarily pointed. We paid our attention to reflective and refractive features in the HBs and predicted some extraordinary phenomena. The double reflection was found, where the reflective wave contains a transverse electric branch and a transverse magnetic branch with different amplitudes and phases. The asymmetry of reflection exists and the reflective coefficient abnormally decreases as the incident angle is enlarged. The double refraction inside the material means two refractive branches (the o-wave and e-wave). For the e-wave, there is a special frequency point (SP) in either HB, depending on the orientation of the optical axis. The e-wave and reflective wave exhibit completely different behaviors on the two sides of the SP. The e-wave is a normal refractive wave on the left side of the SP, but it is an evanescent wave on the right side. Its energy-flux seriously deviates from the incident plane and is highly condensed at the inner surface near the SP. It is more interesting that the energy-flux density of the e-wave in the HB-II can even be much larger than that of the incident wave and is opposite in direction on the two sides of the SP, which means an evident radiation-switching effect. The o-wave is a normal refractive wave in the HB-I, but it is an evanescent wave in the HB-II. The above results and conclusions were obtained from the hexagonal boron nitride (hBN). These unique properties may be very useful in optical or optoelectronic technology.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compendium of natural hyperbolic materials

Karolina Korzeb, Marcin Gajc, and Dorota Anna Pawlak
Opt. Express 23(20) 25406-25424 (2015)

Optics with hyperbolic materials [Invited]

Osamu Takayama and Andrei V. Lavrinenko
J. Opt. Soc. Am. B 36(8) F38-F48 (2019)

Reduced reflection from roughened hyperbolic metamaterial

E. E. Narimanov, H. Li, Yu. A. Barnakov, T. U. Tumkur, and M. A. Noginov
Opt. Express 21(12) 14956-14961 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Z. Song, L. R. Liu, Y. Zhou, and D. A. Liu, “Reflection and transmission of extraordinary beam at uniaxial crystal surfaces,” Acta Opt. Sin. 24(12), 1701–1704 (2004).
  2. A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley & Sons Inc, 1984).
  3. P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg. 1(1), 14 (2014).
    [Crossref] [PubMed]
  4. P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
    [Crossref] [PubMed]
  5. S. Guan, Y. H. Shao, Y. Yao, and S. Yang, “Tunable hyperbolic dispersion and negative refraction in natural electride materials,” Phys. Rev. B 95(16), 165436 (2017).
    [Crossref]
  6. K. Korzeb, M. Gajc, and D. A. Pawlak, “Compendium of natural hyperbolic materials,” Opt. Express 23(20), 25406–25424 (2015).
    [Crossref] [PubMed]
  7. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948 (2013).
    [Crossref]
  8. P. Li, I. Dolado, F. J. Alfaro-Mozaz, A. Y. Nikitin, F. Casanova, L. E. Hueso, S. Vélez, and R. Hillenbrand, “Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials,” Nano Lett. 17(1), 228–235 (2017).
    [Crossref] [PubMed]
  9. T. G. Folland, A. Fali, S. T. White, J. R. Matson, S. Liu, N. A. Aghamiri, J. H. Edgar, R. F. Haglund, Y. Abate, and J. D. Caldwell, “Reconfigurable infrared hyperbolic metasurfaces using phase change materials,” Nat. Commun. 9(1), 4371 (2018).
    [Crossref] [PubMed]
  10. J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
    [Crossref]
  11. Z. W. Zhao, H. W. Wu, and Y. Zhou, “Surface-confined edge phonon polaritons in hexagonal boron nitride thin films and nanoribbons,” Opt. Express 24(20), 22930–22942 (2016).
    [Crossref] [PubMed]
  12. Q. Zhang, S. Zhou, S. F. Fu, and X. Z. Wang, “Rich hybridized-polarization surface phonon polaritons in hyperbolic dielectric metamaterials,” AIP Adv. 7(10), 105211 (2017).
    [Crossref]
  13. S. Dai, M. Tymchenko, Y. Yang, Q. Ma, M. Pita-Vidal, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, M. M. Fogler, A. Alù, and D. N. Basov, “Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride,” Adv. Mater. 30(16), e1706358 (2018).
    [Crossref] [PubMed]
  14. P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
    [Crossref] [PubMed]
  15. N. Vasilantonakis, G. A. Wurtz, V. A. Podolskiy, and A. V. Zayats, “Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement,” Opt. Express 23(11), 14329–14343 (2015).
    [Crossref] [PubMed]
  16. Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
    [Crossref]
  17. S. Dai, Q. Ma, T. Andersen, A. S. Mcleod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material,” Nat. Commun. 6(1), 6963 (2015).
    [Crossref] [PubMed]
  18. H. L. Xu, X. Wang, X. Jiang, X. Y. Dai, and Y. J. Xiang, “Guiding characteristics of guided waves in slab waveguide with hexagonal boron nitride,” J. Appl. Phys. 122(3), 033103 (2017).
    [Crossref]
  19. J. Liu and E. Narimanov, “Thermal hyperconductivity: Radiative energy transport in hyperbolic media,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 041403 (2015).
    [Crossref]
  20. S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic Metamaterials as an Analog of a Blackbody in the Near Field,” Phys. Rev. Lett. 109(10), 104301 (2012).
    [Crossref] [PubMed]
  21. Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
    [Crossref]
  22. C. Duncan, L. Perret, S. Palomba, M. Lapine, B. T. Kuhlmey, and C. M. de Sterke, “New avenues for phase matching in nonlinear hyperbolic metamaterials,” Sci. Rep. 5(1), 8983 (2015).
    [Crossref] [PubMed]
  23. K. Korzeb, M. Gajc, and D. A. Pawlak, “Compendium of natural hyperbolic materials,” Opt. Express 23(20), 25406–25424 (2015).
    [Crossref] [PubMed]
  24. J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5(1), 5221 (2014).
    [Crossref] [PubMed]
  25. A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
    [Crossref] [PubMed]
  26. M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
    [Crossref]
  27. S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
    [Crossref] [PubMed]
  28. W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
    [Crossref] [PubMed]
  29. E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Reduced reflection from roughened hyperbolic metamaterial,” Opt. Express 21(12), 14956–14961 (2013).
    [Crossref] [PubMed]
  30. A. J. Giles, S. Dai, O. J. Glembocki, A. V. Kretinin, Z. Sun, C. T. Ellis, J. G. Tischler, T. Taniguchi, K. Watanabe, M. M. Fogler, K. S. Novoselov, D. N. Basov, and J. D. Caldwell, “Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride,” Nano Lett. 16(6), 3858–3865 (2016).
    [Crossref] [PubMed]
  31. S. Zhou, Q. Zhang, S. F. Fu, and X. Z. Wang, “Ghost surface phononic polaritons in ionic-crystal metamaterial,” J. Opt. Soc. Am. B 35(11), 2764–2769 (2018).
    [Crossref]
  32. T. K. Yan, B. M. Liang, Q. Jiang, and J. B. Chen, “A research review of the Goos- Hanchen shift,” Optical Instruments 36(1), 90–94 (2014).
  33. C. Bonnet, D. Chauvat, O. Emile, F. Bretenaker, A. Le Floch, and L. Dutriaux, “Measurement of positive and negative Goos--Hänchen effects for metallic gratings near Wood anomalies,” Opt. Lett. 26(10), 666–668 (2001).
    [Crossref] [PubMed]
  34. X. H. Wu, “Goos-Hanchen shifts in tilted uniaxial crystals,” Opt. Commun. 416(1), 181–184 (2018).
    [Crossref]

2018 (6)

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

T. G. Folland, A. Fali, S. T. White, J. R. Matson, S. Liu, N. A. Aghamiri, J. H. Edgar, R. F. Haglund, Y. Abate, and J. D. Caldwell, “Reconfigurable infrared hyperbolic metasurfaces using phase change materials,” Nat. Commun. 9(1), 4371 (2018).
[Crossref] [PubMed]

S. Dai, M. Tymchenko, Y. Yang, Q. Ma, M. Pita-Vidal, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, M. M. Fogler, A. Alù, and D. N. Basov, “Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride,” Adv. Mater. 30(16), e1706358 (2018).
[Crossref] [PubMed]

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

X. H. Wu, “Goos-Hanchen shifts in tilted uniaxial crystals,” Opt. Commun. 416(1), 181–184 (2018).
[Crossref]

S. Zhou, Q. Zhang, S. F. Fu, and X. Z. Wang, “Ghost surface phononic polaritons in ionic-crystal metamaterial,” J. Opt. Soc. Am. B 35(11), 2764–2769 (2018).
[Crossref]

2017 (4)

Q. Zhang, S. Zhou, S. F. Fu, and X. Z. Wang, “Rich hybridized-polarization surface phonon polaritons in hyperbolic dielectric metamaterials,” AIP Adv. 7(10), 105211 (2017).
[Crossref]

H. L. Xu, X. Wang, X. Jiang, X. Y. Dai, and Y. J. Xiang, “Guiding characteristics of guided waves in slab waveguide with hexagonal boron nitride,” J. Appl. Phys. 122(3), 033103 (2017).
[Crossref]

P. Li, I. Dolado, F. J. Alfaro-Mozaz, A. Y. Nikitin, F. Casanova, L. E. Hueso, S. Vélez, and R. Hillenbrand, “Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials,” Nano Lett. 17(1), 228–235 (2017).
[Crossref] [PubMed]

S. Guan, Y. H. Shao, Y. Yao, and S. Yang, “Tunable hyperbolic dispersion and negative refraction in natural electride materials,” Phys. Rev. B 95(16), 165436 (2017).
[Crossref]

2016 (2)

A. J. Giles, S. Dai, O. J. Glembocki, A. V. Kretinin, Z. Sun, C. T. Ellis, J. G. Tischler, T. Taniguchi, K. Watanabe, M. M. Fogler, K. S. Novoselov, D. N. Basov, and J. D. Caldwell, “Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride,” Nano Lett. 16(6), 3858–3865 (2016).
[Crossref] [PubMed]

Z. W. Zhao, H. W. Wu, and Y. Zhou, “Surface-confined edge phonon polaritons in hexagonal boron nitride thin films and nanoribbons,” Opt. Express 24(20), 22930–22942 (2016).
[Crossref] [PubMed]

2015 (8)

N. Vasilantonakis, G. A. Wurtz, V. A. Podolskiy, and A. V. Zayats, “Refractive index sensing with hyperbolic metamaterials: strategies for biosensing and nonlinearity enhancement,” Opt. Express 23(11), 14329–14343 (2015).
[Crossref] [PubMed]

K. Korzeb, M. Gajc, and D. A. Pawlak, “Compendium of natural hyperbolic materials,” Opt. Express 23(20), 25406–25424 (2015).
[Crossref] [PubMed]

K. Korzeb, M. Gajc, and D. A. Pawlak, “Compendium of natural hyperbolic materials,” Opt. Express 23(20), 25406–25424 (2015).
[Crossref] [PubMed]

C. Duncan, L. Perret, S. Palomba, M. Lapine, B. T. Kuhlmey, and C. M. de Sterke, “New avenues for phase matching in nonlinear hyperbolic metamaterials,” Sci. Rep. 5(1), 8983 (2015).
[Crossref] [PubMed]

S. Dai, Q. Ma, T. Andersen, A. S. Mcleod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material,” Nat. Commun. 6(1), 6963 (2015).
[Crossref] [PubMed]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

J. Liu and E. Narimanov, “Thermal hyperconductivity: Radiative energy transport in hyperbolic media,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 041403 (2015).
[Crossref]

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref] [PubMed]

2014 (5)

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5(1), 5221 (2014).
[Crossref] [PubMed]

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg. 1(1), 14 (2014).
[Crossref] [PubMed]

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

T. K. Yan, B. M. Liang, Q. Jiang, and J. B. Chen, “A research review of the Goos- Hanchen shift,” Optical Instruments 36(1), 90–94 (2014).

2013 (3)

E. E. Narimanov, H. Li, Y. A. Barnakov, T. U. Tumkur, and M. A. Noginov, “Reduced reflection from roughened hyperbolic metamaterial,” Opt. Express 21(12), 14956–14961 (2013).
[Crossref] [PubMed]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948 (2013).
[Crossref]

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

2012 (3)

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic Metamaterials as an Analog of a Blackbody in the Near Field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]

2004 (1)

Z. Song, L. R. Liu, Y. Zhou, and D. A. Liu, “Reflection and transmission of extraordinary beam at uniaxial crystal surfaces,” Acta Opt. Sin. 24(12), 1701–1704 (2004).

2001 (1)

Abate, Y.

T. G. Folland, A. Fali, S. T. White, J. R. Matson, S. Liu, N. A. Aghamiri, J. H. Edgar, R. F. Haglund, Y. Abate, and J. D. Caldwell, “Reconfigurable infrared hyperbolic metasurfaces using phase change materials,” Nat. Commun. 9(1), 4371 (2018).
[Crossref] [PubMed]

Aghamiri, N. A.

T. G. Folland, A. Fali, S. T. White, J. R. Matson, S. Liu, N. A. Aghamiri, J. H. Edgar, R. F. Haglund, Y. Abate, and J. D. Caldwell, “Reconfigurable infrared hyperbolic metasurfaces using phase change materials,” Nat. Commun. 9(1), 4371 (2018).
[Crossref] [PubMed]

Alfaro-Mozaz, F. J.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

P. Li, I. Dolado, F. J. Alfaro-Mozaz, A. Y. Nikitin, F. Casanova, L. E. Hueso, S. Vélez, and R. Hillenbrand, “Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials,” Nano Lett. 17(1), 228–235 (2017).
[Crossref] [PubMed]

Alonso-González, P.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Alù, A.

S. Dai, M. Tymchenko, Y. Yang, Q. Ma, M. Pita-Vidal, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, M. M. Fogler, A. Alù, and D. N. Basov, “Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride,” Adv. Mater. 30(16), e1706358 (2018).
[Crossref] [PubMed]

Amenabar, I.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Andersen, T.

S. Dai, Q. Ma, T. Andersen, A. S. Mcleod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material,” Nat. Commun. 6(1), 6963 (2015).
[Crossref] [PubMed]

Atkinson, J.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg. 1(1), 14 (2014).
[Crossref] [PubMed]

Bao, Q.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Barnakov, Y. A.

Basov, D. N.

S. Dai, M. Tymchenko, Y. Yang, Q. Ma, M. Pita-Vidal, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, M. M. Fogler, A. Alù, and D. N. Basov, “Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride,” Adv. Mater. 30(16), e1706358 (2018).
[Crossref] [PubMed]

A. J. Giles, S. Dai, O. J. Glembocki, A. V. Kretinin, Z. Sun, C. T. Ellis, J. G. Tischler, T. Taniguchi, K. Watanabe, M. M. Fogler, K. S. Novoselov, D. N. Basov, and J. D. Caldwell, “Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride,” Nano Lett. 16(6), 3858–3865 (2016).
[Crossref] [PubMed]

S. Dai, Q. Ma, T. Andersen, A. S. Mcleod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material,” Nat. Commun. 6(1), 6963 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948 (2013).
[Crossref]

Ben-Abdallah, P.

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic Metamaterials as an Analog of a Blackbody in the Near Field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

Biehs, S. A.

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic Metamaterials as an Analog of a Blackbody in the Near Field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

Bonnet, C.

Bretenaker, F.

Caldwell, J. D.

T. G. Folland, A. Fali, S. T. White, J. R. Matson, S. Liu, N. A. Aghamiri, J. H. Edgar, R. F. Haglund, Y. Abate, and J. D. Caldwell, “Reconfigurable infrared hyperbolic metasurfaces using phase change materials,” Nat. Commun. 9(1), 4371 (2018).
[Crossref] [PubMed]

A. J. Giles, S. Dai, O. J. Glembocki, A. V. Kretinin, Z. Sun, C. T. Ellis, J. G. Tischler, T. Taniguchi, K. Watanabe, M. M. Fogler, K. S. Novoselov, D. N. Basov, and J. D. Caldwell, “Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride,” Nano Lett. 16(6), 3858–3865 (2016).
[Crossref] [PubMed]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref] [PubMed]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5(1), 5221 (2014).
[Crossref] [PubMed]

Casanova, F.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

P. Li, I. Dolado, F. J. Alfaro-Mozaz, A. Y. Nikitin, F. Casanova, L. E. Hueso, S. Vélez, and R. Hillenbrand, “Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials,” Nano Lett. 17(1), 228–235 (2017).
[Crossref] [PubMed]

Castro Neto, A. H.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Chauvat, D.

Chen, J. B.

T. K. Yan, B. M. Liang, Q. Jiang, and J. B. Chen, “A research review of the Goos- Hanchen shift,” Optical Instruments 36(1), 90–94 (2014).

Chen, Y.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5(1), 5221 (2014).
[Crossref] [PubMed]

Cortes, C. L.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Dai, S.

S. Dai, M. Tymchenko, Y. Yang, Q. Ma, M. Pita-Vidal, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, M. M. Fogler, A. Alù, and D. N. Basov, “Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride,” Adv. Mater. 30(16), e1706358 (2018).
[Crossref] [PubMed]

A. J. Giles, S. Dai, O. J. Glembocki, A. V. Kretinin, Z. Sun, C. T. Ellis, J. G. Tischler, T. Taniguchi, K. Watanabe, M. M. Fogler, K. S. Novoselov, D. N. Basov, and J. D. Caldwell, “Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride,” Nano Lett. 16(6), 3858–3865 (2016).
[Crossref] [PubMed]

S. Dai, Q. Ma, T. Andersen, A. S. Mcleod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material,” Nat. Commun. 6(1), 6963 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Dai, X. Y.

H. L. Xu, X. Wang, X. Jiang, X. Y. Dai, and Y. J. Xiang, “Guiding characteristics of guided waves in slab waveguide with hexagonal boron nitride,” J. Appl. Phys. 122(3), 033103 (2017).
[Crossref]

Dai, Z.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

de Sterke, C. M.

C. Duncan, L. Perret, S. Palomba, M. Lapine, B. T. Kuhlmey, and C. M. de Sterke, “New avenues for phase matching in nonlinear hyperbolic metamaterials,” Sci. Rep. 5(1), 8983 (2015).
[Crossref] [PubMed]

de Zuani, S.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Dolado, I.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

P. Li, I. Dolado, F. J. Alfaro-Mozaz, A. Y. Nikitin, F. Casanova, L. E. Hueso, S. Vélez, and R. Hillenbrand, “Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials,” Nano Lett. 17(1), 228–235 (2017).
[Crossref] [PubMed]

Dominguez, G.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Duncan, C.

C. Duncan, L. Perret, S. Palomba, M. Lapine, B. T. Kuhlmey, and C. M. de Sterke, “New avenues for phase matching in nonlinear hyperbolic metamaterials,” Sci. Rep. 5(1), 8983 (2015).
[Crossref] [PubMed]

Dutriaux, L.

Edgar, J. H.

T. G. Folland, A. Fali, S. T. White, J. R. Matson, S. Liu, N. A. Aghamiri, J. H. Edgar, R. F. Haglund, Y. Abate, and J. D. Caldwell, “Reconfigurable infrared hyperbolic metasurfaces using phase change materials,” Nat. Commun. 9(1), 4371 (2018).
[Crossref] [PubMed]

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

Ellis, C. T.

A. J. Giles, S. Dai, O. J. Glembocki, A. V. Kretinin, Z. Sun, C. T. Ellis, J. G. Tischler, T. Taniguchi, K. Watanabe, M. M. Fogler, K. S. Novoselov, D. N. Basov, and J. D. Caldwell, “Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride,” Nano Lett. 16(6), 3858–3865 (2016).
[Crossref] [PubMed]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5(1), 5221 (2014).
[Crossref] [PubMed]

Emile, O.

Esslinger, M.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Fali, A.

T. G. Folland, A. Fali, S. T. White, J. R. Matson, S. Liu, N. A. Aghamiri, J. H. Edgar, R. F. Haglund, Y. Abate, and J. D. Caldwell, “Reconfigurable infrared hyperbolic metasurfaces using phase change materials,” Nat. Commun. 9(1), 4371 (2018).
[Crossref] [PubMed]

Fei, Z.

S. Dai, Q. Ma, T. Andersen, A. S. Mcleod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material,” Nat. Commun. 6(1), 6963 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Fogler, M. M.

S. Dai, M. Tymchenko, Y. Yang, Q. Ma, M. Pita-Vidal, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, M. M. Fogler, A. Alù, and D. N. Basov, “Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride,” Adv. Mater. 30(16), e1706358 (2018).
[Crossref] [PubMed]

A. J. Giles, S. Dai, O. J. Glembocki, A. V. Kretinin, Z. Sun, C. T. Ellis, J. G. Tischler, T. Taniguchi, K. Watanabe, M. M. Fogler, K. S. Novoselov, D. N. Basov, and J. D. Caldwell, “Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride,” Nano Lett. 16(6), 3858–3865 (2016).
[Crossref] [PubMed]

S. Dai, Q. Ma, T. Andersen, A. S. Mcleod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material,” Nat. Commun. 6(1), 6963 (2015).
[Crossref] [PubMed]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5(1), 5221 (2014).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Folland, T. G.

T. G. Folland, A. Fali, S. T. White, J. R. Matson, S. Liu, N. A. Aghamiri, J. H. Edgar, R. F. Haglund, Y. Abate, and J. D. Caldwell, “Reconfigurable infrared hyperbolic metasurfaces using phase change materials,” Nat. Commun. 9(1), 4371 (2018).
[Crossref] [PubMed]

Francescato, Y.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5(1), 5221 (2014).
[Crossref] [PubMed]

Fu, S. F.

S. Zhou, Q. Zhang, S. F. Fu, and X. Z. Wang, “Ghost surface phononic polaritons in ionic-crystal metamaterial,” J. Opt. Soc. Am. B 35(11), 2764–2769 (2018).
[Crossref]

Q. Zhang, S. Zhou, S. F. Fu, and X. Z. Wang, “Rich hybridized-polarization surface phonon polaritons in hyperbolic dielectric metamaterials,” AIP Adv. 7(10), 105211 (2017).
[Crossref]

Gajc, M.

Gannett, W.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Gaussmann, F.

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref] [PubMed]

Gehring, P.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Geim, A. K.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

Giannini, V.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5(1), 5221 (2014).
[Crossref] [PubMed]

Giles, A. J.

A. J. Giles, S. Dai, O. J. Glembocki, A. V. Kretinin, Z. Sun, C. T. Ellis, J. G. Tischler, T. Taniguchi, K. Watanabe, M. M. Fogler, K. S. Novoselov, D. N. Basov, and J. D. Caldwell, “Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride,” Nano Lett. 16(6), 3858–3865 (2016).
[Crossref] [PubMed]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5(1), 5221 (2014).
[Crossref] [PubMed]

Glembocki, O. J.

A. J. Giles, S. Dai, O. J. Glembocki, A. V. Kretinin, Z. Sun, C. T. Ellis, J. G. Tischler, T. Taniguchi, K. Watanabe, M. M. Fogler, K. S. Novoselov, D. N. Basov, and J. D. Caldwell, “Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride,” Nano Lett. 16(6), 3858–3865 (2016).
[Crossref] [PubMed]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Gompf, B.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Grigorieva, I. V.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

Guan, S.

S. Guan, Y. H. Shao, Y. Yao, and S. Yang, “Tunable hyperbolic dispersion and negative refraction in natural electride materials,” Phys. Rev. B 95(16), 165436 (2017).
[Crossref]

Guo, Y.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Haglund, R. F.

T. G. Folland, A. Fali, S. T. White, J. R. Matson, S. Liu, N. A. Aghamiri, J. H. Edgar, R. F. Haglund, Y. Abate, and J. D. Caldwell, “Reconfigurable infrared hyperbolic metasurfaces using phase change materials,” Nat. Commun. 9(1), 4371 (2018).
[Crossref] [PubMed]

Hillenbrand, R.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

P. Li, I. Dolado, F. J. Alfaro-Mozaz, A. Y. Nikitin, F. Casanova, L. E. Hueso, S. Vélez, and R. Hillenbrand, “Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials,” Nano Lett. 17(1), 228–235 (2017).
[Crossref] [PubMed]

Hong, M.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5(1), 5221 (2014).
[Crossref] [PubMed]

Hueso, L. E.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

P. Li, I. Dolado, F. J. Alfaro-Mozaz, A. Y. Nikitin, F. Casanova, L. E. Hueso, S. Vélez, and R. Hillenbrand, “Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials,” Nano Lett. 17(1), 228–235 (2017).
[Crossref] [PubMed]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948 (2013).
[Crossref]

Jacob, Z.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg. 1(1), 14 (2014).
[Crossref] [PubMed]

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Jarillo-Herrero, P.

S. Dai, M. Tymchenko, Y. Yang, Q. Ma, M. Pita-Vidal, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, M. M. Fogler, A. Alù, and D. N. Basov, “Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride,” Adv. Mater. 30(16), e1706358 (2018).
[Crossref] [PubMed]

S. Dai, Q. Ma, T. Andersen, A. S. Mcleod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material,” Nat. Commun. 6(1), 6963 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Jiang, Q.

T. K. Yan, B. M. Liang, Q. Jiang, and J. B. Chen, “A research review of the Goos- Hanchen shift,” Optical Instruments 36(1), 90–94 (2014).

Jiang, X.

H. L. Xu, X. Wang, X. Jiang, X. Y. Dai, and Y. J. Xiang, “Guiding characteristics of guided waves in slab waveguide with hexagonal boron nitride,” J. Appl. Phys. 122(3), 033103 (2017).
[Crossref]

Kalantar-Zadeh, K.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Keilmann, F.

S. Dai, Q. Ma, T. Andersen, A. S. Mcleod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material,” Nat. Commun. 6(1), 6963 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Kern, K.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Khunsin, W.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948 (2013).
[Crossref]

Korzeb, K.

Kretinin, A. V.

A. J. Giles, S. Dai, O. J. Glembocki, A. V. Kretinin, Z. Sun, C. T. Ellis, J. G. Tischler, T. Taniguchi, K. Watanabe, M. M. Fogler, K. S. Novoselov, D. N. Basov, and J. D. Caldwell, “Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride,” Nano Lett. 16(6), 3858–3865 (2016).
[Crossref] [PubMed]

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref] [PubMed]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5(1), 5221 (2014).
[Crossref] [PubMed]

Kuhlmey, B. T.

C. Duncan, L. Perret, S. Palomba, M. Lapine, B. T. Kuhlmey, and C. M. de Sterke, “New avenues for phase matching in nonlinear hyperbolic metamaterials,” Sci. Rep. 5(1), 8983 (2015).
[Crossref] [PubMed]

Lapine, M.

C. Duncan, L. Perret, S. Palomba, M. Lapine, B. T. Kuhlmey, and C. M. de Sterke, “New avenues for phase matching in nonlinear hyperbolic metamaterials,” Sci. Rep. 5(1), 8983 (2015).
[Crossref] [PubMed]

Le Floch, A.

Lee, S. T.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Lewin, M.

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref] [PubMed]

Li, H.

Li, P.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

P. Li, I. Dolado, F. J. Alfaro-Mozaz, A. Y. Nikitin, F. Casanova, L. E. Hueso, S. Vélez, and R. Hillenbrand, “Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials,” Nano Lett. 17(1), 228–235 (2017).
[Crossref] [PubMed]

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref] [PubMed]

Li, S.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Liang, B. M.

T. K. Yan, B. M. Liang, Q. Jiang, and J. B. Chen, “A research review of the Goos- Hanchen shift,” Optical Instruments 36(1), 90–94 (2014).

Lindsay, L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Liu, D. A.

Z. Song, L. R. Liu, Y. Zhou, and D. A. Liu, “Reflection and transmission of extraordinary beam at uniaxial crystal surfaces,” Acta Opt. Sin. 24(12), 1701–1704 (2004).

Liu, J.

J. Liu and E. Narimanov, “Thermal hyperconductivity: Radiative energy transport in hyperbolic media,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 041403 (2015).
[Crossref]

Liu, L. R.

Z. Song, L. R. Liu, Y. Zhou, and D. A. Liu, “Reflection and transmission of extraordinary beam at uniaxial crystal surfaces,” Acta Opt. Sin. 24(12), 1701–1704 (2004).

Liu, M. K.

S. Dai, Q. Ma, T. Andersen, A. S. Mcleod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material,” Nat. Commun. 6(1), 6963 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Liu, S.

T. G. Folland, A. Fali, S. T. White, J. R. Matson, S. Liu, N. A. Aghamiri, J. H. Edgar, R. F. Haglund, Y. Abate, and J. D. Caldwell, “Reconfigurable infrared hyperbolic metasurfaces using phase change materials,” Nat. Commun. 9(1), 4371 (2018).
[Crossref] [PubMed]

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

Ma, Q.

S. Dai, M. Tymchenko, Y. Yang, Q. Ma, M. Pita-Vidal, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, M. M. Fogler, A. Alù, and D. N. Basov, “Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride,” Adv. Mater. 30(16), e1706358 (2018).
[Crossref] [PubMed]

S. Dai, Q. Ma, T. Andersen, A. S. Mcleod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material,” Nat. Commun. 6(1), 6963 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Ma, W.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Maier, S. A.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5(1), 5221 (2014).
[Crossref] [PubMed]

Martín-Sánchez, J.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Matson, J. R.

T. G. Folland, A. Fali, S. T. White, J. R. Matson, S. Liu, N. A. Aghamiri, J. H. Edgar, R. F. Haglund, Y. Abate, and J. D. Caldwell, “Reconfigurable infrared hyperbolic metasurfaces using phase change materials,” Nat. Commun. 9(1), 4371 (2018).
[Crossref] [PubMed]

Mcleod, A. S.

S. Dai, Q. Ma, T. Andersen, A. S. Mcleod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material,” Nat. Commun. 6(1), 6963 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Molesky, S.

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Narimanov, E.

J. Liu and E. Narimanov, “Thermal hyperconductivity: Radiative energy transport in hyperbolic media,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 041403 (2015).
[Crossref]

Narimanov, E. E.

Newman, W.

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]

Nikitin, A. Y.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

P. Li, I. Dolado, F. J. Alfaro-Mozaz, A. Y. Nikitin, F. Casanova, L. E. Hueso, S. Vélez, and R. Hillenbrand, “Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials,” Nano Lett. 17(1), 228–235 (2017).
[Crossref] [PubMed]

Noginov, M. A.

Novoselov, K. S.

A. J. Giles, S. Dai, O. J. Glembocki, A. V. Kretinin, Z. Sun, C. T. Ellis, J. G. Tischler, T. Taniguchi, K. Watanabe, M. M. Fogler, K. S. Novoselov, D. N. Basov, and J. D. Caldwell, “Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride,” Nano Lett. 16(6), 3858–3865 (2016).
[Crossref] [PubMed]

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref] [PubMed]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5(1), 5221 (2014).
[Crossref] [PubMed]

Palomba, S.

C. Duncan, L. Perret, S. Palomba, M. Lapine, B. T. Kuhlmey, and C. M. de Sterke, “New avenues for phase matching in nonlinear hyperbolic metamaterials,” Sci. Rep. 5(1), 8983 (2015).
[Crossref] [PubMed]

Pawlak, D. A.

Perret, L.

C. Duncan, L. Perret, S. Palomba, M. Lapine, B. T. Kuhlmey, and C. M. de Sterke, “New avenues for phase matching in nonlinear hyperbolic metamaterials,” Sci. Rep. 5(1), 8983 (2015).
[Crossref] [PubMed]

Pita-Vidal, M.

S. Dai, M. Tymchenko, Y. Yang, Q. Ma, M. Pita-Vidal, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, M. M. Fogler, A. Alù, and D. N. Basov, “Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride,” Adv. Mater. 30(16), e1706358 (2018).
[Crossref] [PubMed]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948 (2013).
[Crossref]

Podolskiy, V. A.

Regan, W.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Reinecke, T. L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Rodin, A. S.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Shao, Y. H.

S. Guan, Y. H. Shao, Y. Yao, and S. Yang, “Tunable hyperbolic dispersion and negative refraction in natural electride materials,” Phys. Rev. B 95(16), 165436 (2017).
[Crossref]

Shekhar, P.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg. 1(1), 14 (2014).
[Crossref] [PubMed]

Song, Z.

Z. Song, L. R. Liu, Y. Zhou, and D. A. Liu, “Reflection and transmission of extraordinary beam at uniaxial crystal surfaces,” Acta Opt. Sin. 24(12), 1701–1704 (2004).

Sriram, S.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Sun, Z.

A. J. Giles, S. Dai, O. J. Glembocki, A. V. Kretinin, Z. Sun, C. T. Ellis, J. G. Tischler, T. Taniguchi, K. Watanabe, M. M. Fogler, K. S. Novoselov, D. N. Basov, and J. D. Caldwell, “Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride,” Nano Lett. 16(6), 3858–3865 (2016).
[Crossref] [PubMed]

Taboada-Gutiérrez, J.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Talebi, N.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Taniguchi, T.

S. Dai, M. Tymchenko, Y. Yang, Q. Ma, M. Pita-Vidal, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, M. M. Fogler, A. Alù, and D. N. Basov, “Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride,” Adv. Mater. 30(16), e1706358 (2018).
[Crossref] [PubMed]

A. J. Giles, S. Dai, O. J. Glembocki, A. V. Kretinin, Z. Sun, C. T. Ellis, J. G. Tischler, T. Taniguchi, K. Watanabe, M. M. Fogler, K. S. Novoselov, D. N. Basov, and J. D. Caldwell, “Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride,” Nano Lett. 16(6), 3858–3865 (2016).
[Crossref] [PubMed]

S. Dai, Q. Ma, T. Andersen, A. S. Mcleod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material,” Nat. Commun. 6(1), 6963 (2015).
[Crossref] [PubMed]

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref] [PubMed]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5(1), 5221 (2014).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Taubner, T.

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref] [PubMed]

Thiemens, M.

S. Dai, Q. Ma, T. Andersen, A. S. Mcleod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material,” Nat. Commun. 6(1), 6963 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Tischler, J. G.

A. J. Giles, S. Dai, O. J. Glembocki, A. V. Kretinin, Z. Sun, C. T. Ellis, J. G. Tischler, T. Taniguchi, K. Watanabe, M. M. Fogler, K. S. Novoselov, D. N. Basov, and J. D. Caldwell, “Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride,” Nano Lett. 16(6), 3858–3865 (2016).
[Crossref] [PubMed]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5(1), 5221 (2014).
[Crossref] [PubMed]

Tollan, C.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Tschikin, M.

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic Metamaterials as an Analog of a Blackbody in the Near Field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

Tumkur, T. U.

Tymchenko, M.

S. Dai, M. Tymchenko, Y. Yang, Q. Ma, M. Pita-Vidal, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, M. M. Fogler, A. Alù, and D. N. Basov, “Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride,” Adv. Mater. 30(16), e1706358 (2018).
[Crossref] [PubMed]

Vasilantonakis, N.

Vélez, S.

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

P. Li, I. Dolado, F. J. Alfaro-Mozaz, A. Y. Nikitin, F. Casanova, L. E. Hueso, S. Vélez, and R. Hillenbrand, “Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials,” Nano Lett. 17(1), 228–235 (2017).
[Crossref] [PubMed]

Vogelgesang, R.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Vurgaftman, I.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Wagner, M.

S. Dai, Q. Ma, T. Andersen, A. S. Mcleod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material,” Nat. Commun. 6(1), 6963 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Wang, X.

H. L. Xu, X. Wang, X. Jiang, X. Y. Dai, and Y. J. Xiang, “Guiding characteristics of guided waves in slab waveguide with hexagonal boron nitride,” J. Appl. Phys. 122(3), 033103 (2017).
[Crossref]

Wang, X. Z.

S. Zhou, Q. Zhang, S. F. Fu, and X. Z. Wang, “Ghost surface phononic polaritons in ionic-crystal metamaterial,” J. Opt. Soc. Am. B 35(11), 2764–2769 (2018).
[Crossref]

Q. Zhang, S. Zhou, S. F. Fu, and X. Z. Wang, “Rich hybridized-polarization surface phonon polaritons in hyperbolic dielectric metamaterials,” AIP Adv. 7(10), 105211 (2017).
[Crossref]

Watanabe, K.

S. Dai, M. Tymchenko, Y. Yang, Q. Ma, M. Pita-Vidal, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, M. M. Fogler, A. Alù, and D. N. Basov, “Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride,” Adv. Mater. 30(16), e1706358 (2018).
[Crossref] [PubMed]

A. J. Giles, S. Dai, O. J. Glembocki, A. V. Kretinin, Z. Sun, C. T. Ellis, J. G. Tischler, T. Taniguchi, K. Watanabe, M. M. Fogler, K. S. Novoselov, D. N. Basov, and J. D. Caldwell, “Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride,” Nano Lett. 16(6), 3858–3865 (2016).
[Crossref] [PubMed]

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref] [PubMed]

S. Dai, Q. Ma, T. Andersen, A. S. Mcleod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material,” Nat. Commun. 6(1), 6963 (2015).
[Crossref] [PubMed]

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5(1), 5221 (2014).
[Crossref] [PubMed]

White, S. T.

T. G. Folland, A. Fali, S. T. White, J. R. Matson, S. Liu, N. A. Aghamiri, J. H. Edgar, R. F. Haglund, Y. Abate, and J. D. Caldwell, “Reconfigurable infrared hyperbolic metasurfaces using phase change materials,” Nat. Commun. 9(1), 4371 (2018).
[Crossref] [PubMed]

Woods, C. R.

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5(1), 5221 (2014).
[Crossref] [PubMed]

Wu, H. W.

Wu, X. H.

X. H. Wu, “Goos-Hanchen shifts in tilted uniaxial crystals,” Opt. Commun. 416(1), 181–184 (2018).
[Crossref]

Wurtz, G. A.

Xiang, Y. J.

H. L. Xu, X. Wang, X. Jiang, X. Y. Dai, and Y. J. Xiang, “Guiding characteristics of guided waves in slab waveguide with hexagonal boron nitride,” J. Appl. Phys. 122(3), 033103 (2017).
[Crossref]

Xu, H. L.

H. L. Xu, X. Wang, X. Jiang, X. Y. Dai, and Y. J. Xiang, “Guiding characteristics of guided waves in slab waveguide with hexagonal boron nitride,” J. Appl. Phys. 122(3), 033103 (2017).
[Crossref]

Yan, T. K.

T. K. Yan, B. M. Liang, Q. Jiang, and J. B. Chen, “A research review of the Goos- Hanchen shift,” Optical Instruments 36(1), 90–94 (2014).

Yang, S.

S. Guan, Y. H. Shao, Y. Yao, and S. Yang, “Tunable hyperbolic dispersion and negative refraction in natural electride materials,” Phys. Rev. B 95(16), 165436 (2017).
[Crossref]

Yang, Y.

S. Dai, M. Tymchenko, Y. Yang, Q. Ma, M. Pita-Vidal, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, M. M. Fogler, A. Alù, and D. N. Basov, “Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride,” Adv. Mater. 30(16), e1706358 (2018).
[Crossref] [PubMed]

Yao, Y.

S. Guan, Y. H. Shao, Y. Yao, and S. Yang, “Tunable hyperbolic dispersion and negative refraction in natural electride materials,” Phys. Rev. B 95(16), 165436 (2017).
[Crossref]

Yuan, J.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Zayats, A. V.

Zettl, A.

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

Zhang, Q.

S. Zhou, Q. Zhang, S. F. Fu, and X. Z. Wang, “Ghost surface phononic polaritons in ionic-crystal metamaterial,” J. Opt. Soc. Am. B 35(11), 2764–2769 (2018).
[Crossref]

Q. Zhang, S. Zhou, S. F. Fu, and X. Z. Wang, “Rich hybridized-polarization surface phonon polaritons in hyperbolic dielectric metamaterials,” AIP Adv. 7(10), 105211 (2017).
[Crossref]

Zhang, Y.

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Zhao, Z. W.

Zhou, S.

S. Zhou, Q. Zhang, S. F. Fu, and X. Z. Wang, “Ghost surface phononic polaritons in ionic-crystal metamaterial,” J. Opt. Soc. Am. B 35(11), 2764–2769 (2018).
[Crossref]

Q. Zhang, S. Zhou, S. F. Fu, and X. Z. Wang, “Rich hybridized-polarization surface phonon polaritons in hyperbolic dielectric metamaterials,” AIP Adv. 7(10), 105211 (2017).
[Crossref]

Zhou, Y.

Z. W. Zhao, H. W. Wu, and Y. Zhou, “Surface-confined edge phonon polaritons in hexagonal boron nitride thin films and nanoribbons,” Opt. Express 24(20), 22930–22942 (2016).
[Crossref] [PubMed]

Z. Song, L. R. Liu, Y. Zhou, and D. A. Liu, “Reflection and transmission of extraordinary beam at uniaxial crystal surfaces,” Acta Opt. Sin. 24(12), 1701–1704 (2004).

ACS Photonics (1)

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. de Zuani, B. Gompf, and K. Kern, “Tetradymites as Natural Hyperbolic Materials for the Near-Infrared to Visible,” ACS Photonics 1(12), 1285–1289 (2014).
[Crossref]

Acta Opt. Sin. (1)

Z. Song, L. R. Liu, Y. Zhou, and D. A. Liu, “Reflection and transmission of extraordinary beam at uniaxial crystal surfaces,” Acta Opt. Sin. 24(12), 1701–1704 (2004).

Adv. Mater. (1)

S. Dai, M. Tymchenko, Y. Yang, Q. Ma, M. Pita-Vidal, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, M. M. Fogler, A. Alù, and D. N. Basov, “Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride,” Adv. Mater. 30(16), e1706358 (2018).
[Crossref] [PubMed]

Adv. Optoelectron. (1)

Y. Guo, W. Newman, C. L. Cortes, and Z. Jacob, “Applications of hyperbolic metamaterial substrates,” Adv. Optoelectron. 2012, 1–9 (2012).
[Crossref]

AIP Adv. (1)

Q. Zhang, S. Zhou, S. F. Fu, and X. Z. Wang, “Rich hybridized-polarization surface phonon polaritons in hyperbolic dielectric metamaterials,” AIP Adv. 7(10), 105211 (2017).
[Crossref]

Appl. Phys. Lett. (1)

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

J. Appl. Phys. (1)

H. L. Xu, X. Wang, X. Jiang, X. Y. Dai, and Y. J. Xiang, “Guiding characteristics of guided waves in slab waveguide with hexagonal boron nitride,” J. Appl. Phys. 122(3), 033103 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

Nano Converg. (1)

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg. 1(1), 14 (2014).
[Crossref] [PubMed]

Nano Lett. (2)

P. Li, I. Dolado, F. J. Alfaro-Mozaz, A. Y. Nikitin, F. Casanova, L. E. Hueso, S. Vélez, and R. Hillenbrand, “Optical Nanoimaging of Hyperbolic Surface Polaritons at the Edges of van der Waals Materials,” Nano Lett. 17(1), 228–235 (2017).
[Crossref] [PubMed]

A. J. Giles, S. Dai, O. J. Glembocki, A. V. Kretinin, Z. Sun, C. T. Ellis, J. G. Tischler, T. Taniguchi, K. Watanabe, M. M. Fogler, K. S. Novoselov, D. N. Basov, and J. D. Caldwell, “Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride,” Nano Lett. 16(6), 3858–3865 (2016).
[Crossref] [PubMed]

Nanophotonics (1)

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4(1), 44–68 (2015).
[Crossref]

Nat. Commun. (4)

S. Dai, Q. Ma, T. Andersen, A. S. Mcleod, Z. Fei, M. K. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material,” Nat. Commun. 6(1), 6963 (2015).
[Crossref] [PubMed]

P. Li, M. Lewin, A. V. Kretinin, J. D. Caldwell, K. S. Novoselov, T. Taniguchi, K. Watanabe, F. Gaussmann, and T. Taubner, “Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing,” Nat. Commun. 6(1), 7507 (2015).
[Crossref] [PubMed]

T. G. Folland, A. Fali, S. T. White, J. R. Matson, S. Liu, N. A. Aghamiri, J. H. Edgar, R. F. Haglund, Y. Abate, and J. D. Caldwell, “Reconfigurable infrared hyperbolic metasurfaces using phase change materials,” Nat. Commun. 9(1), 4371 (2018).
[Crossref] [PubMed]

J. D. Caldwell, A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, “Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride,” Nat. Commun. 5(1), 5221 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948 (2013).
[Crossref]

Nature (2)

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499(7459), 419–425 (2013).
[Crossref] [PubMed]

W. Ma, P. Alonso-González, S. Li, A. Y. Nikitin, J. Yuan, J. Martín-Sánchez, J. Taboada-Gutiérrez, I. Amenabar, P. Li, S. Vélez, C. Tollan, Z. Dai, Y. Zhang, S. Sriram, K. Kalantar-Zadeh, S. T. Lee, R. Hillenbrand, and Q. Bao, “In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal,” Nature 562(7728), 557–562 (2018).
[Crossref] [PubMed]

Opt. Commun. (1)

X. H. Wu, “Goos-Hanchen shifts in tilted uniaxial crystals,” Opt. Commun. 416(1), 181–184 (2018).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Optical Instruments (1)

T. K. Yan, B. M. Liang, Q. Jiang, and J. B. Chen, “A research review of the Goos- Hanchen shift,” Optical Instruments 36(1), 90–94 (2014).

Phys. Rev. B (1)

S. Guan, Y. H. Shao, Y. Yao, and S. Yang, “Tunable hyperbolic dispersion and negative refraction in natural electride materials,” Phys. Rev. B 95(16), 165436 (2017).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

J. Liu and E. Narimanov, “Thermal hyperconductivity: Radiative energy transport in hyperbolic media,” Phys. Rev. B Condens. Matter Mater. Phys. 91(4), 041403 (2015).
[Crossref]

Phys. Rev. Lett. (1)

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic Metamaterials as an Analog of a Blackbody in the Near Field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

C. Duncan, L. Perret, S. Palomba, M. Lapine, B. T. Kuhlmey, and C. M. de Sterke, “New avenues for phase matching in nonlinear hyperbolic metamaterials,” Sci. Rep. 5(1), 8983 (2015).
[Crossref] [PubMed]

Science (2)

S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K. Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens, G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science 343(6175), 1125–1129 (2014).
[Crossref] [PubMed]

P. Li, I. Dolado, F. J. Alfaro-Mozaz, F. Casanova, L. E. Hueso, S. Liu, J. H. Edgar, A. Y. Nikitin, S. Vélez, and R. Hillenbrand, “Infrared hyperbolic metasurface based on nanostructured van der Waals materials,” Science 359(6378), 892–896 (2018).
[Crossref] [PubMed]

Other (1)

A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley & Sons Inc, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Coordinate systems and configuration where the dashed line represents the optical axis that lies in the x y plane and is at the angle θ with respect to the surface, the angle between the incident plane (the xy plane) and the x y plane is α, and the incident angle is indicated with β.
Fig. 2
Fig. 2 The longitudinal and transverse components in the relative permittivity versus frequency for the hBN, where f t =760c m 1 and τ=0. The two hyperbolic frequency bands are indicated by the two shadow regions.
Fig. 3
Fig. 3 The reflection and refraction with α=β=θ=π/4 for the s-incidence, where the vertical point line in the four top plots indicates the frequency position of the SP and shows the interface in the two bottom plots. E xy and γ xy represent not only E x and γ x but also E y and γ y . (a) The reflection versus frequency near or in the HB-I. (b) The reflection versus frequency near or in the HB-II. (c) The refractive energy-flux densities corresponding to (a) and (d) the refractive flux densities corresponding to (b). The electric-field profile near the interface (e) for a fixed frequency in the HB-I and (f) for a fixed frequency in the HB-II.
Fig. 4
Fig. 4 The reflection and refraction with α=β=θ=π/4 for the p-incidence, where the vertical point line indicates the frequency position of the SP in the four top plots and shows the interface in the two bottom plots. H xy and γ xy represent not only H x and γ x but also H y and γ y . (a) The reflection versus frequency near or in the HB-I. (b) For the reflection versus frequency near or in the HB-II. (c) The refractive energy-flux densities corresponding to (a), and (d) those corresponding to (b). The electric-field profile near the interface (e) for a fixed frequency in the HB-I and (f) for a fixed frequency in the HB-II.
Fig. 5
Fig. 5 The reflective amplitudes and coefficient versus the incident angle for α=θ=π/4 and for the p-incidence: (a) For the reflection with a fixed frequency in the HB-I and (b) for the reflection with a fixed frequency in the HB-II.
Fig. 6
Fig. 6 The magnetic-field components of reflective wave versus the orientation of the incident plane for β=θ=π/4 and the p-incidence, where the solid and dot curves represent the real and imaginary parts of the magnetic-field components, respectively, and the red indicates the x- and y-components but the blue shows the z-component: (a) The reflective field for a fixed frequency in the HB-I and (b) the reflective field for a fixed frequency in the HB-II. The horizontal dashed line is the zero-point line.

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

ε= ε 0 ( ε xx ε xy ε xz ε xy ε yy ε yz ε xz ε yz ε zz ),
ε xx = ε xx cos 2 (α)+ ε t sin 2 (α), ε yy = ε yy ,
ε zz = ε xx sin 2 (α)+ ε t cos 2 (α),
ε xy = ε xy cos(α), ε xz =( ε t ε xx )sin(α)cos(α),
ε yz = ε xy sin(α).
( K y 2 ε xx f 2 ) E x ( k x K y + ε xy f 2 ) E y ε xz f 2 E z =0,
( k x K y + ε xy f 2 ) E x +( k x 2 ε yy f 2 ) E y ε yz f 2 E z =0,
ε xz f 2 E x ε yz f 2 E y +( k x 2 + K y 2 ε zz f 2 ) E z =0,
K oy =± ε t f 2 k x 2 ,
K ey = 1 ε yy ( ε xy k x ± ( ε xy 2 ε yy ε xx ) k x 2 + ε yy ε l ε t f 2 ),
H ix = k y E iz /ω μ 0 , H rx = k y E rz /ω μ 0 .
E jx = Γ jx E jz ,
Γ jx = ( k x 2 ε yy f 2 )( k x 2 + K jy 2 ε zz f 2 ) ( ε yz f 2 ) 2 f 2 [ ε xz ( k x 2 ε yy f 2 )+ ε yz ( k x K jy + ε xy f 2 )] ,
E jy = Γ jy E jz ,
Γ jy = ( k x K jy + ε xy f 2 )( k x 2 + K jy 2 ε zz f 2 ) ε xz ε yz f 4 f 2 [ ε xz ( k x 2 ε yy f 2 )+ ε yz ( k x K jy + ε xy f 2 )] .
H jx = K jy E jz /ω μ 0 ,
H jz =( k x E jy K jy E jx )/ω μ 0 .
E iz + E rz = E oz + E ez ,
E rx = E ox + E ex ,
k y ( E iz E rz )= K oy E oz + K ey E ez ,
( k x 2 + k y 2 ) E rx = k y ( k x Γ oy E oz K oy Γ ox E oz + k x Γ ey E ez K ey Γ ex E ez ),
E ez = U o E oz / U e ,
E oz = 2 k y U e E iz U e ( k y + K oy ) U o ( k y + K ey ) ,
E ez = 2 k y U o E iz U e ( k y + K oy ) U o ( k y + K ey ) .
E rz = E iz + E oz + E ez ,
E rx = Γ ox E oz + Γ ex E ez ,
E ry = k x E rx / k y .
ω μ 0 ( H iz + H rz )=[( k x Γ oy K oy Γ ox ) E oz +( k x Γ ey K ey Γ ex ) E ez ],
ω μ 0 H rx =( K oy E oz + K ey E ez ).
μ 0 ω H rx = k y ( E oz + E ez ),
μ 0 ω k y ( H iz H rz )=( k x 2 + k y 2 )( Γ ox E oz + Γ ex E ez ),
E ez = k y + K oy k y + K ey E oz .
2 μ 0 ω k y H iz =( U o E oz + U e E ez ).
E oz = 2 μ 0 ω k y ( k y + K ey ) H iz U e ( k y + K oy ) U o ( k y + K ey ) ,
E ez = 2 μ 0 ω k y ( k y + K oy ) H iz U e ( k y + K oy ) U o ( k y + K ey ) ,
H rx = 2 k y 2 ( K oy K ey ) U e ( k y + K oy ) U o ( k y + K ey ) H iz ,
H rz ={1+ 2( k x 2 + k y 2 )[ Γ ox ( k y + K ey ) Γ ex ( k y + K oy )] U e ( k y + K oy ) U o ( k y + K ey ) } H iz ,
H ry = k x H rx / k y .

Metrics